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Abstract: The notions of Weak Value (WV) and Two-State Vector Formalism (TSVF), firstly introduced
by Aharonov and collaborators, provide a quantum-theoretical formalism of extracting new
information from a system in the limit of small disturbances to its state. Here, we explore two
applications to the case of non-relativistic two-body scattering with one body weakly interacting with
its environment. We present a physically compelling analysis of a new quantum effect: momentum
transfer deficit and an accompanying enhanced energy transfer; or, equivalently, an apparent
mass-deficit of the struck body. First, incoherent inelastic neutron scattering (INS) from protons
of H2 molecules in C-nanotubes is investigated. The data of the H2 translational motion along the
nanotube shows that the neutron apparently exchanges energy and momentum with a fictitious
particle with mass of 0.64 atomic mass units (a.m.u.), which is in blatant contradiction with the
expected value of 2 a.m.u. Second, the same theory is applied to neutron reflectivity—which is elastic
and coherent—from the interface of (single crystal) Si with H2O-D2O liquid mixtures. The data shows
a striking enhanced reflectivity in a wide range of momentum transfers, which is tantamount to a
momentum-transfer deficit with respect to conventional expectations. However, these effects find a
natural interpretation within the WV-TSVF theoretical analysis under consideration. In summary,
both scattering effects contradict conventional theoretical expectations, thus also supporting the
novelty of the theoretical framework of WV and TVSF. Additionally, it should be pointed out that
the two dynamical variables in the interaction Hamiltonian of the theoretical model belong to two
different physical bodies.

Keywords: weak values; two-state vector formalism; quantum-correlation effects in condensed
matter; incoherent neutron scattering; nanoscale confinement; hydrogen-carbon compounds; proton
quantum mobility; solid–liquid surface phenomena; neutron reflectivity; X-ray diffraction

1. Introduction

The counter-intuitive Elitzur–Vaidman effect [1] concerning interaction-free measurements
(popularly known as “bomb tester”) revealed, among other facts, the ability to experimentally obtain
information about an object’s presence in some spatial region without ever “touching” it. This is a
paradox in the frame of classical physics. Namely, in successful interaction-free “bomb detections”, no
physical quantity—like energy, momentum, angular momentum, spin, force, etc.—has been exchanged
between the object and the probe particle (e.g., a photon). However, this information cannot be
gained “at no charge”; the “costs” of this information are provided by the photon’s wavefunction.
Consequently, the experimental verification of this novel quantum effect demonstrates that the
quantum-mechanical wavefunction is a real physical quantity—and not just an auxiliary construct
for the calculation of expectation values of quantum observables, which have to be compared with
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results of actual measurements as obtained with real instruments. (For a quite different opinion, see
Discussion below.)

Furthermore, the fundamental time-inversion symmetry of the Schrödinger equation was shown
to be a crucial feature in the novel theory of Weak Values (WV) and the Two-State Vector Formalism
(TSVF) of Aharonov and collaborators; cf. [2–7] and references therein. Based on this theory, new
experiments were suggested and several novel quantum effects were discovered; cf. e.g., [4] and
references therein.

Very recently, Aharonov et al. [8] provided a remarkably simple and clear example demonstrating
the predictive power of the theory, revealing an “anomalous” momentum exchange between photons
(or particles) passing through a Mach–Zehnder interferometer (MZI) and colliding with one of its
mirrors. Here, the measured photon’s (particle’s) final state, being post-selected in a specific output of
the MZI, plays a crucial and succinct role, which is captured by the Aharonov–Bergmann–Lebowitz
rule [9]. In essence, the revealed effect is as follows: Although the photons (particles) collide with the
considered mirror only from the inside of the MZI, they do not push the mirror outwards, but rather
they somehow succeed to pull it in [8]; see Section 2.

Inspired by this remarkable theoretical result, we recently started investigating a possible
experimental application of this theory in the context of (non-relativistic) incoherent neutron scattering
off atoms and molecules in condensed matter [10]. Related experimental results obtained by incoherent
inelastic neutron scattering (IINS, o simply INS [11]) and deep-inelastic neutron scattering (DINS)—also
called neutron Compton scattering (NCS)—were presented and theoretically analyzed [10].

In this paper, we focus on the applicability of the new WV-TSVF theory. Firstly (in Section
Section 4), we investigate a counter-intuitive experimental result of neutron scattering from H2 in
carbon nanotubes and related materials, as obtained with conventional INS with the aid of modern
2-dimensional neutron spectrometers, e.g., the spectrometer ARCS [12]. In short, the findings—if
analyzed with standard theory—correspond to a striking strong mass deficit of the scattering objects. The
INS-observations have no known conventional interpretation. Secondly (in Section 5), we investigate an
effect of surface physics, i.e., neutron reflectivity—which is elastic and coherent—from the interface of
a single-crystal Si wafer with H2O-D2O liquid mixtures. These measurements show a striking increased
neutron reflectivity in a wide range of momentum transfers, which is tantamount to a momentum
transfer deficit with respect to conventional expectations. We show that both effects appear to have
natural interpretations within the WV-TSVF theoretical analysis under consideration.

Last but not least, a specific feature of the INS experiment under consideration should be pointed
out here because (1) it affects several criticisms denying the novel character of WV and TSVF theory
(not discussed in this paper), and (2) it is directly related with a particularly important point raised
by Vaidman [13]. Concretely, in experiments done so far, WVs are measured using different degrees
of freedom of the same quantum system. In our experiments, however, a WV referring to one body
(i.e., the scattering H atom; or the nanoscopic layer at the Si/water interface) is observed via its
interaction with a different quantum system (i.e., the meter, here: neutron). Hence, as Vaidman
explicitly pointed out [13], in this case, the WV appears due to interference of a quantum entangled
wave, thus having no analog in classical wave interference.

Weak values and the TSVF are nowadays active areas of research, providing new conceptual ideas
and novel practical techniques for a wide range of applications. The present paper does not consider
interpretational issues; instead, it proposes a new family of effects related with momentum-energy
transfers, thus contributing to the connection between the “theory”-community and the community of
experimental scattering physics.

2. Motivation

The central points of this paper concern (a) the measurements of momentum and energy transfers
in real scattering experiments, (b) the associated predictions or expectations of conventional (classical
or quantum) theory and, in particular, (c) the comparison of the experimental results with a new
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theoretical prediction based on the theory of WV and TSVF. Point (c) has been intuitively motivated by
certain intriguing results presented in a recent theoretical paper by Aharonov et al. [8].

