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Abstract: We discuss whether it is possible to construct a stable, static, spherically symmetric
Lorentzian wormhole in beyond Horndeski theory. The deep analogy between the cosmological
bounce and wormhole scenarios is described in detail. We show explicitly that going beyond
Horndeski enables one to evade the no-go theorem formulated for the wormholes in the general
Horndeski case.
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1. Introduction and Summary

Despite being purely hypothetical space objects, wormholes are quite peculiar for numerous
reasons [1–3]. For instance, unlike other gravitational structures in General Relativity (GR), a wormhole
requires quite an exotic matter to prevent its throat from collapsing. In particular, this matter has
to violate the Null Energy Condition (NEC) to make the wormhole traversable. One of the possible
approaches to modelling this exotic matter is to make use of Horndeski theories [4]. Horndeski
(or, equivalently, generalized Galileon) theories are scalar field theories whose Lagrangian includes
second order derivatives, but the corresponding equations of motion remain second order. The central
feature of Horndeski theories is their ability to violate NEC without giving rise to Ostrogradsky
instabilities. Horndeski theories have a generalization, which is usually referred to as beyond
Horndeski theories [5]. The equations of motion in beyond Horndeski case include third order
derivatives, nonetheless, there are the same number of degrees of freedom in beyond Horndeski
theories as compared to Horndeski case. Recently, an even more general class of theories has been put
forward and dubbed DHOST theories (see e.g., Ref. [6]). In this review we consider Horndeski and
beyond Horndeski subclasses only.

Apart from other applications, (beyond) Horndeski theories are widely used for constructing
the early Universe scenarios, which require NEC violation, e.g., cosmological bounce or Genesis
scenario (there exist many sound specific models, we name just a few [7–11]). The central issue for
all cosmological solutions constructed in Horndeski theory so far has been their stability. It was
shown that any cosmological solution in the general Horndeski theory becomes plagued with gradient
instabilities, provided one considers entire evolution [12,13]. In other words, the general Horndeski
theories are not suitable for constructing complete cosmological scenarios. However, it has been found
that going beyond Horndeski enables one to evade the no-go and construct a complete cosmological
solution, which is free of any kind of pathologies at all times (see, e.g., Refs. [14–18]).
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To some extent wormhole is similar to the bouncing scenario. Indeed, the evolution of the
bouncing scale factor a(t) and the profile of the wormhole R(r) in terms of radial coordinate r are
quite alike (Figure 1): the narrowest region of the throat corresponds to the moment of bounce and
flaring out sleeves of the wormhole are analogous to the contracting and expanding epochs of the
bouncing scenario.

Figure 1. Time dependence of the scale factor of a bouncing solution (a) and a wormhole profile (b).

Hence, one might assume that the wormhole studies in Horndeski theory should give the results
which are analogous to those for the bouncing solution. And indeed Refs. [19–21] showed that in the
cubic Horndeski theory ghost instabilities inevitably develop somewhere in space where a Lorentzian
wormhole is present. A general form of stability conditions for the spherically symmetric, static
solution in the general Horndeski theory has been derived in Refs. [22,23]. These conditions were
used to formulate a full-blown no-go theorem for the everywhere-stable wormholes in the general
Horndeski theory [24]. Thus, the analogy with the case of a cosmological bounce seems to be valid
so far. The next natural step is to try going beyond Horndeski. In this note we review the latest
results of Refs. [25,26]1 , which demonstrated that beyond Horndeski terms in the Lagrangian indeed
enable one to evade the no-go theorem for wormholes. Similar results were obtained within the
EFT formalism in Ref. [27]. What is more important, Ref. [26] contains an explicit example of the
beyond Horndeski Lagrangian, which describes the theory admitting an everywhere stable wormhole
solution2. The suggested solution is not entirely flawless: although it describes an asymptotically flat
space, gravity is still modified as compared to GR even far away from the throat. Despite having
quite specific features, this wormhole solution is a promising sign in the context of the analogy with
a bouncing case. Indeed, after having constructed a complete, stable bouncing solution in beyond
Horndeski theory with non-trivial asymptotical behaviour in Ref. [16], another completely healthy
bounce was suggested in Ref. [18], whose asymptotical past and future are described by GR with
a conventional massless scalar field. Consequently, one might expect that the construction of a stable
wormhole with a conventional form of asymptotical regions is possible as well.

