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Abstract: The recently proposed holography-inspired approach to quantum gravity is reviewed and
expanded. The approach is based on the foliation of the background spacetime and reduction of the
offshell states to the physical states. Careful attention is paid to the boundary conditions. It is noted
that the outstanding problems such as the cosmological constant problem and black hole information
can be tackled from the common thread of the quantized gravity. One-loop renormalization of
the coupling constants and the beta function analysis are illustrated. Active galactic nuclei and
gravitational waves are discussed as the potential applications of the present quantization scheme
to astrophysics.
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1. Introduction

The last several decades have witnessed multiple major advances in mathematical and theoretical
physics. In particular, some far-reaching ideas have been proposed in string theory, leading to
synthesized and synergetic results in the other areas of theoretical physics. It has recently come to
light that the set of the new ideas is potent enough to penetrate several longstanding problems that
often baffled the field researchers in spite of progress made. These problems include quantization of
gravity, the cosmological constant, and black hole information. A remarkable picture that has emerged
is that these problems may not be independent but may well have a common thread with a promise
of solutions for all. The common thread is the holography-inspired foliation-based quantization
of gravity.

The study of quantization of gravity has a prolonged history (see, e.g., [1–18] for reviews), yielding
several approaches with which we will make brief comparisons to the present approach. As well
known, non-gravitational gauge theories such as a Yang–Mills theory were successfully quantized in
the seventies. Since a gravity theory also takes the form of a gauge theory with diffeomorphism being
the gauge symmetry, one may wonder what the difference between the two theories is that makes
the quantization of the former so much less straightforward. Could it be, for instance, that although
both the gravitational and non-gravitational gauge theories have infinite dimensional Lie symmetry
groups, the diffeomorphism symmetry of a gravity theory belongs to the spacetime, whereas the gauge
symmetry of a non-gravitational gauge theory—acting only on the abstract field space—does not?
Certainly a gravitational system is more complex in many ways than a non-gravitational one. The real
reason for the difficulty in the gravity quantization has turned out, as we will review, to be the large
amount of gauge symmetry, and it’s been realized that the diffeomorphism symmetry can be fixed in
a manner that accomplishes the long-sought renormalizability of gravity (in its physical sector1) [19–21].

1 More on this in Section 2.
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One of the early attempts to quantize gravity was the covariant approach in which attempts were
made to replicate the success of non-gravitational gauge theories. There, the offshell renormalizability,
i.e., the renormalizability of the Green’s functions, was undertaken just as in non-gravitational gauge
theories. As is well known, the endeavor led to non-renormalizability instead. Another direction,
the so-called canonical quantization, employed the canonical Hamiltonian formalism. In particular,
a 3+1 splitting of the spacetime dimensions was introduced and the Dirac bracket formalism for
constraints was used. One of the obstacles in this approach was how to deal with the constraints
associated with the nondynamical fields. Various obstructions in these early attempts motivated
another, more radical and ambitious approach, loop quantum gravity (LQG) [9,10], where the basic
degrees of freedom of the theory were taken to be the so-called the loop variables. Although the set of
the ideas of LQG is attractive, there remain some challenges and ongoing problems.

As stated, there have been various critical developments in theoretical and mathematical physics
in the last several decades. One of the most critical developments was AdS/CFT correspondence,
which conjectures duality between non-gravitational and gravitational theories. Another was the
steadier progress made in differential geometry and foliation theory. In fact, some of the crucial
results in this branch of mathematics that are critical for the present work were obtained as early as
the seventies in the mathematical literature. In spite of these developments ,these results have not,
until recently, been assembled into arsenals for tackling the longstanding problems. In the newly
proposed quantization some of the old techniques have been put together with the recent ones to
provide the missing fulcrum for quantizing gravity in a renormalizable manner.

Among other developments, it was holography and AdS/CFT correspondence that had
provided the strongest motivation and momentum to the present approach of the quantization.
The correspondence can be approached from the fact that the branes in string/M theory admit two
different descriptions, dubbed in [22] as the fundamental and solitonic descriptions. Whereas it was
the symmetries of the dual theories that played a central role in motivating the correspondence in
the original proposal, our focus has been the actual dualization procedure itself. As we will further
comment on in the next section, investigation of the actual dualization procedure fills the gaps in our
understanding of AdS/CFT-type dualities in the literature. At the same time it provides one of the
philosophical pillars of the present quantization scheme.

Gravitational theories harbor some of the most fascinating aspects of Nature, such as
holography [23,24]. As demonstrated by Einstein’s formulation of general relativity, geometry
makes the subject richer and deeper than it would have been otherwise. One naturally expects that
geometry will also play a key role in quantization; mathematical foliation theory provides the needed
geometrical ingredient. As will be shown, holography can be explicitly realized by appropriately fixing
the diffeomorphism in the foliation-based setup of the Arnowitt–Deser–Misner (ADM) formalism.
Once the diffeomorphism symmetry is appropriately fixed, it brings projection of the physical states
onto a 3D “holographic screen" in the asymptotic region and the reduction2 provides the missing
leverage for the renormalizability.

The fact that the physical states are associated with the hypersurface in the boundary region
brings along the issue of boundary conditions: for quantization and various quantum-level analyses,
a systematic analysis of the boundary conditions is highly desirable. As we will see, non-Dirichlet
boundary conditions, in particular Neumann-type boundary conditions, will play an important role in
the complete quantum description of the system. The Neumann-type boundary conditions are the
ones that allow construction of the reduced form of the action.

On more technical side, the present approach to the 1PI effective action calculation is a direct
Feynman diagrammatic one and we employ what we call the refined background field method

2 As stressed in [19], the reduced theory is not a genuine 3D theory, but still a 4D theory whose dynamics can be described
through the hypersurface.
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(BFM) [25,26]. The Feynman diagram techniques were, of course, employed in the early literature as
well. However, they played the subsidiary role of computing the coefficients of the counterterms with
the forms of the counterterms predetermined by dimensional analysis and covariance, a procedure
that cannot be fully justified due to the employment of the “traceful” propagator—as we will review.
Our refined BFM allows one to directly compute, as one normally does in non-gravitational theories,
the counterterms, including their coefficients.3 (We employ the “traceless” propagator and the values
of the coefficients computed this way are different in general from those of the earlier works.) It also
leads, as a byproduct, to a simple solution of the long-known gauge-dependence issue [27–34] in
computing the 1PI effective action.

The remainder of the paper is organized as follows. Section 2 is devoted to an overview of what
has been done differently to achieve the renormalizability of the physical sector. We also highlight
salient features of the present quantization procedure. The focus of Section 3 is the reduction of
the offshell states to the physical states. The ADM formalism [35] is employed; the shift vector and
lapse function are gauge-fixed, then the constraints associated are solved, leading to the reduction.
In Section 4 we analyze the boundary conditions and boundary dynamics. We review some of the recent
developments in boundary conditions and dynamics in gravitational theories. It turns out that the
complementary roles of the active and passive gauge transformations are highly instructive. Natural
foliations and boundary conditions come with the coordinates system adapted to the reference frame
of the observer and the pertinence of different reference frames implies that the Hilbert space must be
enlarged by incorporating the states of different boundary conditions. In Section 5 we present a detailed
analysis of one-loop counterterms for relatively simple two-point diagrams. The renormalization
involves a field redefinition, which is not necessary in the non-gravitational renormalizable theories.
We carry out renormalization of the coupling constants and, in particular, the beta function analysis
of the vector coupling constant for an illustration. The one-loop renormalizability is achieved at
the offshell level with the use of the Euler–Gauss–Bonnet identity given in (1). As for the two- and
higher-loop-order renormalizability, no such identity is available and one must therefore rely on the
reduction of the offshell states to the physical states. The two- and higher-loop renormalizability
in an asymptotically flat background can be achieved by following the outlines presented in [36],
a task postponed to the future. In Section 6, we discuss several potential astrophysical applications
of the new quantization scheme. There is accumulating evidence that an infalling observer will in
general encounter trans-Planckian radiation from near the event horizon of a time-dependent black
hole. We propose that the phenomenon should be the mechanism for the large energy radiation of
active galactic nuclei. Also, incident waves may well produce reflected waves if the horizon is not
a featureless place as conventionally conceived. We set the stage for the future exploration of the
gravitational waves with the boundary conditions different from that of the conventional perfect infall.

Throughout we try to present more universal types of issues; for finer and more detailed issues,
one may consult the original papers in which the issues were analyzed in greater detail.

2. Overview of “What Has Been Done Differently”

Before embarking on the long and involved enterprise starting with Section 3, it may be useful to
have an overview of some of the hallmark features of the present quantization procedure. Through
the intensive efforts of the seventies and eighties, non-renormalizability of the Green’s functions was
established. The core rationale behind the non-renormalizability was the following. To be specific,
let us consider gravity without matter. The crux of the problem leading to the non-renormalizability
was the appearance of the Riemann tensor, as opposed to the Ricci tensor or Ricci scalar, in computation

3 Such a direct calculation is normally done in non-gravitational theories. However, it appears that the same procedure
has not been implemented in a gravitational theory. The reason is presumably that such an attempt would have run into
non-covariance, as we will review below.
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of the counterterms to the ultraviolet divergences. If one computes the counterterms to, say, various
one-loop divergences, one sees that they are required to take the forms of R2, RµνRµν, or RµνρσRµνρσ.
One can show that with an appropriate metric field redefinition (a la ’t Hooft) the first two types of
counterterms can be absorbed into the Einstein–Hilbert term. As a matter of fact, the Riemann tensor
square term, RµνρσRµνρσ, can also itself be absorbed because (in 4D) it can be replaced by RµνRµν and
R2 through the following Euler–Gauss–Bonnet topological identity,

RµνρσRµνρσ − 4RµνRµν + R2 = total derivative, (1)

and this is why, e.g., the Einstein gravity was declared one-loop renormalizable. However, let us
suppose for the sake of the argument that such an identity were not available. (Indeed, for the two-loop
counterterms involving the Riemann tensor, no such analogous identity is available.) Then the
RµνρσRµνρσ counterterm could not be removed. Things get worse and worse as the number of loops
increases; the proliferation of the Riemann tensor-containing counterterms spins things out of control
and the theory loses predictive power due to the infinite number of required counterterms.