Here, we consider a particular result of [8] only, which concerns “anomalous” momentum
exchange between two quantum objects (i.e., a photon impinging on a small mirror of a MZI, combined
with suitable post-selection); see Figure 1. This appears to have some analogy with the neutron-atom
collision (or scattering) experiments considered below.

Figure 1. Mach–Zehnder interferometer and path of a light beam (or a particle, etc.). The mirror M on
the right is a mesoscopic quantum object. Of particular interest are the photons (particles) emerging
toward detector D2 (adapted from Figure 2 of [8].)

Single photons (or particles) enter a device similar to a usual MZI, with the exception that one
reflecting mirror is sufficiently small (say, a meso- or nanoscopic quantum object M) in order that its
momentum distribution may be detectable by a suitable non-demolition measurement [14]. In [8],
the authors derive the following astonishing result. Although the post-selected photons collide with
the mirror M only from the inside of the MZI, they do not push M outwards, but rather pull it in.
Obviously, this result does not have a classical interpretation.

Let us now consider a straightforward derivation of this effect, following closely the presentation
of some derivations in [8] which are relevant for our purposes.

The two identical beamsplitters of the MZI have non-equal reflectivity r and transmissivity t (both
real, with r2 + t2 = 1), and in the following we will assume r > t. Thus, when a single photon (particle)
enters the MZI by impinging on the left side of the beamsplitter BS1, the probabilities to be found in
the arms A and B are r2 and t2, respectively.

The focus is on the momentum kick given to the mirror M due to each photon-M collision inside
the interferometer, but only for photons emerging towards, or post-selected by, detector D2. Using
the standard convention, an incoming state |in〉 impinging on the beamsplitter BS1 will emerge as a
superposition of a reflected state |R〉 and a transmitted state |T〉; |in〉 → ir|R〉+ t|T〉. Hence, when a
single photon impinges from the left on BS1, as illustrated in Figure 1, the effect of the beamsplitter is
to produce inside the interferometer the state |Ψ〉 = ir|A〉+ t|B〉, where |A〉 and |B〉 denote the photon
propagating along the arms A and B of the MZI, respectively.

The second beamsplitter, BS2, is identical to the first. As one can readily check, a photon in the
state |Φ2〉 = −ir|A〉+ t|B〉 emerges towards detector D2. Furthermore, the probability of emerging
towards detector D1 is

∣∣〈Φ1|Ψ〉
∣∣2 = 4r2t2 while the probability of emerging towards D2 is

∣∣〈Φ2|Ψ〉
∣∣2 =

(r2 − t2)2 = 1− 4r2t2 [8].
Now, we send a classical light (particle) beam of intensity I towards this interferometer. The light

(particle) intensity in arm A is then IA = r2 I while the intensity in arm B is IB = t2 I. The momentum
given to the mirror M by the beam inside the interferometer is 2IB cos α = 2t2 I cos α. There is no doubt
that this process pushes the mirror M outward.

In contrast, let us now send a quantum beam of photons (particles) into the MZI. A photon when
“going through arm A” will produce no kick to M. Each photon incident on M, which is in arm B, gives
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M a momentum kick δ. (see [8] for important details concerning the momentum spread ∆ of the mirror
in relation to the kick δ.)

Accordingly, if φ(p) is the initial quantum state of the mirror M and |Ψ〉 is the quantum state
of the photon after the input beamsplitter BS1, but before reaching M, the reflection on M results in
the transition

|Ψ〉φ(p) = (ir|A〉+ t|B〉)φ(p)→ ir|A〉φ(p) + t|B〉φ(p− δ). (1)

We shall now consider a single photon propagating through the interferometer. Given δ to be
sufficiently small, we may approximate the total state of the photon and mirror just before the photon
reaches the output beamsplitter BS2 by

|Ψ〉φ(p) ≈ ir|A〉φ(p) + t|B〉
(

φ(p)− dφ(p)
dp

δ
)
= |Ψ〉φ(p)− t|B〉dφ(p)

dp
δ. (2)

Now, consider a photon emerging towards D2, after passing beamsplitter BS2. The state of the
mirror M is then given (up to normalization) by projecting the joint state onto the state of the photon
corresponding to this beam, i.e.,

〈Φ2|
(
|Ψ〉φ(p)− t|B〉dφ(p)

dp
δ
)

. (3)

A short derivation yields the result

〈Φ2|
(
|Ψ〉φ(p)− t|B〉dφ(p)

dp
δ
)
= 〈Φ2|Ψ〉φ(p− Pw

B δ), (4)

where PB = |B〉〈B| is the projection operator on state |B〉 and

Pw
B =

〈Φ2|PB|Ψ〉
〈Φ2|Ψ〉

(5)

is the so-called weak value (WV) of PB between the initial state |Ψ〉 and the final state |Φ2〉 [2–4,6].
Furthermore, the value of Pw

B is readily found to be

Pw
B =

〈Φ2|PB|Ψ〉
〈Φ2|Ψ〉

= − t2

r2 − t2 ; (6)

see [8] for details of calculation. Hence, the momentum kick received by the mirror due to a photon
emerging towards D2 is

δpM = Pw
B δ = − t2

r2 − t2 δ < 0. (7)

The last inequality holds due to the case r > t we are considering here.
The appearance of the WV of the projector PB in Equation (4) a characteristic feature of the WV

and TSVF theory. Namely, here the mirror represents a device measuring whether or not the photon is
in arm B. The momentum of the mirror acts as a so-called pointer variable (no kick: the photon is in
arm A; kick: the photon is in arm B). However, since the photon can only change the momentum of the
mirror (pointer) by far less than its spread, we are in the so-called “weak measurement” regime, [2–6].

Moreover, in the particularly interesting case with r > t, the sign of the momentum received
by the mirror is negative, hence the mirror is pushed towards the inside of the MZI. (Obviously, this
also holds for the total momentum caused by all photons hitting M.) This astonishing momentum
change is a result of the mirror receiving a quantum superposition between a kick δ and no kick at all,
corresponding to the photon (particle) propagating through the two MZI-arms.

Obviously, the quantum-theoretical insight obtained here is dramatically different from the
classical (or conventionally expected) one.
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Short Remarks on the General Theory

Some additional remarks and/or explanations regarding the formal structure of WV-TSVF may be
appropriate at this point. The starting point is a von Neumann-type impulsive interaction Hamiltonian
Ĥ = c(t)Â⊗ M̂. For example, it may represent an impulsive collisional (or scattering) process. The real
constant g =

∫
c(t)dt is the strength of the interaction, which is assumed to have very short duration,

so that the free evolution can be neglected; Â is an observable of the system, and M̂ is the meter
variable of the measuring device (apparatus) that couples to the system. We proceed by following the
presentation of Pati and Wu [15].

