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Abstract: It has been shown by explicit and exact calculation that the geometric product formula i.e.,
area (or entropy) product formula of outer horizon (H+) and inner horizon (H−) for charged accelerating
black hole (BH) should neither be mass-independent nor quantized. This implies that the area (or entropy
) product is mass-independent conjecture has been broken down for charged accelerating BH. This also
further implies that the mass-independent feature of the area product ofH± is not a generic feature at all.
We also compute the Cosmic-Censorship-Inequality for this BH. Moreover, we compute the specific heat
for this BH to determine the local thermodynamic stability. Under certain criterion, the BH shows the
second order phase transition. Furthermore, we compute logarithmic corrections to the entropy for the
said BH due to small statistical fluctuations around the thermal equilibrium.
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1. Introduction

Perhaps, BHs are the most facinating objects in the universe. They are the direct consequences of
Einstein’s general relativity. They could be used as a tool for testing strong gravity and beyond. The most
general class of BHs are characterized by three parameters namely the mass, charge and spin parameter.
They are described by Kerr-Newman family of BH in 3 + 1 dimensions. It is now well established by fact
that BH is a thermal object because it has characterized by thermodynamic variables like temperature,
entropy etc. [1,2]. New thermodynamic product relations (particularly the horizon area (or entropy)
product relations) of event horizon (EH) area and Cauchy horizon (CH) area for several class of BHs have
been found universal [3–10].

This relation is said to be universal because of the product of area of multihorizons particularly two
physical horizons namelyH± is mass-independent. When a thermodynamic product relation is satisfied
this criterion then it is said to be a universal quantity in BH thermodynamics. For example, in case of
Kerr-Newman (KN) BH [3] which is an electrovacuum solution of Einstein’s equations, it has been shown
that the product of inner horizon (IH) area and outer horizon (OH) area should read

A−A+ = 64π2 J2 + 16π2Q4 , (1)

where A− and A+ are area of CH and EH’s respectively. This relation indicates that the universal product
depend only on quantized angular momentum and quantized charges respectively [3–10]. When the
charge parameter Q = 0, one obtains the area product for Kerr BH

A−A+ = 64π2 J2 , (2)
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and it indicates that the universal product depends only quantized angular momentum parameter. When
the angular momentum parameter J = 0, one obtains the area product formula for spherically symmetric
charged BH

A−A+ = 16π2Q4 , (3)

and it implies that the universal product depends only on quantized charge parameter. In the above three
cases, it is indeed true that the horizon area (or entropy) product formula is mass-independent, thus it is
universal in this sense. This is the only motivation behind this work and this is in fact an interesting topic
in recent years in the scientific community particularly in the general relativity (GR) community [3] and in
the string theory community [4,5] (see also references [6–10]).

It may be noted that for spherically-symmetric extremal charged BH (M = Q) the above Equation (3)
coalesces to the following equation

A2
+ = A2

− = 16π2Q4 = 16π2M4 , (4)

Hence in this case the area’s square of outer horizon or the area’s square of inner horizon depends on
the mass parameter.

Another motivation comes from Visser’s work [11] (see also References [11–16]). Using this concept
here we have tried to extend our analysis for charged accelerating anti-de Sitter (AdS) BH. By explicit and
exact calculation, we show that the area (or entropy) product formula of OH and IH for charged accelerating
BH should not be mass-independent and also it should not to be quantized. Thus, we conclude that the
theorem of Ansorg-Hennig [3] “The area (or entropy) product formula is independent of mass” is not
universal for charged accelerating BH. Moreover, we study other thermodynamic properties, particularly
the local thermodynamic stability, by computing the specific heat. Under appropriate condition, the BH
possesses second order phase transition.

One aspect is that the leading-order logarithmic corrections to BH entropy due to quantum
fluctuations around the thermal equilibrium BH temperature for charged AdS BH have not been studied
previously; we compute here the logarithmic corrections to Bekenstein-Hawking entropy for the said BH
and it appears to be a generic feature of the BH. It should be noted that we have assumed that the BH is a
thermodynamic system which is in equilibrium at Bekenstein-Hawking temperature.