Here holography comes to the rescue. What we have shown in a series of recent works is that
the physical sector of the theory is associated with a 3D hypersurface—often called the holographic
screen—in the boundary region (see Figure 1). This implies that for the renormalization of the S-matrix
one can replace the Riemann tensor in the 1PI action essentially by the 3D Riemann tensor (more
details and references can be found in the main body). As is well known, the 3D Riemann tensor can be
expressed in terms of the 3D Ricci tensor, Ricci scalar, and metric, thus leading to the renormalizability4

through a metric field redefinition a la ’t Hooft [38]. To recap, instead of the more ambitious goal
of the offshell renormalizability of the Green’s function, one can aim at the more moderate goal of
renormalizability of the S-matrix (which nevertheless is experimentally uncompromising since only
the physical states can be measured) for which the problematic Riemann tensor can be expressed in
terms of the “benign” Ricci tensor and Ricci scalar.

(a) (b)

Holographic	screen

Projection	
to	physical	states

Figure 1. (a) Scattering of offshell states; (b) scattering of physical states.

Thus, establishing the reduction of the physical states is quite central to the present quantization
scheme, making it the focus of Section 3. We employ the ADM formalism for the reduction. There are

4 Although the present scheme of the “holographic quantization" may sound similar to the well-known idea of holographic
renormalization [37], the two ideas are not directly related. While in the holographic renormalization one usually studies
the renormalization of the composite operators of the boundary theory (assisted by the classical bulk theory), the focus of
the present holographic quantization is the renormalizability and renormalization of the bulk theory.
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two unusual features about the ADM formalism to be employed. The first is that the split direction (to
be denoted by x3) is not the time coordinate but one of the spatial coordinates. For a Schwarzschild
geometry, for instance, it is the radial coordinate. The reason for considering such unusual splitting is
basically, as will become clearer, to conduct appropriate gauge-fixing and at the same time to retain the
dynamism of the 3D surface. The second unusual feature is that instead of the Hamiltonian formalism,
the Lagrangian formalism is ultimately employed for analyzing the constraints; the lapse function and
shift vector are nondynamical and can be gauge-fixed, leading to the constraints that correspond to the
Hamiltonian and momentum constraints, respectively, in the standard ADM Hamiltonian formalism.
Those constraints are then solved in the Lagrangian formalism.

When AdS/CFT correspondence was initially proposed, the actual dualization procedure—
namely, how to produce, even in principle, one theory starting from the other—was not spelled out.
This issue has been addressed in [36,39,40]. Substantial efforts were made to derive one of the dual
theories by starting with the other and going through a cerain dualization procedure. For instance,
in [40] where IIB supergravity was considered, it was shown that the gauge field appears as the moduli
field of the solution of the gravity side field equations. At the philosophical level, this dualization
procedure provides an important rationale for the present work: the dual gauge theory degrees of
freedom are obtainable from the starting gravity theory. (The procedure employs the apparatus
of the Hamilton–Jacobi formalism.) In the present case, the theory “dual” to the starting gravity
theory is realized as the theory describing the boundary dynamics. In particular it takes the form of
a lower-dimensional gravity theory. (The “dual” degrees of freedom in this case are, compared to the
standard AdS/CFT, more akin to the those of the original theory. This must be due to the fact that here
they are obtained without employing the Hamilton–Jacobi formalism. This difference between the two
cases is a technical, rather than fundamental, one.) The dualization procedure signifies two things:
firstly it serves as a framework of the proof of the AdS/CFT type conjecture. Secondly it suggests
that the gravity theory should be renormalizable. This is because it cannot be that one theory has
a predictive power, i.e., renormalizable, whereas its dual does not.

On the technical side several improvements have been made in our approach. What had not
been noticed in the past was that the shift vector constraint can be explicitly solved in the Lagrangian
formalism (for which the commutator of a Lie derivative and covariant derivative plays an important
role); the shift vector can be gauged away and the resulting Hamiltonian then becomes identical to the
lapse function constraint. In other words the gauge-fixed Hamiltonian is the operator that governs the
x3-evolution, and acts as a constraint at the same time. We will see that what brings along the reduction
is the dual role of the lapse function constraint (or the Hamiltonian), the physical state constraint as
well as the “usual" translational generator along the direction separated out.

Another noteworthy improvement is the employment of the propagator that is constructed out of
the traceless fluctuation metric, which is essentially a gauge-fixing [41]. We loosely call the propagator
the “traceless propagator.” The problem caused by the presence of the trace piece of the fluctuation
metric is the pre-loop divergence [42–44]. The necessity of the imposition of the traceless condition was
previously mentioned in [45]. Our analysis reveals that the presence of the trace piece is incompatible
with the covariance: it interferes with it. The use of the traceless propagator is a necessary condition
for the 4D covariance.

3. Foliation-Based Quantization

As discussed in the previous section, the key to the renormalizability is the Holography-induced
reduction of the physical states. In this section we review the steps of the reduction for two cases:
a pure Einstein gravity [19] and an Einstein–Maxwell system [46]. The backgrounds, such as a flat,
Schwarzschild, and dS (in the static coordinates) are among the examples to which the procedure below
can be applied. A broader range of backgrounds is discussed [36]: the method should be applicable,
e.g., to any asymptotically flat background.
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The ADM formalism provides a convenient framework for the reduction: the split direction serves
as the dimension to be reduced. Although the genuine time direction is separated out in the standard
practice of the ADM formalism, in the present analysis, one of the spatial directions, denoted by x3,
will be split out. The associated “Hamiltonian” governs the evolution of the system along that direction.
For the reduction of the physical states it is crucial to note that the lapse function constraint becomes
identical to the x3-Hamiltonian itself once the shift vector constraint is solved and the gauge-fixing is
explicitly enforced. On the one hand, the lapse constraint generates the “time”-translation; on the other
hand, the constraint serves as the definition of the physical states. They are the states invariant under
this “time”-translation. We follow the standard procedure of starting with a classical theory, then
moving to the operator quantization (and ultimately to the path integral quantization in Section 5).

3.1. Einstein Gravity Case

Consider the Einstein–Hilbert action

SEH ≡
1
κ2

∫
d4x
√
−g R. (2)

Let us employ the ADM formalism [35] where one of the spatial coordinates is split out,

xµ = (ym, x3) µ = 0, .., 3, m = 0, 1, 2; (3)

the 4D metric is parameterized as

gµν =




γmn Nm

Nn n2 + γmnNmNn


 , gµν =




γmn + 1
n2 NmNn − 1

n2 Nm

− 1
n2 Nn 1

n2


 . (4)

The fields n (not to be confused with the index n) and Nm denote the lapse function and shift
vector, respectively. The Einstein–Hilbert action can be written as (see, e.g., [47] for a review)

SEH =
∫

d4x n
√−γ

[
R+ K2 − KmnKmn + 2∇α(nβ∇βnα − nα∇βnβ)

]
. (5)

where ∇α denotes the 4D covariant derivative and Kmn the second fundamental form given by

Kmn =
1

2n
(L3γmn − DmNn − DnNm) , K = γmnKmn, (6)

where L3 denotes the Lie derivative along the vector field ∂x3 and Dm is the 3D covariant derivative.
The surface term, 2∇α(nβ∇βnα − nα∇βnβ), where nα denotes the unit normal to the boundary, will be
set aside for now5; it will play an important role in the 3D reduction discussed in Section 4.4.

Let us fix the bulk gauge symmetry by the de Donder gauge; at the full nonlinear level the gauge
condition is given by

gρσΓµ
ρσ = 0. (7)

5 A careful treatment of the boundary term can be found in [41].
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It reads, in the ADM fields [48],6

(∂x3 − Nm∂m)n = n2K

(∂x3 − Nn∂n)Nm = n2(γmn∂n ln n− γpqΓm
pq). (10)

As is well known, the lapse function and shift vector are non-dynamic. Because of this, it is
natural to gauge-fix them to their background values, which can be accomplished by using the gauge
symmetry generated by the x3-component of the diffeomorphism parameter that has a residual 3D
coordinate dependence [25]. We fix the lapse function to

n = n0, (11)

where n0 denotes the background value (e.g., n0 = 1 for a flat background). For the shift vector we
adopt the synchronous-type gauge-fixing of the residual 3D gauge symmetry:

Nm = 0. (12)

The backgrounds such as flat, Schwarzschild, and dS (in the static coordinates) are among the
examples for which this gauge can be chosen. Let us illustrate the quantization procedure with a
flat background. The procedure for more general curved backgrounds can be found in [36,41,50].
With these gauge-fixings, namely, n0 = 1, Nm = 0 for a flat background, the shift vector constraint
(usually called the momentum constraint in the standard ADM Hamiltonian formalism),

Dn(−Kmn + Kγmn) = 0, (13)

is automatically satisfied [19]. In other words, the shift vector constraint is solved by the gauge-fixings.
This can be seen as follows. Substitution of Nm = 0 into (13) leads to

∇m
[

1
n

(
L∂3 γmn − γmnγpqL∂3 γpq

)]
= 0. (14)

Although the covariant derivative and Lie derivative do not commute in general, they do commute
in the present case. (See [20,51] for more details.) Because of this, the only surviving term is the one
with the covariant derivative acting on the lapse function. For the class of the backgrounds under
consideration, that term vanishes as well.