Before the interaction occurs, let the initial system-apparatus state be ψi⊗Φi. After the interaction,
this state evolves as

ψi ⊗Φi → e−igÂ⊗M̂ψi ⊗Φi (8)

(with h̄ = 1 for convenience). Now, the following point is a crucial element of TSVF: We post-select
(with a strong measurement) a final state of the system, ψ f . We are interested in the associated
apparatus’ final state, Φ f , from which the measuring result can be determined. Φ f is obtained by
tracing out the system’s variables:

Φ f = 〈ψ f |e−igÂ⊗M̂|ψi〉Φi (9)

and, for a sufficiently weak interaction, one obtains (through linearization of the exponential)

Φ f ≈ 〈ψ f |1− igÂ⊗ M̂|ψi〉Φi = 〈ψ f |ψi〉(1− iAw M̂)Φi ≈ 〈ψ f |ψi〉e−igAw M̂ Φi. (10)

Here,

Aw =
〈ψ f |Â|ψi〉
〈ψ f |ψi〉

(11)

is the WV of the system variable Â, which is a c-number; one assumes 〈ψ f |ψi〉 6= 0. [Obviously, if
ψ f = ψi then Aw coincides with the expectation value of Â.] Thus the state of the measuring device

evolves with an effective one-body Hamiltonian ĤM = gAw M̂, i.e., Φi → e−igAw M̂Φi.
To proceed, we make use of the formula (see e.g., [2], p. 39, or [15])

Â|ψi〉 = 〈Â〉|ψi〉+ ∆Â|ψi〉, (12)

where |ψi〉 is a state orthogonal to |ψi〉, 〈Â〉 = 〈ψi|Â|ψi〉, and ∆Â is the uncertainty in the state |ψi〉,
i.e., (∆Â)2 = 〈ψi|(Â− 〈Â〉)2|ψi〉. Applying 〈ψ f | to both sides of Equation (12), we obtain

Aw = 〈Â〉+ ∆Â
〈ψ f |ψi〉
〈ψ f |ψi〉

≡ 〈Â〉+ δAw. (13)

This result reveals a crucial reason for the difference δAw between the conventional expectation
value 〈Â〉 and the WV: a non-vanishing uncertainty ∆Â > 0 accompanied with a non-vanishing skalar
product 〈ψ f |ψi〉 6= 0. In particular, the physical meaning of the latter is that the two states |ψ f 〉 and
|ψi〉 have the ability to produce quantum interferences.

In summary: these short derivations show that the novel features of WV and TSVF are caused by
the interference between the post-selected state and another quantum state, which is orthogonal to the
pre-selected state [15].
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3. Elementary Neutron-Atom Scattering in View of WV and TSVF

3.1. Model Hamiltonian

In this theoretical section, we present the basic result of WV and TSVF applied to non-relativistic
scattering processes, particularly in the physical context of non-relativistic neutron scattering, firstly
proposed and explored in [10]. Here, we mainly follow the theoretical presentation in that paper.

The position and momentum of the probe particle (neutron) are denoted as (q, p). Similarly,
the position and momentum of the scattering system (atom, nucleus) are denoted as (Q, P). X̂
represents the operator of the corresponding observable X.

To simplify notations, in the following, it is sufficient to consider an effective one-dimensional
problem along the direction of the collisional momentum transfer K, as given by conventional theory.
The operator of atomic (nucleus) momentum component parallel to K is denoted with P̂.

Due to momentum conservation in the two-body collision, one expects (n: neutron; A: atom)

− h̄Kn = +h̄KA ≡ h̄K > 0, (14)

where +h̄KA is the momentum transfer on the atom due to the collision. We choose KA to be positive,
following standard notation (e.g., as in textbook [16] or review article [17]).

We proceed with the heuristic derivation of a von Neumann-type interaction Hamiltonian which
captures momentum and energy transfers. Let the scattering atom be at rest before collision, that is
〈P̂〉i = 0. The elastic collision of a neutron with an atom with mass M and initial momentum P results
in the neutron’s energy loss E = Ei − E f ≡ h̄ωn > 0. Ei and E f are the neutron’s initial and final
kinetic energy, respectively. E is transferred from the neutron to the struck atom which gains kinetic
energy by

E =
(h̄K + P)2

2M
− P2

2M
=

(h̄K)2

2M
+

h̄K · P
M

. (15)

This is the so-called impulse approximation (IA) of standard theory [16,17]. Additionally, one
may mention the relation h̄K = h̄ki − h̄k f , (ki and k f are the neutron’s initial and final wavevectors,
respectively), and the absolute value of momentum transfer, K, which in conventional theory [16,17] is:

|K| = K =
√

k2
i + k2

f − 2kik f cos θ. (16)

The validity of Equation (15) is best demonstrated with a well known experimental INS-result:
scattering from liquid He; see Figure 2 of [10] and references therein. The first term in the last
right-hand-side of Equation (15), also called recoil parabola (h̄K)2/(2M)—M: mass of 4He atom—fits
excellently the experimental scattering data points in the K − E plane. The original measurements
were carried out with the time-of-flight (TOF) spectrometer ARCS [12].

Having the theory of WV and TSVF in mind, one sees that the “larger” recoil term (h̄K)2/(2M)

may be viewed to result from a strong impulsive interaction (associated with momentum transfer +h̄K
on the atom). In the IA holds |K| � |P|, and thus the “smaller” Doppler term h̄K · P/M corresponds
to a weaker interaction, in which the atomic momentum P̂ couples with an appropriate dynamical
variable of the neutron; the latter turns out to be q̂ [10].

In view of the theory of WV and TSVF, the mentioned smaller Doppler term is expected to
cause weak deviations from the conventionally expected momentum transfer +h̄K. This can be
formally captured by replacing P̂ with a small momentum difference P̂− h̄KÎA ( ÎA: identity operator
in the atomic sub-space). For formal reasons, here is temporarily included a positive smallness factor,
0 < λ� 1; see Discussion below. Summarizing, the proposed von Neumann-type model interaction
Hamiltonian (describing the deviation from conventional theory) is [10]

∆Ĥint(t) = +λ δ(t) q̂⊗ (P̂− h̄K ÎA). (17)
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(δ(t): delta function). It should be emphasized that the plus sign in front of this expression is not
arbitrary, since it is consistent with the aforementioned definitions (14) of momentum transfer; cf. [10].