This review aims to highlight the similarities between the cosmological bounce and static,
spherically symmetric wormhole settings within beyond Horndeski theories. We mainly focus on
a healthy behaviour of beyond Horndeski theory at the linearized level in both settings, comparing the
corresponding stability conditions. It occurs that the central stability requirements coincide in both
cases as well as the mechanism of evading the no-go theorems is identical. This makes the analogy
between the bounce and wormhole even deeper. However, we consider a specific subset of stability
conditions for the wormhole solution, namely, we analyse the constraints following from the no-ghost
requirement only.

This note is organized as follows. In Section 2 we introduce the Lagrangian for Horndeski theory,
specifying which terms belong to beyond Horndeski case. We collect the existing results for the

1 In Ref. [25] there occurred a calculational mistake, which resulted in erroneously driven conclusions about the fine-tuning
issue. The error was corrected in Ref. [26].

2 Let us point out, that Ref. [26] considers only a part of the whole set of stability conditions, namely, the solution is not
checked against the stability conditions, eliminating angular gradient instabilities in the parity even sector.
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cosmological bounce in beyond Horndeski theory in Section 3. In Section 4 we discuss the linearized
theory for a static, spherically symmetric wormhole setting in beyond Horndeski theory and give
a subset of stability conditions in this case. We show explicitly the way to circumvent the no-go
theorem in the case of a wormhole solution.

2. General Horndeski Theory and Beyond

Horndeski theories are the most general scalar field theories with modified gravity, which are free
of Ostrogradsky instabilities despite the presence of the second derivatives in the Lagrangian:

L = L2 + L3 + L4 + L5 + LBH,

L2 = F(π, X),

L3 = K(π, X)�π,

L4 = −G4(π, X)R + 2G4X(π, X)
[
(�π)2 − π;µνπ;µν

]
,

L5 = G5(π, X)Gµνπ;µν +
1
3 G5X

[
(�π)3 − 3�ππ;µνπ;µν + 2π;µνπ;µρπ ν

;ρ

]
,

LBH = F4(π, X)ε
µνρ

σεµ′ν′ρ′σπ,µπ,µ′π;νν′π;ρρ′ + F5(π, X)εµνρσεµ′ν′ρ′σ′π,µπ,µ′π;νν′π;ρρ′π;σσ′ ,

(1)

where π is the scalar (Galileon) field, X = gµνπ,µπ,ν, π,µ = ∂µπ, π;µν = OνOµπ, �π = gµνOνOµπ,
G4X = ∂G4/∂X, etc. The terms L2 −L5 make up the general Horndeski theory, while LBH appears
beyond Horndeski.

As it is mentioned above, the difference between the general Horndeski theory and beyond
Horndeski theory reveals itself in the order of field equations: in beyond Horndeski theory the
equations contain terms with the third order derivatives. However, the Hamiltonian analysis shows
that no extra degrees of freedom appear in the theory, meaning that beyond Horndeski is still free of
Ostrogradsky instabilities [5].

Throughout this note we keep K(π, X) = 0, G5(π, X) = 0 and F5(π, X) = 0, since the rest of
functions in the Lagrangian (1) give rise to all the structures in the linearized theory, which are essential
for the argument.

3. Stability Conditions in a Homogeneous Case

One of the main concerns regarding the cosmological solutions in (beyond) Horndeski theory
is the absence of any instabilities in the linearized theory throughout entire evolution. To study
the linearized theory for a homogeneous background solution we consider flat FLRW metric and
parametrize metric perturbations as follows:

ds2 = (1 + 2α)dt2 − ∂iβ dtdxi − a2(1 + 2ζδij + 2∂i∂jE + hT
ij)dxidxj, (2)

where α, β, ζ and E are scalar perturbations and hT
ij denote transverse, traceless tensor modes (here

and in what follows vector perturbations are omitted). Let us fix the gauge by removing ∂i∂jE in (2)
and set the perturbations of the Galileon field π to zero (unitary gauge approach). Due to a specific
structure of the Lagrangian (1) (see e.g., Refs. [28,29] for details) α and β are non-dynamical degrees of
freedom, so they give two constraint equations. Thus, there are one scalar (ζ) and two tensor degrees
of freedom left. The general form of quadratic action for the Lagrangian (1) reads:

S =
∫

dtd3x a3
[
GT
8

(
ḣT

ij

)2
− FT

8a2

(
∂khT

ij

)2
+ GS ζ̇2 −FS

(Oζ)2

a2

]
, (3)
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where the coefficients are

GS =
ΣGT 2

Θ2 + 3GT , (4a)

FS =
1
a

dξ

dt
−FT , (4b)

ξ =
a (GT +Dπ̇) GT

Θ
, (4c)

and

GT = 2G4 − 4G4XX− π̇(2F4Xπ̇), (5a)

D = 2F4Xπ̇, (5b)

FT = 2G4, (5c)

Θ = 2G4H − 8HG4XX− 8HG4XXX2 + G4ππ̇ + 2G4πXXπ̇ − 10HF4X2 − 4HF4XX3 (5d)

Σ = FXX + 2FXXX2 − 6H2G4 + 42H2G4XX + 96H2G4XXX2 + 24H2G4XXXX3 (5e)

− 6HG4ππ̇ − 30HG4πXXπ̇ − 12HG4πXXX2π̇ + 90H2F4X2 + 78H2F4XX3 + 12H2F4XXX4.