As for the lapse function constraint (i.e., the field equation of the lapse field; it is called the
Hamiltonian constraint in the standard ADM Hamiltonian formalism), we impose it as the physical
state condition:

[
R− K2 + KmnKmn

]
|phys >= 0 (15)

6 For the perturbative quantization one needs to compute the propagator. However, it was noticed long ago [42–44] that
the path integral is not well defined due to the trace mode of the fluctuation metric hµν. The problematic trace piece must
be gauge-fixed. (The need for gauge-fixing of the trace piece is already revealed at the classical level, as we will note in
Section 4.) In fact, the set of the gauge-fixings just mentioned leads to natural gauge-fixing of the trace piece as well. To see
this let us consider the first equation of the de Donder gauge in (10), which we quote here for convenience:

(∂x3 − Nm∂m)n = n2K. (8)

Since the lapse function n has been gauge-fixed to its classical value, this equation implies the trace piece of the second
fundamental form is also gauge-fixed to its classical value [41,49]:

K = K0, (9)

where K and K0 are the trace of the second fundamental form associated with offshell and onshell metrics, respectively.
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The condition will be illuminated by the mathematical picture described in Section 3.3.
Before the lapse and shift gauge-fixings, the bulk part of the “Hamiltonian of x3-evolution” takes

H =
∫

d3y
[

n(−γ)−1/2(−πmnπmn+
1
2

π2)− n(−γ)1/2R(3) − 2Nm(−γ)1/2Dn[(−γ)−1/2πmn]

]
, (16)

where πmn denotes the momentum field,

πmn =
√−γ (−Kmn+Khmn). (17)

As well known the Hamiltonian can be expressed in terms of the lapse and shift constraints;
omitting the surface terms, the Hamiltonian density is given by

H =
√−γ n(K2 − KmnKmn −R) + 2

√−γ NmDn(Kmn − Kγmn)

=
√−γ

[
− nC0 − 2NmC0m

]
, (18)

where

C0 ≡ R− K2 + KmnKmn

C0m ≡ Dn(−Kmn + Kγmn). (19)

As discussed in details in [41], the gauge-fixing of the trace piece of the metric leads to the
following constraint:

K = 0. (20)

This is consistent with the first equation of (10). With n = 1 for the flat background, for example,
the shift vector constraint is automatically satisfied and the Hamiltonian density takes

Hg. f . = −√−γ C = −√−γ (R− K2 + KmnKmn), (21)

where Hg. f . denotes the gauge-fixed Hamiltonian density.
The lapse function constraint (15) with the shift vector gauge-fixing implies, in the full nonlinear

sense (see [52] for an earlier related analysis),

Hg. f .|phys >= 0, (22)

where Hg. f . denotes the gauge-fixed Hamiltonian.
Note the dual roles of the gauge-fixed Hamiltonian: it governs the x3-evolution, and at the

same time serves as a constraint. It implies that the physical states are the ones associated with
the “holographic screen” in the asymptotic boundary region [46]. It is this reduction that allows
a description of the 4D physics through the 3D window.

3.2. Einstein–Maxwell Case

Consider an Einstein–Maxwell action

S =
∫

d4x
√
−g
[

R− 1
4

FµνFµν
]
. (23)
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The 3+1 splitting yields

S =
∫

d4x n
√−γ

[
R+ K2 − KmnKmn (24)

−1
4

FmnFmn − 1
2n2 (F3nF3pγnp − 2FmnF3pNmγnp + FmnFpqNnNqγmp)

]
,

where the indices are raised and lowered by the 3D metric γmn. Let us fix the U(1) gauge invariance of
the vector field by imposing the axial gauge

A3 = 0. (25)

The canonical momentum is defined in the usual manner:

Πm ≡ L
∂(L∂3 Am)

= −
√−γ

n
γmpF3p +

√−γ

n
NqγmnFqn. (26)

As before, the lapse function and shift vector field equations serve as the constraints; at the
classical level they are given, respectively, by

C0 −
1
4

FmnFpqγmpγnq +
1

2(
√−γ )2 ΠmΠnγmn = 0 (27)

and
− Dk(Kkm − γkmK)− 1√−γ

FmkΠk = 0, (28)

where C0 is defined in (19). The Hamiltonian can be computed in the standard manner

H = πabL∂3 γab + ΠmL∂3 Am −L

= −√−γ (n C0 + 2NmC0m)−
n

2
√−γ

ΠmΠnγmn + Πk NqFqk +
1
4

n
√−γ FmnFpqhmpγnq

= −√−γ n
[
R− K2 + KmnKmn +

1
2(
√−γ )2 ΠmΠnγmn −

1
4

FmnFpqγmpγnq
]

−√−γ Nm
[
2Dn(−Kmn + Kγmn)−

1√−γ
FmkΠk

]
, (29)

and can be rewritten as

H = −√−γ nCA −
√−γ Nm

[
2Dn(−Kmn + Kγmn)−

1√−γ
FmkΠk

]
, (30)

where

CA ≡ C0 −
1
4

FmnFpqγmpγnq +
1

2(
√−γ )2 ΠmΠnγmn. (31)

With the following gauge-fixing Nm = 0 by exploiting the 3D diffeomorphism, the Hamiltonian
becomes proportional to the lapse function constraint. Once the shift vector is set to zero, Equation (28)
is satisfied7 and, as in the pure Einstein, case the reduction takes place.

7 As for a curved background such as a Schwarzschild or Kerr black hole, the constraint can be satisfied by choosing the
fluctuation part of the vector field to be independent of r. (For this see the analysis in [50]—which is reviewed below.)
The leading order part is just the classical field equation.
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3.3. Mathematical Foundations for Reduction

Although the content of the present subsection lies outside the main stream of the paper, it offers
an enlightening mathematical perspective for the gauge-fixing and reduction. Above we saw that the
shift vector constraint leads to ∂mn = 0. This condition implies that the foliation of the spacetime is of
a special type known as Riemannian in foliation theory. Interestingly, Riemannian foliation admits
“dual” foliation, known as totally geodesic foliation (see Figure 2), a result relatively recent in the
timeframe of mathematics [53]. One of the facts that make these special foliations interesting is the
presence of the so-called parallelism [54], and in the context of the totally geodesic foliation under
consideration the parallelism is “tangential” [53] and has the associated abelian Lie algebra. In other
words, a totally geodesic foliation has the so-called tangential parallelism and the corresponding Lie
algebra (the duals of the transverse parallelism and its Lie algebra of the Riemannian foliation [54]).
It was proposed in [20] that the abelian symmetry be associated with the gauge symmetry that allows
the gauge-fixing of the lapse and shift: the lapse and shift gauge symmetry should somehow be related
to the fibering by the group action that generates the “time” direction, i.e., the tangential parallelism.
The gauge-fixing then corresponds to taking the quotient of the bundle by the group, bringing us to
the holographic reduction.

EH EH

(a) (b)

Figure 2. (a) Constant-r surfaces as leaves; (b) radial lines as leaves.

In fact, the potential significance of this abelian algebra for the physics context becomes much
clearer once the whole mathematical setup is reconstructed in the framework of jet bundle theory [21]
(see, e.g., [55–57] for reviews of jet bundle theory). For example, the jet bundle setup brings it to light
that the abelian symmetry is a gauge symmetry. The key result of [21] is the proposal in [20] that the
abelian symmetry be associated with the gauge symmetry is now on firmer ground, and we have
a refined confirmation of the reduction delineated in [20]. In particular, the modding-out procedure,
which is central for the reduction picture but only qualitatively outlined in [20], was made quantitative
and precise in [21].8

4. Boundary Conditions and Dynamics

The fact that the physical states of a gravitational system are associated with a hypersurface
in the asymptotic region is indicative of the likelihood that the roles of boundary conditions are far
more important than conventionally presumed. This makes it imperative to re-examine the issues
of the boundary conditions and dynamics. The analysis is not only meaningful in its own right but
should also precede certain quantum-level manipulations such as partial integrations performed on
the quantum-level action.

The standard Dirichlet boundary condition has been widely used in non-gravitational and
gravitational field theories. However, it has become clear that in gravitational theories a large portion

8 With the relevance of the totally geodesic foliation now understood, it must be possible to conduct the modding-out
procedure by employing the symplectic quotient approach [58,59].
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of the dynamics is not accounted for in limiting the boundary condition to that of the Dirichlet.
There are several prominent indications of the relevance of the non-Dirichlet boundary conditions.
For instance, it has recently been shown that quantum corrections are at odds with the Dirichlet
boundary condition [60,61]. Another indication comes from the recent development along the line of
Bondi–Metzner–Sachs (BMS) symmetry [62,63] where renewed attention has been given to large gauge
transformations (LGTs). Suppose one has a solution that satisfies the Dirichlet boundary condition.
An inequivalent solution can be obtained by performing an LGT on the solution. Since an LGT acts
nontrivially at the asymptotic region, the new solution will have nontrivial dynamics and this is at
odds with the Dirichlet boundary condition initially imposed.

The boundary condition is changed through several different channels. For instance, the change
can be induced by different foliations within the same coordinate system (such as the t- vs r-foliation
of a Schwarzschild geometry). The boundary condition can also be changed by an ordinary
(i.e., “non-large”) or large gauge transformation. Another quite obvious way of changing the boundary
condition is to add a different boundary term. We will take a closer look at some of these aspects in
what follows.

To get to the bottom of the matter, we start by recalling the well-known fact that there are two
complementary ways of dealing with a spacetime symmetry. Let us collectively denote by Φ the
fields of the system under consideration. The philosophy of the each picture can be seen through
the notations: the passive viewpoint is denoted by Φ′(x′) and the active viewpoint by Φ′(x). For the
present case, the field Φ is the metric and the symmetry is the diffeomorphism; the two complementary
forms of the gauge transformations are the passive and active transformations, g′µν(x′) and g′µν(x),
respectively. They contain complementary pieces of information: the metric g′µν(x′) satisfies the
Dirichlet boundary condition in the new coordinates, whereas the metric g′µν(x)—which can be
interpreted as a “new” solution in the original coordinates—may satisfy a non-Dirichlet boundary
condition in the original coordinate system xµ. This can be seen by considering an infinitesimal
4D diffeomorphism:

g′µν(x) = gµν(x) +∇µεν +∇νεµ, (32)

which is generated by a small parameter εµ = εµ(t, r, θ, φ) with a non-trivial t-dependence at the
boundary region. In the new coordinate system x′µ the passively-transformed metric g′µν(x′) satisfies
the Dirichlet boundary condition, and thus such a transformation should definitely be allowed.
The active form g′µν(x) would not, in general, satisfy the Dirichlet boundary condition in the original
coordinates xµ. This has interesting implications, as we will discuss.