The preceding physical motivation of the two parts of the model Hamiltonian of Equation (17) is
in line with an associated example by Aharonov et al., which reads as follows: “Consider, for example,
an ensemble of electrons hitting a nucleus in a particle collider. [. . .] The main interaction is purely
electromagnetic, but there is also a relativistic and spin-orbit correction in higher orders which can be
manifested now in the form of a weak interaction.” ([18], p. 3.)

3.2. WV of Atomic Momentum Operator P̂ and the Effect of “Anomalous” Momentum-Energy Transfer

In the following, the scattering atom represents the “system” of the general formalism, and
the subscript w in Xw indicates that this is a WV of the observable X̂. The WV of the identity
operator is ( ÎA)w = 1, and thus for the WV of the atomic coupling operator P̂− h̄K ÎA in the above
interaction Hamiltonian:

(P̂− h̄K ÎA)w = Pw − h̄K. (18)

To proceed, we first calculate the WV Pw of P̂ for some characteristic final state in momentum
space. The derivation reveals a striking deviation—more precisely, a deficit—from the conventionally
expected momentum transfer to the neutron. The latter represents the “pointer” of the general theory,
and the pointer momentum variable p̂ is conjugated to the neutron position q̂.

For the calculation of the WV, it is natural to use the momentum space representation, because
scattering experiments usually measure momenta (rather than the positions in real space) of
the scatterers.

Let the atom initially be in a spatially confined state and at rest; e.g., in a potential representing
physisorption on a surface or in a nanotube (as in the experiments of the next section). Usually, the
initial atomic wavefunction Ξ(P)i is approximated by a Gaussian GA(P) centered at zero momentum,

Ξ(P)i ≈ GA(P). (19)

At sufficiently low temperatures, the atom will be in its ground state, and the width of Ξ(P)i is
determined by the quantum uncertainty. The struck atom will move in the direction of momentum
transfer h̄KA = h̄K. Therefore, in the following calculations P may represent the atomic momentum
along the momentum transfer direction.

To facilitate the derivations and their physical meaning, let us make the following simplifying
assumption concerning the final atomic state:

• The final atomic state has the same width in momentum space as the initial state.

This assumption is very common in molecular (optical) spectroscopy and/or quantum-chemical
calculations of molecules. It captures the intuitive view that the impulsive transition is very fast (in the
time scale of atomic or molecular motion) and so the atomic environment has not sufficient time to
change configuration and to adapt to the “sudden disturbance” caused by the neutron–atom collision.

In other words, the final atomic momentum state should have the same shape as the initial state,
but its center should be shifted from zero to the transferred momentum, i.e.,

Ξ(P) f = Ξ(P− h̄KA)i. (20)

The WV of the atomic momentum operator P̂ is calculated as follows:

Pw =
〈Ξ f |P̂|Ξi〉
〈Ξ f |Ξi〉

=

∫
dP Ξ(P− h̄KA)i PΞ(P)i∫
dP Ξ(P− h̄KA)i Ξ(P)i

,

= +
h̄KA

2
= +

h̄K
2

. (21)
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The value of the integral in the numerator follows immediately from the following facts: (a) the
two functions Ξ are positioned symmetrically around the middle point P̄ = h̄KA/2 — one function is
centered at 0, the other at h̄KA; and (b) in this integral P is a linear factor. Note also that this result
does not depend on the width of the Gaussian Ξ.

This is a quite surprising result because it is associated with a momentum-transfer correction
of 50%; i.e., the scattered neutron measures a momentum kick being only half of the conventionally
expected value, if one takes λ = 1; see also Discussion. In more detail, it holds that

(P̂− h̄K ÎA)w = +
h̄KA

2
− h̄K = − h̄K

2
. (22)

To be more explicit, applying the well-known general result of WV and TSVF [2–4,6] we obtain
for the correction to the shift of the meter’s (i.e., the neutron’s) pointer variable:

〈 p̂〉 f − 〈 p̂〉i = −λ (P̂− h̄K ÎA)w = +λ
h̄K
2

. (23)

(See [10] for details.) Moreover, for the total momentum transfer shown by the pointer of the
measuring device (here: neutrons), we have[

〈 p̂〉 f − 〈 p̂〉i
]

total
=

[
〈 p̂〉 f − 〈 p̂〉i

]
conventional

+
[
〈 p̂〉 f − 〈 p̂〉i

]
correction

= −h̄K + λ
h̄KA

2
. (24)

This expression represents the new quantum effect of momentum-transfer deficit: the absolute value
of momentum transfer on the neutron predicted by the new theory is smaller than what is predicted by
conventional theory:

| − h̄K + λ h̄KA/2| < | − h̄K|. (25)

3.3. Plane Waves Approximation and Conventional Momentum Transfer

To illustrate the reason for this “anomalous” momentum transfer, let us make the widely used
assumption of conventional neutron scattering theory (see e.g., [16,17]), which is:

• The final state of the struck atom should be a plane wave, i.e., it has vanishing width in momentum
space—as especially assumed in the IA.

Interestingly, now the result of conventional theory follows straightforwardly within our
formalism, i.e., the preceding correction due to WV and TSVF vanishes. Namely, the atomic final-state
wavefunction is a delta function δA centered at the assumed transferred momentum h̄KA,

Ξ(P) f = δA(P− h̄KA). (26)

The WV of P̂ follows:

Pw =
〈Ξ f |P̂|Ξi〉
〈Ξ f |Ξi〉

=

∫
dP δA(P− h̄KA) P Ξ(P)i∫
dP δA(P− h̄KA)Ξ(P)i

=
h̄KA Ξ(h̄KA)i

Ξ(h̄KA)i

= +h̄KA ≡ +h̄K. (27)

(Recall the notations of Equation (14).) Hence, the WV of the system coupling operator (P̂− h̄K ÎA)

becomes equal to zero,
(P̂− h̄K ÎA)w = Pw − h̄K = 0. (28)

(Note that, according to standard quantum scattering theory, the scattered wave may acquire an
additional phase factor, say eıχ, which does not affect the preceding result because this factor cancels
out in the fractions of Equations (27) and (21).)
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This result means that, under the usual assumption of “plane waves”, the new theory yields no
correction to the conventionally expected value of momentum transfer. Thus,[

〈 p̂〉 f − 〈 p̂〉i
]

total
=
[
〈 p̂〉 f − 〈 p̂〉i

]
conventional

= −h̄K. (29)

That is, the pointer of the measuring device—i.e., the experimentally determined momentum loss
of a neutron—will show the conventionally expected value −h̄K. Thus, the result of Equation (28) is
consistent with conventional theory of the IA, and also of general incoherent neutron scattering theory.
In other terms, the standard expectation of conventional theory is reproduced.