Another strong motivation came from the work of Cvetič et al. [4], where the authors suggested
that if the cosmological parameter is quantized then the area (or entropy) product relations for rotating
BH in D = 4 and D > 4 should provide a “looking glass for probing the microscopics of general BHs”.
Thus it is quite interesting to investigate the area (or entropy) product formula after incorporating the
cosmological constant.

The interesting property of the charged AdS BH is that it has an accelerating horizon and the
OH possesses conical singularity [17]. In spite of the non-asymptotic structure, the first law of BH
thermodynamics and Smarr formula are satisfied for this accelerating spacetime [17] (See also [18]).
However, the cosmological horizon does not have accelerating horizon. This type of BH is said to be
slowly accelerating BH. The other novel property of this accelerating BH is that it is described by the C
metric [19–22]. Again the C metric has some peculiar features in the sense that it accelerates by pulling
with a ‘cosmic string’, which is described by a ‘conical deficit in the spacetime’; it connects the OH of the
BH to infinity [17].

Actually, the idea of vacuum C metric was first given by Levi-Civita in 1918 [23]. Then it was
rediscovered by Newman and Tamburino in 1961 [24], also by Robinson and Trautman [25] in the same
years, and by Ehlers and Kundt [26] in 1963 but there was no explanation given. First Robinson and
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Trautman discovered the interesting feature of this metric, that is, it emits gravitational radiation. Later,
Podolsky et al. [27] studied the gravitational and electromagnetic radiation emitted by the uniformly
accelerated charged BH in AdS spacetime.

In the next section, we have given the basic characteristics of the charged accelerating BH and we have
also derived the area functional relation in terms of BH mass, charge, acceleration, cosmological constant.
We have also derived the cosmic censorship inequality for this BH and finally we have computed the
specific heat which determines the local thermodynamic stability. In the third section, we have discussed
the logarithmic correction to BH entropy for this class of BHs. Finally, in the last section, we have given
the conclusion.

2. Thermodynamic Properties of Charged Accelerating BH

The metric of the charged accelerating BH [17,19,20,22] is described by

ds2 =
1

Ω2

[
−F (r)dt2 +

dr2

F (r) + r2
(

dθ2

G(θ) + G(θ)sin2θ
dφ2

K2

)]
. (5)

with the gauge potential F = dB and B = − q
r dt, and where

F (r) = (1− χ2r2)

(
1− 2m

r
+

q2

r2

)
+

r2

`2 , (6)

G(θ) = 1 + 2mχcosθ + q2χ2cos2θ. (7)

and the conformal factor is Ω = 1 + χrcosθ. It determines the conformal infinity of the AdS BH.
The quantities m and q are BH mass and BH charge respectively, χ > 0 determines the acceleration
of the BH and −Λ

3 = 1
`2 where ` is the radius of the AdS BH. It should be noted that when χ < 1

` , a single
BH is present with single horizon [28] whereas when χ > 1

` , two BHs of opposite charge are separated
by accelerating horizon [21,29] and when χ = 1

` is a special case and it has been explicitly described in
Reference [30]. To obtain the angular coordinates as usual form on S2 we have set the restriction mχ < 1

2 .
Now we discuss the angular part of the metric and the properties of G(θ) at the north pole (θ = 0)

and south pole (θ = π). In general, K = G(θ) but at north pole fixed with K = KN = 1 + 2mχ + q2χ2

and at south pole KS = 1− 2mχ + q2χ2 that indicates the choices at the north pole and at the south pole
are mutually incompatible. Thus the metric cannot be made regular at both the poles at the same time.
Therefore, the convention is to make a choice that makes it regular at one of the poles—this leads to a
‘conical deficit’ at the other pole which is δ = 8πmχ

1+2mχ+q2χ2 and which corresponds to a ‘cosmic string’ [17]

with tension µ = δ
8π = mχ

1+2mχ+q2χ2 .
Thus the C metric is described by the five physical parameters: the mass m, the charge q, the negative

cosmological constant−Λ = 3
`2 , the acceleration χ and the ‘tension of the cosmic string’ on each axis which

is represented by the periodicity of the angular coordinate. More discussion regarding the thermodynamic
properties (particularly first law of BH thermodynamics [18], Smarr mass formula, thermodynamic volume,
Gibbs free energy and Reverse isoperimetric inequality) of the C metric could be found in Reference [17].