In Section 4.1, we examine certain aspects of the active transformation in detail. Afterwards we
review the standard Dirichlet boundary condition in Section 4.2. This sets the stage for the discussion
of the Neumann boundary conditions in Section 4.3. Section 4.4 is devoted to obtaining the reduced
form of the action. Finally we ponder in Section 4.5 the ramifications of the results. In particular we
consider their implications for the Noether charge and black hole information.

4.1. Actively-Transformed Metric

A careful examination of the active transformation turns out to be quite informative. Consider
the active form of the transformation

g′µν(x) = g0µν(x) + hµν, hµν ≡ ∇µεν +∇νεµ. (33)

Naively, the actively-transformed metric g′µν(x) would automatically, i.e., without any further
condition on εµ, satisfy the metric field equation. In contrast, the analysis below unravels that g′µν(x)
satisfies the metric field equation only with gauge-fixing of the fluctuation field hµν ≡ ∇µεν +∇νεµ.
In other words, the parameter εµ must be constrained by the gauge-fixing conditions on hµν

(Equation (40) below).



Universe 2019, 5, 71 12 of 53

Let us explicitly check that the actively-transformed metric satisfies the field equation by
considering the hµν-linear order Einstein equation:

∫
d4x′hαβ

δ

δgαβ

(
Rµν − 1

2
gµνR

)
|gαβ=g0αβ

.

The symbol |gαβ=g0αβ
indicates that g0αβ is substituted into gαβ after taking the derivative; it will

be suppressed from now on. At the end we will set hµν = ∇µεν +∇νεµ. Carrying out the functional
derivative, one gets

=
∫

hαβ

(
Rµανβ + gρσ

δ

δgαβ
Rµρνσ +

1
2

gαµgβνR +
1
2

gµνRαβ − 1
2

gµνgρσ δRρσ

δgαβ

)
. (34)

Since the background satisfies the Einstein equation, one can set R = 0 = Rρσ; the above becomes

=
∫

hαβ

(
Rµανβ + gρσ

δ

δgαβ
Rµρνσ − 1

2
gµνgρσ δRρσ

δgαβ

)
. (35)

The second and third terms can be further manipulated by utilizing

δRρ
σµν = ∇µδΓρ

νσ −∇νδΓρ
µσ, δRµν = ∇ρδΓρ

µν −∇νδΓρ
ρµ (36)

δΓλ
µν =

1
2

gλκ(∇µδgνκ +∇νδgµκ −∇κδgµν); (37)

one can show that
∫

hαβgρσ
δ

δgαβ
Rµρνσ =

1
2

(
2∇ρ∇(νhµ)

ρ −∇µ∇νhγ
γ −∇2hµν

)
− 2Rµανβ − hαβR(µ

α gν)
β

=
1
2

(
2∇ρ∇(νhµ)

ρ −∇µ∇νhγ
γ −∇2hµν

)
− 2hαβRµανβ, (38)

where in the second equality, the Ricci tensor term has been omitted for the same reason stated
previously, and

−1
2

∫
hαβgµνgρσ δRρσ

δgαβ
= −gµν

(
∇p∇qhpq −∇2hγ

γ

)
. (39)

Let us now impose the following gauge conditions,

hγ
γ = 0 , ∇κhκµ = 0. (40)

The first is the traceless condition of the fluctuation metric; the second is the (linear-order) de
Donder gauge. (More on this in Section 5.) The reason we need the gauge-fixing (40) in order for (33) to
satisfy the field equation should be that inversion of the kinetic operator—for which the gauge-fixing
is required—is somehow built-in to the functional Taylor expansion. With these, one gets

∫
hαβgρσ

δ

δgαβ
Rµρνσ =

1
2

(
2∇ρ∇(νhµ)

ρ −∇2hµν
)
− 2hαβRµανβ (41)

and

− 1
2

∫
hαβgµνgρσ δRρσ

δgαβ
= 0. (42)
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For the present purpose the fluctuation field is given by hµν = ∇µεν +∇νεµ. Using this and the
following identities,

(∇α∇β −∇β∇α)Tρ1···ρn
λ1···λm = −Σn

i=1Rαβκ
ρi Tρ1···κ···ρn

λ1···λm

+Σm
j=1Rαβλj

κTρ1···ρn
λ1···κ···λm

∇αRβγλ
α = −∇βRγλ +∇γRβλ, (43)

the first two terms in (41) can be reduced further. First note that the gauge conditions constrain εµ by

∇κεκ = 0 , ∇2εν = 0 (44)

Combining (43) and (44), one gets the desired result. For instance, one of the terms to be computed is

∇ρ∇ν∇ρεm =
(
[∇ρ,∇ν] +∇ν∇ρ

)
∇ρεµ

= −Rκ1νκ2µ∇κ1 εκ2 , (45)

where the second equality is obtained after using Rµν = 0 and ∇2εµ = 0. By evaluating the other
terms in (41) and using the identities given above, one can show that (41) vanishes, which completes
the proof.

4.2. Dirichlet Boundary Condition

To set the stage for the subsequent analysis, let us review the variational procedure that had led to
the introduction of the standard Gibbons–Hawking–York (GHY)—term. Consider an Einstein–Hilbert
action with the GHY boundary term,

SEH+GHY ≡ SEH + SGHY (46)

SEH ≡
∫

V
d4x
√
−g R , SGHY ≡ 2

∫

∂V
d3x
√
|γ| εK (47)

where V denotes the 4D manifold. The rationale for the introduction of the GHY-terms will be spelled
out shortly. For now one can take the genuine time coordinate t as the split direction, which leads
to the usual foliation with ε = −1. (Later we will consider an r-foliation with ε = 1; the Dirichlet
boundary condition in that case is along the r direction.) The variation of SEH yields (see, e.g., [64])

δSEH =
∫

V

√
−g Gµνδgµν − 2

∫

∂V
d3x δ(

√
|γ| εK) +

∫

∂V
d3x

√
|γ| ε

(
Kγmn − Kmn

)
δγmn, (48)

where
Gµν ≡ Rµν −

1
2

Rgµν. (49)

Setting both of the boundary terms in (48) to zero amounts to over-imposing the boundary
conditions. Historically the Dirichlet boundary condition was adopted and used more or less
exclusively up until very recently. The addition of the GHY-term is to remove the second term above:

δSEH+GHY =
∫

V

√
−g Gµνδgµν +

∫

∂V
d3x

√
|γ| ε

(
Kγmn − Kmn

)
δγmn. (50)

With the second term cancelled out, one gets the Einstein equation with the Dirichlet boundary
condition, δγmn|∂V = 0,

Gµν = 0. (51)

Although the Dirichlet boundary condition is widely used, the form of the solution (33) indicates
that not all is well. Suppose that the background solution is obtained, as it normally would be,
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with the standard Dirichlet boundary condition. If one chooses the gauge parameter εµ such that it
vanishes in the asymptotic region, the resulting solution g′µν(x) will be a gauge-equivalent solution.
However, what if one considers a εµ that has a non-dying time-dependence in the asymptotic region?
A large gauge transformation may deform the original solution by such a time-dependent parameter.
This observation naturally sets the stage for non-Dirichlet boundary conditions.

4.3. Neumann Boundary Conditions and Generalization

Although the use of the Dirichlet boundary condition in gravity theories is in line with its use in
non-gravitational theories, one may wonder whether it is the only possible and/or preferable boundary
condition. In fact it may seem that the addition of the GHY-term is technically contrived, and one may
ask whether or not a different-type boundary condition could be defined without such a term. It turns
out that it is not only possible to impose different-type boundary conditions but indeed necessary to
include them.

One can rather easily see the need for various boundary conditions and thus the need for the
enlarged Hilbert space through the gauge transformations that change the given boundary condition.
(Previously we had an infinitesimal-level discussion on the same point.) Let us consider the (finite)
passive general coordinate transformation:

g′µν(x′) =
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x). (52)

In the new coordinates x′µ, one will have a new time coordinate and the foliation associated
with the new time coordinate serving as the base space of the 4D manifold viewed as a fiber bundle.
Because of the new time, the foliation content of the GHY-term is different from the original, although
the form of the GHY-term is the same. If the hypersurface on which the boundary condition is imposed
is kept the same (other than being expressed in the new coordinates) two boundary conditions
would be considered the same. Normally, however, a natural boundary condition is associated with
a different hypersurface in the new coordinates, and because of this the boundary condition is changed.
For instance a Schwarzschild metric,

gSµν(r, θ)dxµdxν ≡ −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2dΩ2 (53)

can be written as
ds2 = −

(
1− 2M

r

)
dudv + r2dΩ2, (54)

where (u, v) are the null coordinates:

u ≡ t− r∗ , v ≡ t + r∗, (55)

with
r∗ ≡ r + 2M ln

∣∣∣ r
2M
− 1
∣∣∣. (56)

In the null coordinates, the boundary hypersurface on which the boundary condition is imposed
is changed due to the fact that a natural boundary condition is in terms of either u or v instead of t.
In other words, one would choose (u, r) or (v, r) coordinates and impose the boundary conditions
accordingly. (As will be elaborated on later, certain foliations are associated with observer-dependent
effects at the quantum level.) As we have discussed at the infinitesimal level around (32), one has
two complementary forms of the gauge transformations: the passive and active transformations,
g′µν(x′) and g′µν(x). They contain complementary pieces of information: the metric g′µν(x′) satisfies
the Dirichlet boundary condition in the new coordinates, whereas the metric g′µν(x)—which can be
interpreted as a “new” solution in the original coordinates—may satisfy a non-Dirichlet boundary
condition in the original coordinate system xµ.
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The non-Dirichlet or Neumann-type boundary condition above has arisen from a different
foliation induced by an active form of a gauge transformation within the same form of the GHY-term.
A different type of Neumann boundary condition is obtained by performing a boundary Legendre
transformation [65,66]. Consider

δSEH =
∫

V

√
−g Gµνδgµν − 2

∫

∂V
d3x δ(

√
|γ| εK) +

∫

∂V
d3x

√
|γ| ε

(
Kγmn − Kmn

)
δγmn. (57)

We employ the Hamilton–Jacobi procedure [40,67]; the momentum is given by

πmn =
δSEH+GHY

δγmn
= ε
√
|γ|
(

Kγmn − Kmn
)

(58)

With this the boundary terms can be written as

−
∫

γmn δπmn. (59)

Let us check this:

∫
γmn δπmn =

∫
γmn δ

[
ε
√
|γ|
(

Kγmn − Kmn
)]

=
∫

3δ(ε
√
|γ| K) + ε

√
|γ| γmn Kδγmn −

∫
γmn δ

[
ε
√
|γ| Kmn

]

=
∫

3δ(ε
√
|γ| K) + ε

√
|γ| γmn Kδγmn −

∫
δ
[
ε
√
|γ| γmnKmn

]
+
∫ [

ε
√
|γ| Kmnδγmn

]

=
∫

2δ(ε
√
|γ| K)− ε

√
|γ| γmn Kδγmn +

∫ [
ε
√
|γ| Kmnδγmn

]
.