Comparison of the aforementioned two derivations shows that the magnitude of the momentum
transfer “anomaly” under consideration depends on the “deformation” of the shape of the final atomic
state. For example, if the final state is, say, “almost” a delta function (plane wave), then the anomalous
momentum transfer deficit will be “very small”—and perhaps remain undetectable. Recall that the
plane-wave assumption is standard in NCS and/or DINS data analysis; cf. [17].

4. Experimental Context—Incoherent Scattering

Note that instrumental details play a crucial role in possible applications of the theoretical
framework under consideration because they concern pre-selection and, in particular, post-selection
which is essential for TSVF.

4.1. Inelastic Neutron Scattering from Protons

Modern neutron scattering spectrometers are time-of-flight (TOF) instruments; cf. Figure 2. Here,
a short pulse of neutrons produced at a neutron spallation source (e.g., SNS, Oak Ridge Nat. Lab.,
Tennessee, TN, USA) reaches the first monitor of the spectrometer, which triggers the measurement of
TOF. Subsequently, a neutron scatters from the sample and may reach the detector, which stops the
TOF measurement. In other terms, the experimentally determined values of momentum and energy
transfers (which are the variables of the dynamic structure factor S(K, E) of conventional theory [16,17])
are not directly measured (as one might believe) but calculated from the TOF-data by applying a strict
momentum and energy conservation in each neutron–atom (or nucleus) binary collision [16,17].

Neutron
Pulse

Start

Detector

Scatterer

0L
1L

θ

Figure 2. Schematic presentation of a time-of-flight neutron scattering setup. A detector, being a
spatially localized system, performs a post-selection on the neutron’s final state. (Taken from [10], with
permission from Quanta.)

Modern spectrometers, like ARCS [12] (at SNS, Oak Ridge Nat. Lab., USA) have several thousand
individual detectors (also called detector pixels). From each TOF-value measured with each individual
detector at scattering angle θ, the associated transfers of momentum (h̄K) and energy (E = h̄ω) of
the neutron to the struck particle are uniquely determined; see, e.g., [10]. Hence, a specific detector
measures only one specific trajectory in the whole K–E plane.

For a self-contained concise presentation of the TOF experimental procedure, see [10].
In this subsection, the preceding theoretical considerations and results are applied to concrete

neutron scattering experiments, especially to incoherent scattering. In simple terms, “incoherent” means
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that the impinging neutron (more generally: photon, electron, atom, etc.) collides with, and scatters
from, a single particle (nucleus, atom, molecule, etc.). In the case of neutron scattering from protons
(also referred to as H-atoms), the scattering is mainly incoherent due to the spin–flip mechanism of
neutron–proton collision; see e.g., [16].

A clear first-principles explanation of coherent versus incoherent scattering may be found in the
well-known Feynman Lectures [19], Section 3.3.

4.2. Effective Mass as Measured in the Scattering Experiment

In real experiments, deviations from the impulse approximation (IA) are well known;
see, e.g., [10,17]. Within conventional theory, such deviations are understood as follows.

The energy conservation relation (15) for a two-body collision holds in the IA, which holds exactly
for infinite momentum transfer and, consequently, for quasi-free scattering particles. However, it is
not completely fulfilled at finite momentum and energy transfers of actual experiments, and thus
so-called final-state effects (FSE) may become apparent [10,17]. (This term commonly includes both
initial and final state effects). FSE are caused by environmental interactions with the struck particle,
which affect both initial and final states of it. Here, we shall shortly describe this effect in the frame of
conventional theory.

Firstly, as Feynman puts it: “We use the term mass as a quantitative measure of inertia ...” ([20],
section 9-1). Therefore, when a scattering particle with mass M is not completely free but partially
bound to other adjacent particles, the impinging neutron seems to scatter from a particle with higher
measure of inertia than M. This is because the adjacent massive particles are exerting forces on the
scattering particle, which however can only hinder the motion of the scattering particle. In other terms,
the particle is dressed by certain environmental degrees of freedom, and this dressing increases its
inertia, i.e., its effective mass Me f f

Me f f ≥ M ≡ M f ree. (30)

This reasoning corresponds to a well understood effect; cf. [10,17].
This effect can also be understood by referring to the aforementioned energy conservation relation,

here including an additional term Eint > 0 describing the atom-environment interaction:

Ē =
h̄2K̄2

2M
+ Eint, (31)

where Ē and K̄ refer to the center of a peak (measured by a specific detector). Thus, there will be a
reduced amount of energy, Ē− Eint, available as kinetic energy to the recoiling particle. It should be
pointed out that Ē and K̄ are determined from the kinematics of the neutron, in contrast to Eint, which
is a quantity of the struck particle. If one tries to fulfill this equation with a pair (EIA, KIA) being
determined by the conventional theory in the IA (ignoring FSE), one gets

EIA =
h̄2K2

IA
2Me f f

. (32)

Obviously, from the last two equations follows Me f f > M.
This effect can also be demonstrated with the aid of an exact calculation [17]. Assuming

K-transfer to be fixed in a specifically designed experiment—a so-called constant-K measurement—the
recoil (i.e., kinetic) energy of an atom with mass Meff will be smaller than predicted by the impulse
approximation (in which the atom is free and has mass M). Figure 2 of Ref. [17] demonstrates this
effect with the aid of an exact calculation of scattering from a harmonic oscillator.

An experimental demonstration of this effect is given by a DINS result of Sokol et al. [21], obtained
from H atoms produced by chemisorbed, dissociated H2 in the graphite intercalation compound (GIC)
C8K; see Figure 3. The experiments were done with an inverse geometry TOF spectrometer (of Argone
Nat. Lab., USA) with energy selection in the final flight path. An accompanying DINS experiment
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from the ionic solid KH was done with the same instrumental setup. Both measurements exhibited
a remarkable similarity between these two H-recoil peaks [21]. Moreover, the measured E-transfer
positions of the H peaks correspond to a very high effective mass, i.e., Me f f (H) = 1.2 a.m.u.