Now we evaluate the radii of BH horizons by imposing the condition F (ri) = 0, i.e.,(
1− χ2`2

)
r4

i + 2m`2χ2r3
i + `2

(
1− χ2q2

)
r2

i − 2m`2ri + q2`2 = 0 . (8)
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Apply Vieta’s theorem, we find

4

∑
i=1

ri = − 2m`2χ2

(1− χ2`2)
. (9)

∑
1≤i<j≤4

rirj = `2
(
1− χ2q2)
(1− χ2`2)

. (10)

∑
1≤i<j<k≤4

rirjrk =
2m`2

(1− χ2`2)
. (11)

∑
1≤i<j<k<l≤4

rirjrkrl =
q2`2

(1− χ2`2)
. (12)

Eliminating the mass parameter, one obtains a single mass-independent relation as

r1r2 +
q2`2

(1− χ2`2) r1r2
+ (r1 + r2)

2×

[
r1r2

χ2

(1 + χ2r1r2)
− q2`2χ2

r1r2 (1− χ2`2) (1 + χ2r1r2)
− 1
]

= `2
(
1− χ2q2)
(1− χ2`2)

. (13)

In terms of two BH physical horizons area Ai =
4πr2

i
K(1−χ2r2

i )
(where i = 1 for EH and i = 2 for CH),

the mass independent functional relationship is given by√
KA1

4π + Kχ2A1

√
KA2

4π + Kχ2A2
+

q2`2

(1− χ2`2)

√
4π + Kχ2A1

KA1

√
4π + Kχ2A2

KA2
+

(√
KA1

4π + Kχ2A1
+

√
KA2

4π + Kχ2A2

)2

×


√

KA1

4π + Kχ2A1

√
KA2

4π + Kχ2A2

χ2(
1 + χ2

√
4π+Kχ2A1

KA1

√
4π+Kχ2A2

KA2

) − 1

−
(√

KA1

4π + Kχ2A1
+

√
KA2

4π + Kχ2A2

)2

×

√
4π + Kχ2A1

KA1

√
4π + Kχ2A2

KA2
×

 q2`2χ2

(1− χ2`2)

(
1 + χ2

√
4π+Kχ2A1

KA1

√
4π+Kχ2A2

KA2

)
 = `2

(
1− χ2q2)
(1− χ2`2)

(14)
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where,

K = 1 + 2mχ + q2χ2. (15)

Equation (13) is indeed mass independent but the difficulties arise when we write the expression
in terms of area of the BH physical horizons (Equation (14)) because there is a factor K where a mass
term m is present. Therefore, it is indeed true that the mass-independent relation has been violated for
charged accelerating BH. Thus the “Ansorg-Hennig [3] area theorem” conjecture breaks down for charged
accelerating BH. This is another example we have provided in the literature in which the area product of
OH and IH is not always universal.

The BH entropy [17] is given by

Si =
Ai
4

=
πr2

i
K
(
1− χ2r2

i
) . (16)

and the electric potential on the horizon should read

Φi =
q
ri

. (17)

Now the BH temperature is given by

Ti =
F ′(ri)

4π
=

1
4π

[
2m
r2

i
− 2q2

r3
i

+ 2mχ2 − 2χ2ri +
2ri
`2

]
. (18)

The other useful thermodynamic relations are

TiSi =
M
(
1 + χ2r2

i
)