(60)
Note that the boundary terms in (48) can be written as

∫

∂V
d3x
(

πmnδγmn − δπ
)

. (61)

This of course implies that the boundary terms of SEH+GHY can be written
∫

∂V
d3x πmnδγmn. (62)

This implies that the boundary terms in (48)—which can be viewed as resulting from the boundary
Legendre transformation of SEH+GHY—can be removed by requiring the following Neumann-type
boundary condition

δπmn = 0. (63)

It is possible to extend the Einstein–Hilbert case above to a more general system considered in [68].
Such an extension should be useful when dealing with the 3+1 splitting of the quantum-level action.
Consider the following form of the action:

S =
1
2

∫ √
−g f (Rµνρσ) (64)

where f is an arbitrary function of the Riemann tensor. Instead of (64), one may consider the following
first-order form of the action [68]:

S =
1
2

∫ √
−g

[
f ($µνρσ) + ϕµνρσ(Rµνρσ − $µνρσ)

]
, (65)
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where $µνρσ, ϕµνρσ are auxiliary fields. Let us consider the genuine time-splitting; the spatial splitting
case can be similarly analyzed. One can show that the 3+1 split form of the action (65) is

S =
∫ [
Lbulk + ∂µ(

√
−g nµKpqΨpq)

]
, (66)

where

Lbulk =
√

γN
[1

2
f ($µνρσ) +

1
2

φijkl(Rijkl − ρijkl)− 2φmnp(nκ Rmnpκ − ρmnp)

−Ψmn
(

KKmn + KmpKn
p + n−1DmDnn−Ωmn

)
− n−1Kmn(Ψ̇mn −LNq∂q Ψmn)

]
, (67)

with
ρmnpq ≡ $mnpq ρmnp ≡ nµ$mnpµ Ωpq ≡ nµnν$pµqν (68)

φmnpq ≡ γmm′γnn′γpp′γqq′ϕm′n′p′q′ φmnp ≡ γmm′γnn′γpp′nµ ϕm′n′p′µ Ψpq ≡ γpp′γqq′nµnν ϕp′µq′ν.

By considering the 3D metric variation of (67) and collecting the results one gets, for the
momentum conjugate to γmn,

pmn =
√

γ
[
− 1

2 γmnΨrsKrs − 1
2 ΨmnK−ΨmlKl

n − 1
2n (Ψ̇

mn −LβΨmn) + φmjnlKjl +
2
n Dl(Nφlmn)

]
. (69)

The trace part is given by

p ≡ γmn pmn =
√

γ
[
− 5

2 ΨrsKrs − 1
2 ΨK− 1

2n γmn(Ψ̇mn −LβΨmn) + γmnφmjnlKjl +
2
n γmnDl(Nφlmn)

]
. (70)

Unlike the Einstein–Hilbert case, the present GHY-term,

SGHY ≡ −
∫

∂µ(
√
−g nµKpqΨpq), (71)

and the boundary term that converts the Dirichlet action to the Neumann action (namely the Legendre
transformation term) are different.9 Therefore, adding this term to the original action does not lead to
the Dirichlet boundary condition. For the boundary Legendre transformation one can consider, just
as in the Einstein–Hilbert case, the variation of S + SGHY with respect to the 3D metric; this variation
leads to the following boundary term:

pmnδγmn. (72)

Then to go to the action with the Neumann boundary condition one should perform the Legendre
transformation by adding the negative of p, −p, to S + SGHY.

4.4. Reduced Action and Boundary Dynamics

It has been shown in Section 3 that the physical sector of the theory is associated with a 3D
hypersurface in the boundary region. Given this, a concrete understanding of the boundary dynamics
and its coupling to the bulk is necessary for the complete picture. In what follows, we apply the
dimensional reduction technique developed in [69,70], and work out the explicit form of the reduced
theory—the Lagrangian of the 3D theory. The explicit form of the reduced action can be obtained
by consistently reducing the 4D action in two steps: reduction of the 4D field equations to 3D ones
and construction of the 3D action that reproduces the resulting 3D equations. Below we illustrate
the procedure for an Einstein gravity. We first carry out the reduction at the level of an infinitesimal
fluctuation and subsequently discuss the full nonlinear extension.

9 Recall that even in the Einstein–Hilbert case, they are different for D 6= 4 [65,66].
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Considering the (3+1) splitting: the ADM form of the Einstein–Hilbert action

SEH =
∫

d4x
√
−g R (73)

can be written
SEH =

∫

V
d4x n

√
|γ|
[
R+ K2 − KmnKmn

]
− 2

∫

∂V
d3x
√
|γ| εK. (74)

The second term is a boundary term that arises in the ADM description. It is not to be confused
with the GHY-term: the GHY-term, if added, cancels this boundary term. We consider the 3+1 splitting
where, say, x3 = r. The n, Nm, γmn field equations are, respectively,

R− K2 + KmnKmn = 0 (75)

Da(Kab − γabK) = 0 (76)

Rab −
1
2
Rγab −

1
2

γab

[
K2 − KpqKpq

]
+ 2KKab − 2KpaγpqKqb

+
1

n
√
|γ|

γpaγqb ∂r

[√
|γ|γpqK

]
− 1

n
√
|γ|

γpaγqb ∂r

[√
|γ|Kpq

]

− 2
n

γabDe(KNe) +
2
n

KD(aNb) +
2
n
∇d(KabNd)−

2
n

Kn(aDnNb) = 0, (77)

where the symmetrization in (77), (a b), is with a factor 1
2 . The reduction procedure has two

components. The first is the requirement that the reduction ansatz satisfies the 4D n, Nm, γmn field
Equations (75)–(77). The requirement that the ansatz satisfy (77) leads to the 3D version of the γmn

field equation. The second component is the construction of the 3D action that yields the 3D γmn field
equation. We first consider the reduction that covers static backgrounds including a Schwarzschild or
Reissner-Nordström black hole. More general backgrounds, including a Kerr black hole and potentially
even time-dependent backgrounds, require additional care and are discussed afterwards.

Static Backgrounds

Let us start with a static background metric of a diagonal form such as a Schwarzschild or
Reissner-Nordström geometry. For such backgrounds, a convenient gauge-fixing is to gauge away the
shift vector Nm and the fluctuation part of the lapse function:

Nm = 0 , n = n0(r), (78)

where n0(r) denotes the background solution for the lapse function n. For a Schwarzschild background,
for instance, it is given by

n0 =

(
1− 2M

r

)− 1
2

. (79)

With Nm = 0, the γab field Equation (77) becomes

Rab −
1
2
Rγab −

1
2

γab

[
K2 − KpqKpq

]
+ 2KKab − 2KpaγpqKqb

+
1

n
√
|γ|

γpaγqb ∂r

[√
|γ|γpqK

]
− 1

n
√
|γ|

γpaγqb ∂r

[√
|γ|Kpq

]
= 0. (80)
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The lapse function constraint (75) is contained above because it can be obtained by taking the
trace of (80). (See the analysis around Equation (86).) Substituting Na = 0 into (76) yields

Da
[

1
n

(
Lrγab − γabγcdLrγcd

)]
= 0, (81)

which is satisfied [19] (namely, the shift vector constraint is solved) by the gauge-fixing above:

∂an = ∂an0 = 0. (82)

As for the reduction ansatz of the 3D hypersurface metric, first consider the following linear-level
reduction ansatz:

γmn(t, r, θ, φ) = γ0mn + h̃mn(t, θ, φ), (83)

where γ0mn denotes the solution of the field equation, and h̃mn(t, θ, φ) the fluctuation. For the
Schwarzschild case, for instance, γ0mn is given by a diagonal metric γ0mn = γ0mn(r, θ) =

diag(n2
0, r2, r2 sin2 θ). We have previously discussed that such an ansatz must be allowed even though

it does not obey the original Dirichlet boundary condition. Let us choose h̃mn(t, θ, φ) such that

h̃mn = Dmεn + Dnεm, (84)

for a parameter εm = εm(t, θ, φ). This step of setting h̃mn to h̃mn = Dmεn + Dnεm is not strictly
necessary for finding the reduced form of the action: the fact that γmn(t, r, θ, φ) with h̃mn = Dmεn +

Dnεm satisfies the bulk and later the 3D field equations can be checked after the reduced action
is obtained. The ansatz (83) is guaranteed to satisfy the γmn field Equation (80) for the following
reason.10 The right-hand side of (83), γ0mn(r) + h̃mn(t, θ, φ) is guaranteed to be a solution of the γmn

field equation since it takes a form of the gauge transformation of a solution γ0mn(r) with the gauge
parameter εm. This also suggests how to obtain the nonlinear ansatz; just borrow the finite form of the
gauge transformation of the metric solution. A word of caution is in order. Note that we are choosing
h̃mn to be given by (84), not generating h̃mn, e.g., by utilizing the 3D gauge symmetry after starting
with γ0mn. The 3D symmetry is reserved for the gauge-fixing Nm = 0 and thus cannot be utilized for
such a purpose. (For the same reason, one cannot gauge away h̃mn.)