An overdot stands for the time derivative. The coefficients (5) include both general Horndeski
and beyond Horndeski terms. According to (3) it is sufficient to impose the following constraints to
avoid the appearance of ghost and gradient instabilities

GT > FT > 0, GS > FS > 0. (6)

The conditions above also ensure that there are only subluminal (or at most luminal) modes in
the theory, i.e.,

c2
T =

FT
GT

< 1, c2
S =

FS
GS

< 1, (7)

where cT and cS are the sound speed for tensor and scalar perturbations respectively.
Let us revisit the no-go theorem formulated for stable cosmological solutions in Horndeski

theory [13]. The no-go argument is based on Equation (4b) and the no-gradient instabilities requirement
in the scalar sector, i.e., FS > 0. These assumptions basically state that for any non-singular
cosmological scenario

ξ̇ > aFT > 0. (8)

The latter relation suggests that ξ is a monotonously growing function of time and, therefore,
it has to cross zero at some point. But according to definition (4c) zero-crossing of ξ is impossible in the
general Horndeski theory. Indeed, in Horndeski theory F4(π, X) = 0 soD = 0 and definition (4c) reads:

ξ =
aGT

2

Θ
, (9)

where GT still has to be strictly positive to avoid ghosts in the tensor sector. However, there is an
option to allow FT in Equation (8) to hit zero value, but, at least naively, the theory becomes strongly
coupled in this case, which is considered to be undesirable. One might also consider discontinuous ξ

by allowing Θ to cross zero in Equation (9), so that ξ could cross zero in the asymptotic past and/or
future. But this scenario still does not meet the condition (8) unless one allows FT → 0 and again risks
to run into a strong coupling regime (see e.g., Ref. [30] for a detailed discussion of the discontinuous
ξ issue). Therefore, it is impossible to construct a non-singular cosmological solution in the general
Horndeski theory, which is free of any kind of instabilities during entire evolution.

The situation changes in beyond Horndeski theory. The coefficient D in Equation (4c) is non-zero
and, while GT > 0, allows one to arrange a model so that ξ crosses zero at the moment when
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GT +Dπ̇ = 0. Hence, in beyond Horndeski theory the extra coefficient D enables one to construct
a complete, stable cosmological solution. In the following section we show that the linearized theory
has similar structure and features in the case of a static, spherically symmetric background.

4. Stability Conditions for Wormholes in Horndeski Theory and Beyond

In this section we consider static, spherically symmetric solutions in the same class of theories with
Lagrangian (1) and analyze their stability. Let us choose the background metric in the following form:

ds2 = A(r)dt2 − dr2

B(r)
− R(r)2

(
dθ2 + sin2 θ dϕ2

)
, (10)

with
A > 0, B > 0, R > 0, (11)

where the radial coordinate r ranges from −∞ to +∞. With a specific choice of the functions A,
B and R, the metric (10) describes a spherically symmetric wormhole. We study the behaviour of
both metric and scalar field perturbations. The linearized theory in the case of the general Horndeski
theory has been studied in Refs. [22,23], where the authors adopted the Regge-Wheeler approach
to parametrization of perturbations about a spherically symmetric background [31]. In this note we
generalize the results of Refs. [22,23] to the case of beyond Horndeski theories and show how the
stability conditions get modified. Let us note that we do not consider lower multipoles: both monopole
(` = 0) and dipole (` = 1) modes should be addressed separately, since the resultant quadratic action
for dynamic degrees of freedom, if exists, has significantly different form, and, hence, the stability
conditions should be obtained from the scratch (see Refs. [22,23,32] for details). However, in the
case of Horndeski theory these conditions for ` = 0, 1 modes do not give any new restrictions as
compared to ` > 1. Explicit calculations have shown that this is also the case in beyond Horndeski
theory, i.e., the stability conditions for monopole and dipole modes do not impose any new restrictions,
see Ref. [27] for computations within the EFT approach3 .