2
(
1− χ2r2

i
) − ΦQ

2
(
1− χ2r2

i
) − χ2r3

i
2K
(
1− χ2r2

i
) + P

4π

3K
r3

i(
1− χ2r2

i
) . (19)

where we have set the parameter m = MK, q = QK and P = − Λ
8π = 3

8π`2 .
The Smarr-Gibbs-Duhem relation becomes

M = 2

(
1− χ2r2

i
1 + χ2r2

i

)
(TiSi − PV) +

ΦQ(
1 + χ2r2

i
) + χ2r3

i
K
(
1 + χ2r2

i
) . (20)

The thermodynamic volume is derived to be

V =

(
∂M
∂P

)
S,Q

=
4π

3K
r3

i(
1− χ2r2

i
) . (21)

beacuse the mass parameter becomes

M =
1

2K

[
ri +

K2Q2

ri
+

8πP
3

r3
i(

1− χ2r2
i
)] . (22)

When the acceleration χ vanishes, one obtains indeed the result of charged AdS BH. When we have
taken into the concept of extended phase space then the first law has taken to be the form as

dM = TidSi + VdP + ΦidQ . (23)



Universe 2019, 5, 57 6 of 13

where the thermodynamic volume is defined in Equation (21).
The reverse isoperimetric inequality is indeed violated for this BH as

R =
(

1− χ2r2
+

) 1
6 ≤ 1 . (24)

Finally the Gibb’s free energy is defined to be

Gi = M− TiSi . (25)

where TiSi and M are defined in Equations (19) and (22) .
We know the famous Cosmic-Censorship-Inequality [which requires cosmic-censorship

hypothesis [31] (See References [32–36])] for Schwarzschild BH is given by

m ≥
√
A

16π
. (26)

It is a very challenging topic in mathematical relativity since 1973. The above inequality1 for
accelerating BH becomes

m ≥ 1
2

√
KAi

4π + Kχ2Ai

[
1 + q2

(
4π + Kχ2Ai

KAi

)
+

KAi
4π`2

]
. (27)

This idea was first given in 1973 by Penrose [31], which is an important topic in GR which
relates ADM mass (i.e., total mass of the spacetime) and the area of the even horizon. It is called
Cosmic-Censorship-Inequality or Cosmic-Censorship-Bound [37].

This inequality implies that it provides the lower bound on the mass (or energy) for any
time-symmetric initial data which satisfied the famous Einstein equations with negative cosmological
constant, and which also satisfied the dominant energy condition which possesses no naked singularity.

Local thermodynamic stability and phase transitions [38,39], particularly second order phase
transition, are important phenomena in BH thermodynamics and it can be determined by computing the
specific heat which is calculated to be for accelerating BH

Ci = 2πr2
i

[
1− q2

r2
i
+

r2
i
`2

(3−χ2r2
i )

(1−χ2r2
i )

2

]
[

4χ2r4
i

`2(1−χ2r2
i )

2 +
r2

i
`2

(
3−χ2r2

i
1−χ2r2

i

)
+ 3q2

r2
i
−
(
1 + q2χ2 + χ2r2

i
)] . (28)

Now we analyze the above expression of specific heat for different parameter space.
Case I When

1 +
r2

i
`2

(3− χ2r2
i )

(1− χ2r2
i )

2
>

q2

r2
i

and

4χ2r4
i

`2(1− χ2r2
i )

2
+

r2
i
`2

(
3− χ2r2

i
1− χ2r2

i

)
+

3q2

r2
i

>
(

1 + q2χ2 + χ2r2
i

) (29)

1 The Penrose inequality is indeed violated for charged accelerating BH because in the right side of the Equation (14) the factor K
depends on the mass parameter.
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the specific heat is positive i.e., Ci > 0, which indicates that the BH is thermodynamically stable.
This inequality is plotted in Figure 1a. Along the abcissa we have taken the value of horizon radius
r+ and along the ordinate we have taken the value of q.