Finally, let us show that the trace part of (80) yields the lapse function constraint. The trace part is
given by

1
2

(
−R+ K2 − K2

mn

)
+

γpq

n
√
|γ|

∂r

(√
|γ| (Kγpq − Kpq)

)
= 0. (85)

If one can show that the background g0µν satisfies

γpq

n
√
|γ|

∂r

(√
|γ|
[
Kγpq − Kpq

])
= 0, (86)

then one gets
−R+ K2 − K2

mn = 0, (87)

which is nothing but (75), the lapse constraint. One can show that (86) is satisfied, e.g., in the
Schwarzschild case. Of course this must be generally true.

The remaining task is to show that the field Equation (80)—which is now viewed as a 3D field
equation—can be derived from the reduced action to be constructed. In other words, we should
construct the 3D action whose metric field equation yields (80). The following point is important
before getting to the detailed steps of the construction. What we try to accomplish is to work out the

10 We have essentially checked this before by using the 4D covariant setup in Section 4.1.
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3D Lagrangian that describes the physical fluctuations around a given solution. To elucidate the point
let us use the 4D language for the moment. The fluctuations to be considered are the ones that would
be generated by a gauge transformation if there were such a residual symmetry:

g′µν(x) = g0µν(x) + hµν(x) , hµν ≡ ∇µεν +∇νεµ, (88)

where g0µν(x) and hµν(x) denote a given solution and the fluctuation, respectively. Although the
passively-transformed metric g′µν(x′) satisfies a Dirichlet boundary condition, this will not be the
case for the actively-transformed metric g′µν(x). This is because the background g0µν(x) satisfies the
Dirichlet boundary condition, whereas the fluctuation hµν(x) does not. For this reason it is not a priori
clear whether one should start with an action with or without the GHY- term. It turns out, as we
will see below, that for consistent reduction one should use the action without the GHY- term (74),
i.e., the action with the Neumann boundary condition. Perhaps this may not be entirely surprising:
the reduced action is the action for the fluctuation fields that satisfy the Neumann-type boundary
condition. In other words, the 3D action describes the boundary theory whose dynamics are what
causes the boundary condition—from the bulk point of view—to deviate from the Dirichlet. Since the
reduction is carried out in the original coordinates, the action without the GHY-term may somehow
become relevant, and indeed this is what happens.

For the construction of the 3D action, note that the derivation of the field Equation (80) after
starting with the 4D action (74) involves partial integrations along r. We will now show that the form
of the 3D action that we are after is what is inherited from the 4D action SEH without the GHY-term:
the field Equation (80) is then obtained from that 3D action without performing the partial integration
along r, as required by the fact that an r-partial integration cannot be performed since the 3D integration
measure does not have the r-component. It is thus the Neumann boundary condition that is crucial for
getting the field Equation (80). To summarize, if one starts with the action without the GHY-term (74),
and takes the γmn variation, one gets the 3D metric field Equation (80) without performing the r-partial
integration. To explicitly show this, consider the following 3D action,

S3D =
∫

d3x n0

√
|γ|
[
R+ K2 − KmnKmn

]
− 2

∫
d3x
√
|γ| εK, (89)

where we have set n = n0 and Nm = 0. The first term has been inherited from the bulk action and
the second term from the boundary term. The boundary term in (74) is not to be confused with the
GHY- term; it is a boundary term that appears when expressing the Einstein–Hilbert term in the ADM
formalism. It is the negative of the GHY-term; the GHY-term, if added, would cancel out this boundary
term. The explicit steps leading to the γmn field equation are as follows. The variation of the first term
in (89) is

∫
d4x n

√
|γ| Rab δγab − 1

2
n
√
|γ|γab

[
R+ K2 − KmnKmn

]
δγab

+2n
√
|γ| (KKab − KpaγpqKqb)δγab + 2n

√
|γ|
[
KγabδKab − KpqδKpq

]
. (90)

The third term can be rewritten as
√
|γ|
[
Kγabδ∂rγab − Kpqδ∂rγpq

]
=
√
|γ|
[
Kγab − Kpq

]
δ∂rγab = πabδ∂rγab, (91)

where ε in (58) has been set to ε = 1 in the second equality. The variation of the second term in (89) is

−2δ
∫

∂V
d3x
√
|γ|K = −δ

∫

∂V
d3xγabπab = −δ

∫

V
d4x∂r(γabπab)

= −
∫

V
d4x∂r

[
(δγab)π

ab + γabδπab
]
. (92)
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We have used the trace of (58) in the first equality above. The second term in the second line can
be written as a 3D integral:

−
∫

V
d4x∂r

[
γabδπab

]
= −

∫

∂V
d3x
[
γabδπab

]
. (93)

It thus vanishes upon imposition of the Neumann boundary condition δπab = 0. The first term in
the 2nd line takes

−
∫

V
d4x
[
(∂rδγab)π

ab + δγab∂rπab
]
. (94)

This with (91) yields

−
∫

V
d4x (δγab)∂rπab. (95)

The metric field Equation (80) is reproduced once one combines all the results above and uses the
expression for the momentum field (58).

General Backgrounds

With the discussion so far we are ready to generalize the steps above in order to cover more
general backgrounds such as Kerr or time-dependent backgrounds. For this, some of the steps need
modification. To see the need for modification, let us take the Kerr case to be specific and contrast
it with the Schwarzschild case. The difference between the two cases is the manner in which the
gauge-fixings of the lapse function and shift vector satisfy the shift vector constraint (76). While the
gauge-fixing Nm = 0, n2 = n2

0(r) = (1− 2M/r)−1 for the Schwarzschild case makes each term in (76)
separately vanish, the same is not true for the Kerr case, and the manner in which the shift vector
constraint is satisfied differs as we now discuss. For a Kerr metric

g0µν =




2Mr
ρ2 − 1 0 0 − 2aMr sin2(θ)

ρ2

0 ρ2

∆ 0 0
0 0 ρ2 0

− 2aMr sin2(θ)
ρ2 0 0 Σ sin2(θ)

ρ2 ,




(96)

where
ρ2 = r2 + a2 cos2 θ , ∆ = r2 − 2Mr + a2 , Σ = (r2 + a2)2 − a2∆ sin2 θ (97)

one can adopt the analogous gauge-fixings:

Nm = 0 , n2 = n2
0(r, θ) =

ρ2

∆
. (98)

It is not difficult to show that the shift vector constraint (76) is satisfied at the h̃mn-linear order.
At the h̃mn-linear order, Equation (76) becomes the leading, i.e., zeroth-order, field equation (since
the linear part is trivially removed by the ∂r-derivative appearing in the definition of Kab) which
is of course satisfied by the Kerr background; the reduced action is again given by (89). However,
the h̃mn-higher order status is not so obvious. Moreover, for a more general background such as
a time-dependent background, a similar gauge-fixing that solves the constraint may not be available
and it may be necessary to keep the shift vector instead of setting it to a fixed value too early. Keeping
Nm, the reduced action is again given by

S3D =
∫

d3x n0

√
|γ|
[
R+ K2 − KmnKmn

]
− 2

∫

∂V
d3x
√
|γ| εK, (99)
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in which, although the form is the same as (89), the shift vector Nm is nonzero, acting as a Lagrange
multiplier. This reduction procedure should cover quite general backgrounds, potentially including
those that are time-dependent.

4.5. Ramifications of Boundary Dynamics

With the reduced 3D theory Lagrangian obtained, it is now possible to analyze various aspects
of the original 4D system in a way that is not otherwise possible. In Section 4.5.1 we look, from the
reduced theory’s perspective, into the asymptotic symmetry aspect of the 4D theory. This is done
by examining the present analogue of the conformal generalization [71] of the BMS-type symmetry.
Afterwards we analyze the implication of a Neumann-type boundary condition for the Noether
theorem. In Section 4.5.2, we ponder the quantum aspects of the theory relevant for black hole
information. The tie between the boundary condition and the foliation indicates that the Hilbert space
must include all of the different foliation-induced boundary conditions. The enlarged Hilbert space is
important for black hole information.

4.5.1. Symmetry Aspects of the 3D Theory

The symmetry aspects of the original 4D theory can be studied by utilizing (89), the Lagrangian
of the reduced action. The asymptotic conformal Killing symmetry or the conformal BMS
group [71]—which contains the BMS group as a subgroup— provides an illuminating setup for
studying the clear physical meaning and role of the BMS symmetry. We also examine the implication
of the non-Dirichlet boundary condition for the Noether theorem. The standard Noether theorem is
based on the Dirichlet boundary condition. We discuss modifications of the conservation law; this
is needed for proper understanding of the decrease of the “conserved" charges under the quantum
effects such as Hawking radiation.

BMS Symmetry in the Context of Boundary Dynamics

The generalities on an unbroken symmetry should be useful to recall. Let us again denote by
Φ the field of the system under consideration and split the field into a fixed background Φ0 and the
fluctuation Φ̃:

Φ = Φ0 + Φ̃. (100)

The symmetry group of the theory gets broken into a subgroup that leaves Φ0 invariant. The BMS
symmetry is unbroken in this sense except that it is an asymptotic symmetry instead of a precise
symmetry. In [71] the BMS symmetry has been extended to the so-called conformal BMS group,
which is basically the asymptotic conformal Killing symmetry. The conformal BMS symmetry (and its
present analogue (since we are considering the infinity associated with r → ∞); see below) have an
intuitively clear meaning and thus further elucidate the meaning of the BMS group itself.