For more references about FSE and associated discussions of “effective mass” the interested reader
may consult [10,17,22] and associated citations therein.
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Figure 3. Deep-inelastic neutron scattering (DINS) from chemisorbed H in C8K; data adapted from [21].
The maxima of the H peaks are about 2620 meV The vertical (red) line shows the position of the
M = 1 a.m.u. recoil peak (at 3540 meV), assuming that the conventional theory, in particular the

IA, is valid. Black points and fitted line: KH, Grey points and fitted line: C8K0.9H0.13. The spectra
were recorded with a selected final neutron energy E f = 4280 meV. The peak maxima correspond to
Me f f = 1.2 a.m.u. (Reproduced from Ref. [22], with permission from Institute of Physics (IOP).)

4.3. An Experiment on the New Scattering Effect—INS from Single H2 Molecules in C-Nanotubes

In this section, the obtained theoretical results are compared with recent experiments. The
derivations of the preceding section should apply to all neutron scattering subfields of interest (i.e., INS,
NCS, DINS) as the derivations do not contain any specific assumption being valid in one subfield
only. The presented experimental results may be considered as examples of the WV-TSVF-theoretical
analysis of Section 3.

The revised physical intuitions offered by the theoretical result [8] outlined in Section 2 may
be understood as the reason that led us to the analysis of the INS experiment considered here (and
several others; see discussion below). In short: the measured scattering signal by a detector is due
to a quantum superposition of the neutron (1) colliding with the atom (and thus giving a “positive”
momentum transfer h̄K to the atom), and (2) being transmitted without collision, i.e., giving a “zero”
momentum transfer—with the superposition of both causing the atom to receive an additional
“negative” component −∆(h̄K) to its total momentum.

A remarkable INS result was observed by Olsen et al. [23] in the quantum excitation spectrum of
H2 adsorbed in multi-walled nanoporous carbon (with pore diameter about 8–20 Å).

The INS (or IINS) experiments were carried out at the new generation TOF spectrometer ARCS of
Spallation Neutron Source SNS (Oak Ridge Nat. Lab., Tennessee, USA) [12]. In this experiment, the
temperature was T = 23 K, and the incident neutron energy Ei was 90 meV. The latter implies that the
energy transfer cannot excite H2-vibrations, but only rotation and translation (also called recoil) of H2,
which interacts only weakly with the substrate:

E = Erot + Etrans. (33)
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The experimental two-dimensional incoherent inelastic neutron scattering intensity map S(K, E)
of H (after background subtraction) is shown in Figure 4, which is taken from the original paper [23].
The following features are clearly visible. First, the intensive peak centered at Erot ≈ 14.7 meV is due
to the well known first rotational excitation J = 0 → 1 of the H2 molecule [11]. Furthermore, the
wavevector transfer of this peak is Krot ≈ 2.7 Å−1. Thus, the peak position in the K–E plane shows
that the experimentally determined mass of H that fulfills the relation Erot = (h̄Krot)2/2MH is (within
experimental error) the mass MH of the free H atom,

H2 rotation (J = 0→ 1) : Me f f = MH = 1.0079 a.m.u. (34)

(a.m.u.: atomic mass units.) In other words, the location of this rotational excitation in the K–E plane
agrees with conventional theoretical expectations for IINS, according to which each neutron scatters
from a single H [11]. Recall that an agreement with conventional theory was also observed in the case
of scattering from 4He; see above.
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Figure 4. Experimental INS results from H2 in carbon nanotubes, with incident neutron energy
Ei = 90 meV; adapted from Figure 1 of Ref. [23]. The translation motion of the recoiling H2 molecules
causes the observed continuum of intensity, usually called “roto-recoil” (white-blue ribbon), starting at
the well visible first rotational excitation of H2 being centered at Erot ≈ 14.7 meV and Krot ≈ 2.7 Å−1

(blue ellipsoid). The K–E position of the latter is in agreement with conventional theory. In contrast, a
detailed fit (red parabola; full line) to the roto-recoil data reveals a strong reduction of the effective mass
of recoiling H2, which appears to be only 0.64 a.m.u. (The red dashed line, right parabola) represents
the conventional-theoretical parabola with effective mass 2 a.m.u.) For details of data analysis, see [23].
(Reproduced from Ref. [10], with permission from Quanta.)

Moreover, the authors provide a detailed analysis of the roto-recoil data from incoherent inelastic
neutron scattering, as shown in Figure 4, and extracted from the data a strongly reduced effective mass
of the whole recoiling H2 molecule (left parabola):

H2 translation (recoil): Me f f (H2) ≈ 0.64± 0.07 a.m.u. (35)

This is in blatant contrast to the conventionally expected value M(H2) = 2.01 a.m.u. for a freely
recoiling H2 molecule (right parabola).

An extensive numerical analysis of the data is presented in [23], being based on the analysis of
the measured data within conventional theory [11,16].

This strong reduction of effective mass, which is far beyond any conceivable experimental error,
corresponds to a strong reduction of momentum transfer by the factor 0.566. Namely, the observed
momentum transfer deficit is about −43% of the conventionally expected momentum transfer. This
provides first experimental evidence of the new anomalous effect of momentum-transfer deficit in an
elementary neutron collision with a recoiling molecule.
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Recall that, as explained above, every conventional H2/substrate binding must increase the
molecule’s effective mass. Thus, these findings from IINS are in contrast to conventional (classical
or quantum) theoretical expectations. However, they have a natural (albeit qualitative, at present)
interpretation in the frame of WV and TSVF.

The above experimental results also show that the new two-dimensional spectroscopic technique,
as provided by advanced TOF-spectrometers, e.g., ARCS, represents a powerful method that renders
novel insights into quantum dynamics of molecules and condensed matter. Clearly, this is due to the
fact that K and E transfers can be measured over a broad region of the K–E plane. This advantage
makes these new instruments superior to the older one-dimensional spectrometers, in which the
detectors can only measure along a single specific trajectory in the K–E plane, typically the recoil
parabola of H.

5. Experimental Context—Reflectivity (Coherent Scattering)

Here, we present a new application of the theoretical result of Section 3 in the research field of
neutron reflectometry, which belongs to coherent elastic neutron scattering.

The experimental method of neutron reflectometry (see e.g., [24]) is widely used for structural
studies of various surfaces and interfaces on the nano-/mesoscopic length scale (say, thickness
d ≈ 1–100 nm). For example, investigations of physico-chemical and biological systems deal with
air/liquid and solid/liquid interfaces, and new insights into the structure of such systems have
been intensively studied. In such experiments, liquid water is often the dominant component of the
materials analyzed, usually as the solvent.