Case II When

1 +
r2

i
`2

(3− χ2r2
i )

(1− χ2r2
i )

2
>

q2

r2
i

and

4χ2r4
i

`2(1− χ2r2
i )

2
+

r2
i
`2

(
3− χ2r2

i
1− χ2r2

i

)
+

3q2

r2
i

<
(

1 + q2χ2 + χ2r2
i

)
or

1 +
r2

i
`2

(3− χ2r2
i )

(1− χ2r2
i )

2
<

q2

r2
i

and

4χ2r4
i

`2(1− χ2r2
i )

2
+

r2
i
`2

(
3− χ2r2

i
1− χ2r2

i

)
+

3q2

r2
i

>
(

1 + q2χ2 + χ2r2
i

)
(30)

the specific heat is negative i.e., Ci < 0, which implies that the BH is thermodynamically unstable. These
two inequalities are shown in Figure 1b,c.

Case III When [
4χ2r4

i
`2(1−χ2r2

i )
2 +

r2
i
`2

(
3−χ2r2

i
1−χ2r2

i

)
+ 3q2

r2
i

]
(
1 + q2χ2 + χ2r2

i
) = 1 . (31)

the specific heat Ci diverges. It signals a second order phase transition for such BHs. It could be observed
from the Figure 2.

(a) (b)

Figure 1. Cont.
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(c)

Figure 1. The inequality for specific heat of the Case-I is plotted in (a), Case-II is plotted in (b,c). Along the
abcissa (X) we have chosen the value of horizon radius r+ and along the ordinate (Y) we have chosen the
value of q. We have set ` = χ = 1.

In Figure 2, we have plotted specific heat with the horizon radius. From the figure one can observed
that the phase transition occurs at the positive value of the EH radius.

(a) (b)

Figure 2. In this figure, we have plotted the variation of specific heat Ci with horizon radius (r+) for the
values χ = 1 (a) and ` = 1 (b).

3. Logarithmic Corrections to Entropy for Charged Accelerating BH

In this section, we will derive the logarithmic corrections to BH entropy for charged accelerating
BH by assuming that the BH is considered as a thermodynamic system which is in equilibrium at
Bekenstein-Hawking temperature, and due to the effects of statistical thermal fluctuations around
the equilibrium.

To derive this correction, we will follow the classical work of Das et al. [40]. Where the authors first
studied the general logarithmic corrections to BH entropy for higher dimensional AdS spacetime and BTZ
BH. Since the BHs have been considered as a macroscopic object compared to the Planck scale length and
this indicates that the logarithmic terms are much smaller compared to the Bekenstein-Hawking terms
and they should be treated as corrections.
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Now we can define the canonical partition function [41] as

Zi(βi) =
∫ ∞

0
ρi(E)e−βiEdE . (32)

where Ti =
1
βi

is the temperature ofHi. We have chosen the value of Boltzman constant kB = 1.
The density of states can be defined as an inverse Laplace transformation of the partition function

ρi(E) =
1

2πi

∫ a+i∞

a−i∞
Zi(βi)eβiEdβi (33)

=
1

2πi

∫ a+i∞

a−i∞
eSi(βi)dβi . (34)

where a is a real positive constant and

Si = ln Zi + βiE . (35)

is entropy of the system near its equilibrium.
Near equilibrium of the inverse Hawking temperature βi = β0,i, we can expand the entropy function

as

Si(βi) = S0,i +
1
2
(βi − β0,i)

2S′′0,i + ... . (36)

where, S0,i = Si(β0,i) and S′′0,i =
∂2Si
∂β2

i
at βi = β0,i

Putting the Equation (36) in Equation (32), one obtains

ρi(E) =
eS0,i

2πi

∫ a+i∞

a−i∞
e
(βi−β0,i)

2
S′′0,i

2 dβi (37)

Let us choose βi − β0,i = iyi and setting a = β0,i, yi is a real variable and evaluating a contour integral
we have

ρi(E) =
eS0,i√
2πS′′0,i

. (38)

The logarithm of ρi(E) gives the corrected entropy of the thermodynamic system

Si = ln ρi = S0,i −
1
2

ln S′′0,i + ... (39)