The diffeomorphism contains a particular form of the conformal transformation. To see this we
rewrite the diffeomorphism transformation as

δgµν =
1
2
(∇κεκ)gµν + (Lg)µν, (101)

where

(Lg)µν ≡ ∇µεν +∇νεµ −
1
2
(∇κεκ)gµν. (102)

Suppose for the moment that εν is a precise, instead of asymptotic, conformal Killing vector; then
it satisfies

∇µεν +∇νεµ =
1
2
(∇κεκ)gµν. (103)
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For such εµ, the diffeomorphism takes the form of the following conformal-type transformation:

δgµν =
1
2
(∇κεκ)gµν. (104)

The asymptotic conformal Killing symmetry is a symmetry generated by εµ that satisfies (103)
not precisely but asymptotically [71].

Next, let us examine the physical meaning of an asymptotic symmetry of the present system,
the analogue of the conformal BMS group. As reviewed above, for an exact symmetry, one would
consider

gµν ≡ g0µν + hµν, (105)

and look for a subgroup that leaves the background g0µν invariant. Compared with this, there are
several subtleties that make the analysis of an asymptotic symmetry more unwieldy than it would
be otherwise. The first and most obvious is the fact that the symmetry under consideration is not
an exact symmetry but an asymptotic one. If the asymptotic conformal Killing symmetry were an
exact symmetry, it, and therefore the BMS symmetry, would be the unbroken symmetry. Since it
is an asymptotic symmetry, it may be dubbed the “asymptotic unbroken symmetry.” The second
subtlety is the fact that presently one is considering the boundary at a spatial infinity unlike in [71]
where the null infinity was considered. As often demonstrated in the literature, however, different
asymptotic regions usually have corresponding quantities [72]. Lastly there is the fact that the ADM
formalism makes it less transparent to apply the results of [71] to the present setup. Because of these
reasons, the statements above on the meaning of the analogue BMS symmetry are not entirely rigorous.
Nevertheless, we believe the picture is valid and has certain enlightening perspectives. In Section 4.5.2
we discuss the implication of the analogue BMS symmetry for black hole information.

Noether Charge Non-Conservation

The usual Noether theorem and associated conserved charge are based on the standard Dirichlet
boundary condition. As we have previously seen, one encounters a Neumann boundary condition if
one considers the dynamics from the active coordinate transformation. The foliation-induced Neumann
boundary condition has an interesting implication for the Noether theorem; the Noether current that is
conserved in a setup with the standard Dirichlet boundary condition is no longer conserved in a setup
with the Neumann boundary condition. The implication seems useful for a deeper understanding of
certain aspects of the conserved quantities (or quantities viewed to be conserved in the conventional
description with the Dirichlet boundary conditions) of a black hole when they are subjected to quantum
effects such as the Hawking radiation. We illustrate this with the mass or entropy of a black hole.

With the Hawking radiation, the mass and entropy of the black hole will decrease. This seems
incompatible with the conventional non-dynamic boundary, i.e., a boundary with a Dirichlet boundary
condition. This is because a non-dynamic boundary would imply conservation of the charges.
This suggests that the mass or entropy decrease must have something to do with a Neumann-type
boundary condition [36]. To convey the idea with minimum complications, let us first briefly review
the Noether theorem for a non-gravitational system in a flat background. Suppose the system described
by a field Φ has a global symmetry:

Φ→ Φ + εδΦ. (106)

One way of obtaining the conservation law is to make the parameter ε local; on general grounds,
the variation of the action must take the following form:

δS =
∫

Jµ∂µε, (107)
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where Jµ is the Noether current. If Φ is taken to be a solution of the field equation, the action must be
stationary, from which it follows

δS = 0. (108)

Suppose, as normally assumed, that the field Φ and its variation δΦ satisfy the Dirichlet boundary
condition. Then the two equations above imply

∂µ Jµ = 0, (109)

which in turn leads to the standard charge conservation. For a Neumann boundary condition, however,
the boundary term does not vanish because the variation

δS =
∫

V
Jµ∂µε =

∫

∂V
nµ Jµε−

∫

V
ε∂µ Jµ = 0 (110)

implies, instead of (109), ∫

V
(∂µ Jµ)ε =

∫

∂V
(nµ Jµ)ε. (111)

This means that the bulk current is not conserved, but coupled with the corresponding
boundary quantity.

Let us turn to the present Einstein–Hilbert case. We consider the foliation-induced Neumann
boundary condition. From the fact that the diffeomorphism variation (under xµ → x′µ = xµ − ξµ) is
essentially a Lie dragging, it follows that

δξ(
√
−g L) =

√
−g ∇µ(ξ

µL) (112)

On the other hand the diffeomorphism variation δξ is a special case of an arbitrary variation δ; thus

δξSEH =
∫

V

√
−g

[
Gµν δξ gµν +∇ρvρ

]
, (113)

where
vρ = ∇λδgρλ − gαβ∇ρδgαβ. (114)

The equivalence of (112) and (113) leads to the following current Jµ [73]

Jµ ≡ −2Gµνξν + vµ − Lξµ, (115)

with
∇µ Jµ = 0. (116)

Let us show that the current associated with the “new solution” with the Neumann boundary
condition, given in (32) (here we use ξµ instead of εµ), does not satisfy the standard current
conservation, which of course implies that the charge, i.e., mass or entropy, is not conserved. This can
be seen by considering the active transformation of the current

J′µ = Jµ + δJµ = Jµ +Lξ Jµ, (117)

and the volume integral of its divergence:
∫

d4x
√
−g ∇µ J′µ =

∫
d4x
√
−g ∇µ(Lξ Jµ), (118)
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where ∇µ Jµ = 0 has been used to obtain the right-hand side. By applying the Stokes’ theorem one
gets, for the right-hand side, ∫

dΣα Lξ Jα|. (119)

The vertical line ‘|’ indicates that the integrand is evaluated at the boundary Σ. The expression
above vanishes for a Dirichlet class, since for the Dirichlet boundary condition, ξ = 0 at the boundary.
However, the same is not true for the ξµ of the Neumann boundary condition, showing that the mass
or entropy decrease via Hawking radiation is linked with the Neumann boundary condition.

4.5.2. Implications for Black Hole Information

There are several facets of the quantum-level dynamics and boundary conditions that are relevant
to the black hole information problem. In [36,74] we have raised the possibility that the information
may be bleached through a quantum gravitational process in the vicinity of the horizon and released
before entry of the matter into the horizon. There has been a proposal in loop quantum gravity
that the Hilbert space must be enlarged to include all those states associated with the ‘extended
Gibbons–Hawking’ boundary term [75]. What we observe in the present work is in line with this
proposal; consideration of the enlarged Hilbert space must be a necessary condition for solving the
information problem. This point can be elaborated on by utilizing the 3D action obtained in Section 4.4.
Let us first examine the symmetry aspect of the reduced theory, which we quote here for convenience:

S3D =
∫

d3x n0

√
|γ|
[
R+ K2 − KmnKmn

]
− 2

∫

∂V
d3x
√
|γ| εK. (120)

Now it is to be understood that

γmn(t, r, θ, φ) = γ0mn + h̃mn(t, θ, φ) (121)

is substituted into γmn(t, r, θ, φ). For simplicity we again consider the infinitesimal fluctuation case.
The conformal Killing group will act as the symmetry of the boundary theory. Although this is not
an exact symmetry of the bulk theory in the usual sense, it should be the closest analogy one can
get for the asymptotic conformal Killing group. The symmetry will generate a set of inequivalent
vacua, which will be an important part of the 3D description of the 4D dynamics. The 3D Fock space
will then be built on these inequivalent vacua. Previously we have discussed that the rationale for
the enlarged Hilbert space is the boundary condition-changing gauge transformations. A change
between the reference frames with the accompanying transformation between the adapted coordinate
systems brings observer-dependent effects. This is well known, e.g., in the descriptions of a quantized
scalar field in a Schwarzschild black hole background by employing Schwarzschild and Kruskal
coordinates [12]. Each coordinate system has the associated vacuum: the Schwarzschild vacuum (a.k.a
a Boulware vacuum) and the Kruskal vacuum (a.k.a a Hartle–Hawking vacuum). The Kruskal vacuum
appears to be thermally radiating to a Schwarzschild observer. The presence of such inequivalent vacua
is an essential part of the setup that ultimately leads to the black hole information paradox. By the
same token, the BMS transformations introduce many different inequivalent vacua [76] and the BMS
charges or their conformal extension will be observable to a Schwarzschild observer. In each of those
vacua, it will be possible to perform the transformation between Schwarzschild and Kruskal coordinate
systems; the transitions between all these different vacua must be of an information-minimal type [36].
The information-carrying gravitons must be the ones that are associated with the 3D fluctuations.

5. One-Loop Renormalization

With the reduction established, one can follow the perturbative renormalization procedure.
The renormalization procedures of pure Einstein gravity and an Einstein-scalar system have been
carried out in [25,26,41,46,51], respectively. Here we carry out renormalization of an Einstein–Maxwell
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system, the most complex system among the three; its matter part itself is a gauge system and this
poses additional hurdles not present in, e.g., an Einstein-scalar system; the analysis requires all the
techniques (and more) used in the pure Einstein gravity and Einstein-scalar cases. As pointed out in
Section 2, the offshell renormalizability didn’t work due to the fact that the metric field redefinition
a la ’t Hooft could not absorb all of the counterterms. In contrast, we will see that the physical sector of
the theory can be renormalized. A detailed and explicit analysis of the running of the cosmological
constant, Newton’s constant, and vector gauge coupling is conducted toward the end.

At the initial stage of the renormalization procedure, the central task is to compute the
one-particle-irreducible (1PI) effective action, in particular the counterterms. (Reviews of various
methods of computing the effective action can be found in , e.g., [14,77–79].) The counterterms to
the ultraviolet divergences were analyzed long ago in [80]. They were determined essentially by
dimensional analysis and covariance. However, it is more desirable to directly work them out as one
does in non-gravitational theories.11 In our approach they are calculated by employing the refined BFM
Feynman diagrammatic scheme. As a byproduct, the long-known gauge-dependence issue [27–34] is
resolved in the present framework.