Neutron reflectivity from Silicon/water interfaces, in particular from Si/H2O-D2O, at room
temperature has been investigated in considerable detail [25]. The silicon wafer (single crystal)
used had a hydrophobic coating, which protects the Si-interface and thus greatly facilitates the
reproducibility of measurements. The experiments were carried out with the V6 neutron reflectometer
at the BER II neutron source of the Berlin Neutron Scattering Center (BENSC), Hahn–Meitner Institute.
The experimental reflectivity effect under consideration is shown in Figure 5.

A B 

D molar fraction 

Figure 5. Experimental neutron reflectivity (R(Q); log-scale) from Si/water interface. (A) measured
and fitted reflectivity data for the Si/liquid interface of H2O-D2O mixture with D molar fraction
xD = 0.6 at room temperature; (B) the observed “anomalous” increase of the scattering length density
of the liquid at the solid–liquid interface for the additional layer models investigated in [25]: Relative
deviation ∆ρI of the observed scattering length density ρI of the (assumed) fictitious layer at the
interface (with thickness dI ≈ 50 Å) from the conventionally expected scattering length density ρth of
the bulk liquid, for various H2O-D2O mixtures. (Reproduced from [25], with permission from Elsevier.)

The analysis of the experimental results revealed the following surprising feature: The reflectivities
R(Q) (h̄Q being the momentum transfer) for the mixtures exhibit systematically increased values—in
comparison to conventional theoretical expectations—for Q higher than that of the total reflection edge.
Described in conventional theoretical terms, this effect implies the presence of an additional fictitious
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layer (between Si and bulk liquid) of thickness dI ≈ 50 Å with higher scattering length density than the
bulk liquid, for all mixtures investigated.

This finding constitutes a new phenomenon, which among other aspects shows that one of the
basic hypotheses in all previous H/D contrast variation works—i.e., the common assumption of
homogeneity in the isotopic concentration in the liquid—is questionable [25].

In view of classical theory (cf. [24,25] for references), this effect is a signature of a hitherto
unexplored physical chemistry of isotope mixtures near surfaces. However, in view of WV
and TSVF, this effect finds a straightforward interpretation; it is a manifestation of the novel
momentum-transfer deficit effect derived in Section 3. The nanoscale surface layer between Si-wafer
and bulk water may be considered to correspond to the struck body (particle A) of the theoretical
model. The physical momentum transfer by the specular reflection at the Si/water interface-layer is not
the one calculated by the scattering angle θ (which is uniquely determined by the actual geometry of
the source-sample-detector spatial configuration), but by the new WV-TSVF theory. The latter provides
a correction to the classical-theoretical prediction, i.e., a reduction of the factual momentum transfer;
see Section 3. As Figure 5A demonstrates, this Q-reduction corresponds to an increased reflectivity,
which—in the frame of conventional theory—is caused by a (fictitious) increase of the scattering length
density of the liquid at the interface; cf. Figure 5B.

6. A Preliminary XRD Result—Bragg Scattering

As stated in [8], WV and TSVF theory requires a complete revision of our intuition, which then
can serve as a guide to finding novel quantum effects. Let us start with the following two points.

First, in view of the effects reported above, one may consider the reflectivity effect of the preceding
section to represent an interference feature of possible neutron (Feynman) paths in the thin layered
structure between bulk Si and bulk liquid.

Second, the quantum effect of Aharonov et al. [8] appears in a MZI; see Figure 1. Intuitively,
and with some degree of abstraction, one may recognize here a “three-layer structure”: the two
mirrors define two layers and the two beamsplitters constitute the third layer. The photon (particle)
“interacts” with this structure and is “scattered”, and then is postselected in the direction determined
by detector D2.

These considerations lead to the speculative idea of possible similar “anomalies” that might be
measurable in some well known multilayered structures: crystalline solids like e.g., silicon (Si).

The 100-year old XRD (X-ray diffraction) method, and the well known Bragg diffraction law,
provide a means to test this intuitive idea. Very recently, we launched XRD investigations on
some inorganic crystalline materials, e.g., on Si and LaB6, both being cubic systems, which highly
facilitates the analysis of the measured XRD data. (LaB6 is the standard material used for calibration
and other checks of any XRD spectrometer.) Figure 6 shows results of one experimental series
during the last 12 months, using a transmission XRD spectrometer (system STADI P of STOE-GmbH,
Darmstadt, Germany).

The preliminary findings show that the observed oscillating variation of the numerical value
of the lattice parameter (the so-called lattice constant) of both materials is well reproducible; see
Figure 6. These results are free of fitting parameters (which is only possible for cubic crystals). In view
of the theory outlined in Section 3, this striking finding may be understood as follows: there is an
unknown momentum-transfer variation in the “multi-layer scattering process” (i.e., in Bragg or Laue
X-ray diffraction) that depends on the scattering angle 2θ (and thus on the interlayer distance) of the
observed diffraction peaks. Further experiments with different XRD instruments are under way.
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Figure 6. Preliminary results (left: Si, right: LaB6)): Measured lattice constants of Si and LaB6

(powders; both cubic), determined individually from the scattering angle 2θ of every Bragg peak
appearing in the X-ray diffraction (XRD) data. That is, the results shown in the Figures contain no
fitting parameter. Results of two independent experiments for each material are shown. The typical
error of the determined values of the lattice constant is given by the difference between the two sets of
results in each Figure.

7. Discussion

Here, we provide additional remarks which may further clarify the preceding theoretical and
experimental results. Recall that only non-relativistic theory has been considered in the present paper.

Concerning the fundamental implication of the Elitzur–Vaidman effect stated in the Introduction,
there exist differing opinions too. Here is an example: It is precisely because no physical quantity has
been exchanged that provides the evidence that the wavefunction is not a physically real thing—it
just conveys information, and is thus entirely a matter of inference. If one takes a Bayesian view of
the wavefunction, for example, the interaction-free measurements can be viewed as simply learning
whether the “bomb” is there or not, and the change of the wavefunction corresponds to simply
changing one’s mind about where the photon is, which is correlated with whether the “bomb is there”,
or not.

The general scheme of the derivations in Section 3 provides evidence that the new effect under
consideration is of general character and thus may apply to any field of scattering physics, perhaps
even to relativistic scattering in high-energy physics.