Next our task is to compute S′′0,i, for this we must choose any specific form of function Si(βi) which is
modular invariant partition function and which is also admitted an extremum at some specific value βi,0
of βi followed by underlying conformal field theory (CFT) [40,42]. Therefore, the exact entropy function
followed by CFT is of the form

Si(βi) = cβi +
d
βi

(40)
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where c, d are constants. It can be rewritten as a more general form which admits saddle point as

Si(βi) = cβm
i +

d
βn

i
(41)

where m, n, c, d > 0. The special case we have considered here when m = n = 1 is due to the CFT. After
some algebraic computation (See for more details [40,43]) one can find the value of S′′0,i = T2

i S0,i, then we
get the leading order corrections to BH entropy as

Si = ln ρi = S0,i −
1
2

ln
∣∣∣T2

i S0,i

∣∣∣+ ... (42)

Putting the values of S0,i =
πr2

i
K(1−χ2r2

i )
and Ti, one can obtain the logarithmic correction to BH entropy

for charged accelerating BH

Si =
πr2

i
K
(
1− χ2r2

i
) − ln

∣∣∣∣∣2m
ri
− 2q2

r2
i

+ 2mχ2ri − 2χ2r2
i +

2r2
i

`2

∣∣∣∣∣+
1
2

ln
∣∣∣K (1− χ2r2

i

)∣∣∣+ ... (43)

This corrected entropy formula indicates that it is a function of horizon radius, mass parameter,
charge parameter, acceleration parameter and cosmological constant.

It should be noted that the product

2

∏
i=1
Si (44)

is explicitly depends on the value of mass parameter, etc. Thus the logarithmic corrected entropy formula
is not mass-independent and it is not quantized.

We have plotted the logarithmic corrected entropy and without the logarithmic corrected entropy in
Figure 3. It follows from the graph (Figure 3a (left panel)) when there is no acceleration i.e., χ = 0 and
there is no logarithmic correction, the entropy is increasing when horizon radius increases. When there is
an acceleration, the value of entropy diverges at a certain horizon radius; this indicates the phase transition
occurs at r+ = 1. On the other hand, when we have taken the logarithmic correction to entropy in the
presence of acceleration then the divergence disappears (Figure 3b (right panel)) and all the phenomena
occurs in the regime 0.5 < r+ < 1. Three situations are also qualitatively different. This is an another
interesting feature of charged accelerating BH.
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(a) (b)

Figure 3. In this graph, we have drawn the variation of logarithmic corrected entropy (S+) (a) and without
logarithm corrected entropy (S0,+) (b) with horizon radius (r+).

4. Conclusions

In this work, we studied the thermodynamic properties of slowly accelerating BH which consists of
five parameters, namely the mass, the charge, the acceleration, the cosmological constant and the cosmic
string tension. We derived the geometric product formula i.e., area product formula of OH and IH for
charged accelerating BH. We showed that this area product formula should not be mass-independent
or quantized. This suggests that the mass-independent conjecture of Ansorg-Hennig breaks down for
charged accelerating BH. This is an another example we have added in the literature in which the
area product of two physical horizons is not always mass-independent. We also derived the famous
Cosmic-Censorship-Inequality for this slowly accelerating BH. The physical significance of this inequality
is to determine the lower bound of mass or energy for a time-symmetric initial data which fulfilled the
dominant energy condition.

Moreover, we evaluated the criterion under which the BH showed the second order phase transition.
Finally, we computed the logarithmic correction to entropy due to statistical quantum thermal fluctuations
near the BH equilibrium temperature for this charged accelerating BH. The implication of the logarithmic
corrections to BH entropy might be useful to understanding the Suskind’s holographic hypothesis [44]
and the AdS/CFT correspondence (which is a prime example of holography). This principle is based on
string theory and quantum gravity. It would be an interesting topic of research if one could compute the
quasilocal energy for this BH following the work [45]. It may be helpful to testify the Seifert conjecture for
BH naked singularity [45].
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