In the spherically symmetric case perturbations can be divided into parity odd and parity even
sectors according to the their transformation properties with respect to reflection [31]. There is only one
dynamical degree of freedom Q in the parity odd sector with the quadratic action of the following form

Sodd =
∫

dtdr
`(`+ 1)

2(`− 1)(`+ 2)

√
B
A

R2
[
H2

AG Q̇2 − BH2

F (Q′)2 − `(`+ 1)
R2 · HQ2 −V(r)Q2

]
, (12)

where prime stands for the derivative with respect to radial coordinate r and ` is the angular
momentum. We do not give the “potential” V(r) explicitly here, since it is irrelevant for the argument.
The squared speed of propagation in the radial and angular directions reads, respectively,

c2
r =
G
F , c2

θ =
G
H . (13)

The stability conditions immediately follow from action (12):

H > G > 0, F > G > 0, (14)

3 Similar calculations were carried out in a covariant case discussed in Ref. [26], but have not been published yet.
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where

F = 2G4, (15)

H = G = 2G4 + 2G4XBπ′2 + 2F4B2π′4.

These conditions ensure the absence of ghost and gradient instabilities in both radial and angular
directions as well as subluminal propagation of the odd-parity modes.

The quadratic action for the even-type perturbations contains two dynamical degrees of
freedom vi (i = 1, 2):

Seven =
∫

dtdr

√
A
B

R2 ·
[

1
2
Kijv̇i v̇j − 1

2
Pijvi ′vj ′ −Qijvivj ′ − 1

2
Mijvivj

]
, (16)

where the coefficients Kij, Pij, Qij andMij are some expressions of Lagrangian functions evaluated
on a spherically symmetric background. While in the parity odd sector both ghost and gradient
instabilities are avoided by imposing requirements (14), in the parity even case we concentrate on
ghosts only. To have a ghost-free solution one has to require

det(K) > 0, K11 > 0, (17)

to make the quadratic form Kij positive definite. Modulo the overall positive factors the conditions (17)
reduce to the following constraints

det(K) ∼ F (2ξ ′w −F ) > 0, (18a)

K11 ∼ `(`+ 1)ξ ′w −F > 0, (18b)

where
Dw = 2F4B2π′4. (18c)

Note that it is sufficient to satisfy the condition (18a) only, since for ` > 1 the inequality (18b) is valid
automatically. Both constraints in Equation (18) involve ξw, which is the analogue of ξ in Equation (4c)
and reads

ξw =
R2H (H−Dw)

Θw
, (19)

with

Θw = 2HRR′ + π′
(
−2G4π R2 − 4G4XB RR′π′ + 2G4πXBR2(π′)2 + 4G4XXB2 RR′(π′)3

−16F4B2 RR′(π′)3 + 4F4XB3 RR′(π′)5
)

.

According to Equation (18) the situation appears to be identical to the homogeneous one:
Equation (18a) implies that ξ ′w > F/2 > 0 and, hence, ξw has to be a monotonously growing
function, which means that it must cross zero somewhere.

Now ξw and ξ have basically the same structure (see Equations (19) and (4c)) and, in full analogy
with the homogeneous case, the definition (19) explicitly shows that it is necessary to go beyond
Horndeski to make ξw cross zero. Indeed, according to Equation (18c) Dw vanishes in the general
Horndeski case and leavesH2 in the numerator, while letting Θw cross zero in the denominator still
does not help out (see the comment in Section 3). The fact that ξw cannot cross zero in the general
Horndeski case in a healthy way has been formulated in the form of a no-go theorem in Ref. [24].
Hence, the stability conditions with respect to ghost degrees of freedom can be met everywhere only
in beyond Horndeski theory.
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Thus, we have explicitly showed that in full analogy with a cosmological setting the no-go theorem,
forbidding ghost-free wormholes, can be evaded by going beyond Horndeski. The central relation for
the stability analysis (19) in the spherically symmetric case of beyond Horndeski theory is identical
to the one in the cosmological setup. In this note we have not considered the possibility of tachyonic
instabilities in the parity odd sector, while the corresponding stability analysis has been carried out in
Refs. [27,32]. We also have not discussed gradient instabilities in parity even sector, which are partly
addressed in Ref. [26]. What is more, the stability analysis for the even-parity perturbations should
be further developed to rule out angular gradient instabilities and tachyonic degrees of freedom,
which are governed by matrices Qij and Mij in the quadratic action (16) (both matrices are quite
cumbersome, therefore the issue is left for the future studies). Although off hand it is unlikely that
these types of pathologies occur in the spherically symmetric case, there might be peculiar results
as well.
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