In the scientific literature, one sometimes meets the criticism that post-selection just means
“throwing out some data”. In the experimental context under consideration, however, post-selection
means “performing a concrete measurement on the system, using a well defined detector system, and
analyzing the measured data only”. To explain this, consider the conventional expectation value of
an observable Â, 〈ψ|Â|ψ〉, for a system being in the initial state ψ. Suppose |ψ〉 = ∑j cj|j〉, where the
kets {|j〉} represent an orthogonal basis. The system and the measuring device are coupled weakly.
Let us assume that we make a measurement of the observable Â using the above basis and we make
a post-section with respect to the final state |j〉. That is, we make a strong projective measurement
corresponding to the projector |j〉〈j|. If one is interested in the average (mean value) of the measuring
results, one has:

〈ψ|Â|ψ〉 = ∑
j

c∗j 〈j|Â|ψ〉 = ∑
j
|cj|2
〈j|Â|ψ〉
〈j|ψ〉 ≡∑

j
|cj|2 Aw

j,ψ, (36)

where Aw
j,ψ is the WV of Â with pre-selected state |ψ〉 and post-selected state |j〉, and |cj|2 is the

probability for the occurrence of |j〉; cf. [6]. These relations show that (possibly existing) specific
effects captured by some (measurable!) weak values Aw

j,ψ may become “smeared out” in the average

〈ψ|Â|ψ〉. In simple terms: a “fine-grained” measurement may reveal more information than a
“coarse-grained” one.
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Of particular theoretical interest is the following point. The two operators q̂ and P̂ occurring in the
von Neumann-type interaction Hamiltonian of Equation (17) refer to two different quantum systems.
Consequently, as stressed by Vaidman [13], the concept of WV arises here due to the interference
of a quantum entangled wave and therefore it has no analog in classical wave interference. This
strongly supports the conclusion that WV is a genuinely quantum concept, and not some kind of
“approximation”.

In stark contrast, conventional non-relativistic neutron scattering theory treats the neutron as a
classical mass point [16,17]; i.e., this theory contains only c-numbers referring to neutron’s properties
(e.g., the scattering length bA).

The momentum-transfer deficit, and the associated effective-mass reduction of the scattering
particle H in the INS experiment, may appear as violating the energy and momentum conservation
laws of basic physics. However, this is not the case because H is not an isolated quantum system. It is
helpful to write down the ”conservation“ relations

EH+env = −En and h̄KH+env = −h̄Kn, (37)

which express energy and momentum conservation for the case that the environment (indicated with
the subscript “env”) of H is not neglected. Hence, we may say that the quantum dynamics of the
environment of H is indispensable for the new WV-TSVF effect under consideration.

The INS results from H2 in C-nanotubes [23] appear contradictory—in the frame of conventional
theory—because: (i) the observed J = 0 → 1 rotational excitation exhibits a Me f f ≈ 1 a.m.u., see
Equation (34), as conventionally expected. In contrast, (ii) the Me f f of the observed translational
motion of H2 is not 2 a.m.u. as it should (because the whole H2 undergoes translation), but only
Me f f ≈ 0.64 a.m.u. (see Equation (35)). This artificial “contradiction” just disappears in the light of
the WV-TSVF theory because it implies (or, better: proves experimentally) that the protonic quantum
environments are qualitatively different in cases (i) and (ii). In other terms: the WV-TSVF theory allows us
to reveal and/or predict novel quantum effects of “system-environment” interactions that present-day
quantum chemistry cannot describe.

Concerning the relevance of WV-TSVF (and WM) for the neutron scattering process, one may
object that the neutron–nucleus potential (i.e., the conventional Fermi pseudo-potential [16]) is not
“weak” in the specific sense of the new theory; see [10] for more discussion. Therefore, it is important
to mention the recent generalization of the considered WV and WM theory by Oreshkov and Brun [26].
The authors showed that WM are universal, in the sense that any generalized measurement can
be decomposed into a sequence of WMs. This important result is further supported by the work
of Qin et al. [27], who showed that the main WM results can be extended to the realm of arbitrary
measurement strength. Thus, the condition λ � 1 for the model Hamiltonian, Equation (17), may be
dropped [10].

Very recently, some qualitatively new theoretical results of WV-TSVF have been obtained; e.g.,
the quantum Cheshire Cat effect [28], which has also been confirmed experimentally with neutron
interferometry [29]. One may observe that these investigations also shed new light on the very notions
of separability, quantum correlations and quantum entanglement [30].

In view of the experimental effect of Section 4, and in particular of the striking reduction of
effective mass of H, it seems appropriate to mention here a speculative idea concerning the possible
practical and/or technological relevance of the WV-TSVF theory: a more mobile (i.e., with smaller
effective mass) H atom, or H+ ion, enabled by a suitably chosen nanostructured fuel-cell material,
would facilitate proton mobility and thus also improve the cell’s efficiency.
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8. Conclusions

The counter-intuitive momentum “exchange” taking place on a mirror of a MZI [8], as discussed
in Section 2, and our results with neutron reflectometry in Section 5, suggest the idea that this effect
could also be extended to the widely applied fields of experimental small-angle neutron scattering
(SANS) and small-angle X-ray scattering (SAXS) on surfaces and/or thin multilayer structures of
various materials. Additionally, the widely applied method of X-ray diffraction (XRD) might be a
suitable tool for related investigations. Some preliminary XRD findings are shown in Section 6.

In conclusion, we believe that the novel theoretical formalism of WV and TSVF not only sheds new
light on interpretational issues of fundamental quantum theory (like e.g., the time-inversion invariance
of the basic physical laws, the meaning of the wavefunction, quantum entanglement, quantum discord,
etc.), but it also offers a fascinating guide for our intuition to predict new effects, and even may help us
to conceive and carry out related experiments, with the aim to reveal new quantum phenomena and to
promote interdisciplinary research.
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Abbreviations

The following abbreviations are used in this manuscript:

WV Weak Value
WM Weak Measurement
TSVF Two-State Vector Formalism
QE Quantum Entanglement
MZI Mach–Zehnder Interferometer
FSE Final-State Effects
IA Impulse Approximation
IINS Inelastic Incoherent Neutron Scattering
INS Equivalent to IINS
DINS Deep-Inelastic Neutron Scattering
NCS Neutron Compton Scattering, equivalent to DINS
TOF Time-of-Flight
a.m.u. Atomic Mass Unit
meV Milli-Electron Volt
XRD X-Ray Diffraction
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