Consider the Einstein–Maxwell action,12

S =
∫ √

−ĝ
( 1

κ2 R̂− 1
4e2 F̂2

µν

)
, (123)

where e denotes the vector coupling constant and work with the usual covariant (i.e., non-ADM)
Lagrangian formalism. The 3+1 splitting and reduction of the physical states will play a role once
the 1PI action is obtained.13 In the conventional covariant perturbative renormalization analysis,
the metric ĝµν is shifted to

ĝµν ≡ gµν + hµν, (124)

where gµν and hµν denote a solution of the metric field equation and the fluctuation, respectively.
For reasons that will become clearer we actually introduce the shift of the following form:

ĝµν ≡ ϕµν + gµν + hµν, (125)

where ϕµν is the background field of the refined BFM. Basically the idea of computing the effective
action is to integrate out hµν with the field ϕµν + gµν serving as the eternal legs. Evidently the
methodology can be applied to an arbitrary solution gµν.

There are several salient features of the analysis that deserve mentioning. The results of the
counterterms are obtained without the help of dimensional analysis or presumed 4D covariance.
It turns out that the 4D covariance—which is usually presumed in the related literature—is quite
a nontrivial issue, and presuming it hides a good deal of required work under the rug. As will be
detailed, taking altogether three different measures is required for ensuring the 4D covariance: removal
of the trace part of the metric, employment of the refined BFM, and enforcement of the strong form of
the gauge-fixing. The third requirement also provides an important clue as to how to solve the gauge
choice-dependence of the effective action.

11 As we will show, the direct analysis requires several crucial steps. In retrospect, those steps must have obstructed one’s
attempts to calculate directly in the past.

12 To carry out renormalization, one starts with the renormalized form of the action:

S =
∫ √

−ĝr

( 1
κ2

r
R̂r −

1
4e2

r
F̂2

rµν

)
, (122)

where the renormalized quantities are indicated by the subscript r that has been omitted from (123) for simplicity of notation.
13 This is so at two- and higher- loops. At one-loop, the problematic Riemann tensor square term can be expressed in terms of

other terms through the topological identity as discussed in Section 2.
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In Section 5.1 we show how to expand the action around the given background by utilizing
functional differentiation. We also elaborate on the gauge-fixing. In Section 5.2 the first several
relatively simple diagrams and their relevant vertices are identified. In Section 5.3 we consider
a flat background carrying out the explicit one-loop counterterm computation by taking gµν =

ηµν.14 We directly calculate the counterterms in the refined background field method; dimensional
analysis and covariance play the subsidiary role of result-checking. As an unexpected spin-off of
our direct approach, we will see how the long-known problem of the gauge choice-dependence of
the effective action arises in the present framework via inspection of a certain diagram that yields a
non-covariant expression. The origin of the gauge choice-dependence is attributed to the limitation
of the background field method, refined or not, in a gravitational system; the problem is resolved by
enforcing the strong form of the gauge condition. In Section 5.4 we examine the renormalization of
the Newton’s, cosmological, and vector coupling constants. We then carry out the renormalization
by a metric field redefinition. The two- and higher-loop aspects are commented on. Dimensional
regularization has a technical subtlety (elaborated below); the flat propagator yields vanishing results
for the vacuum-to-vacuum and tadpole diagrams. For this reason the shifts in the constants are
introduced through finite renormalization. The analysis shows that the cosmological constant is
generically generated and required for the renormalizability. This in turn suggests that the cosmological
constant should be included in the starting renormalized action. Once it is included, it can be treated
as the “graviton mass” term. With this arrangement, the vacuum-to-vacuum and tadpole diagrams
yield non-vanishing results. For an illustration, we carry out in Section 5.5 the beta function calculation
of the vector coupling in this alternative procedure of the renormalization. The analysis yields the
same result as that in the literature.

5.1. Gravity Sector

Let us first review how the action is expanded under

ĝµν ≡ hµν + g̃µν. (126)

We illustrate the procedure by obtaining the part quadratic in the fluctuation hµν. As in Section 4.1,
the main tool is the functional Taylor expansion:

S(g̃µν+hµν) = S(g̃µν) +
1
2

∫ ∫
hαβhµν

δ

δĝαβ

δS
δĝµν

∣∣∣∣∣
ĝρσ=g̃ρσ

+ · · · , (127)

where |ĝρσ=g̃ρσ denotes the substitution ĝρσ = g̃ρσ after taking the derivative; it will be suppressed in
what follows. For the quadratic terms15

1
2

∫ ∫
hαβhµν

δ

δĝαβ

δS
δĝµν

=
1
2

∫
hαβhµν

δ

δĝαβ

[
−
√
−ĝ (R̂µν − 1

2
ĝµνR̂)

]
, (128)

let us consider
∫

hαβhµν

√
−ĝ

δ

δĝαβ
R̂µν =

∫
hαβhµν

√
−ĝ

[
R̂µµ′νν′ δ

δĝαβ
ĝµ′ν′ + ĝµ′ν′

δ

δĝαβ
R̂µµ′νν′

]
. (129)

14 The analysis can also be viewed as the computation of the divergences in a curved background; the flat space analysis
captures them since the ultraviolet divergence is a short-distance phenomenon.

15 The linear terms are removed by appropriate counterterms (see, e.g., [81] for the comments on this point).
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The first term contributes to the first Riemann tensor-containing term in the final result given in
(134) below. The second term can be further expanded to

∫
hαβhµν

√
−ĝ ĝµ′ν′

δ

δĝαβ
R̂µµ′νν′ (130)

=
∫

hαβhµν

√
−ĝ ĝµ′ν′

[
R̂µ

κ1κ2κ3

δ

δĝαβ
ĝκ1µ′ ĝκ2ν ĝκ3ν′ + ĝκ1µ′ ĝκ2ν ĝκ3ν′ δ

δĝαβ
R̂µ

κ1κ2κ3

]
.

The second term on the right-hand side of (130) can be computed by using (36). Previously we
have utilized the full nonlinear form of the de Donder gauge (10). With the metric shifted as in (126),
the gauge-fixing condition (7) is translated, at the linear level, into

∇̃νhµν − 1
2
∇̃µh = 0 (131)

where raising or lowering is carried out with g̃µν. For the path integral we add the following
gauge-fixing action,

Lg. f . = −
1
2

[
∇̃νhµν − 1

2
∇̃µh

]2
. (132)

By adding a gauge-fixing term, one gets the following kinetic terms:

2κ2Lkin =
√
−g̃
(
− 1

2
∇̃γhαβ∇̃γhαβ +

1
4
∇̃γhα

α∇̃γhβ
β

)
. (133)

Including the rest of the quadratic terms, one gets

2κ2√−g̃ L =
√
−g̃
(
− 1

2
∇̃γhαβ∇̃γhαβ +

1
4
∇̃γhα

α∇̃γhβ
β

+hαβhγδR̃αγβδ − hαβhβ
γR̃καγ

κ − hα
αhβγR̃βγ − 1

2
hαβhαβR̃ +

1
4

hα
αhβ

βR̃ + · · ·
)

. (134)

Several comments are in order. In [25], the conventional BFM was employed and the counterterms
turned out noncovariant. Although the double shift of the metric was implemented, it is not that of the
refined BFM, (125). The difference is as follows. Since a flat case was considered in [25], we will focus
on the difference in the flat case. In [25], the action is first expanded around the given background, i.e.,
a flat spacetime in the present case. This way one loses some of the terms. To see this, let us examine
the analysis in [25] more closely. In the conventional BFM, one shifts the metric according to (124):

ĝµν ≡ gµν + hµν, (135)

where gµν = ηµν presently. Then instead of (134), one gets

2κ2√−g L =
√
−g
(
− 1

2
∇γhαβ∇γhαβ +

1
4
∇γhα

α∇γhβ
β

+hαβhγδRαγβδ − hαβhβ
γRκαγ

κ − hα
αhβγRβγ − 1

2
hαβhαβR +

1
4

hα
αhβ

βR + · · ·
)

(136)

with the following gauge-fixing

− 1
2

[
∇νhµν − 1

2
∇µh

]2
. (137)

Since the background is flat, all the terms in the second line of (136) vanish, and this shows
that one loses some of the terms in this approach. If the second line is the only loss one may hope
(with adoption of the traceless propagator) for the covariance. However, the loss is more serious; all
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of the Christoffel symbols, for instance, in the covariant derivatives in (136) are lost as well. In the
conventional BFM one considers the shift of the form

hµν → hµν + ϕµν, (138)

after (135) and losing the terms. The loss of the terms, with the employment of the traceful
propagator, is to blame for the noncovariance of the outcome of the diagram calculations in the
conventional approach.

5.2. Refined BFM-Based Loop Computation Setup

With the action (134), it is now possible to go ahead and compute various diagrams and their
counterterms. As observed in [25,26] there is a cautious step that one must take. It was noticed [43,44]
that the path integral is ill-defined due to the presence of the trace piece of the fluctuation metric.
Once the trace piece is removed, it is possible to proceed with the direct Feynman diagrammatic
method as one normally does in non-gravitational theories. To maintain the 4D covariance of the 1PI
action and in particular of the counterterms, it is necessary to employ the refined BFM. In the refined
BFM, one shifts the metric according to (125) from the beginning instead of shifting according to (124)
followed by (138). (The latter procedure loses terms and thus covariance as explained above.)

We first lay broader outlines of the counter-term computation in an arbitrary unperturbed metric
gµν, i.e., a solution of the metric field equation. Afterwards we illustrate the procedure with a flat
background. For the perturbative analysis of an Einstein–Maxwell system in the background field
method, one splits the original fields (ĝµν, Â) into

ĝµν ≡ hµν + g̃µν , Âµ ≡ aµ + Ãµ (139)

where (hµν, aµ) denote the fluctuation fields. The graviton propagator associated with the traceless
fluctuation mode [19,26,41] is given by

< hµν(x1)hρσ(x2) > = P̃µνρσ ∆̃(x1 − x2), (140)

where the tensor P̃µνρσ is given by

P̃µνρσ ≡ (2κ2)

2

(
g̃µρ g̃νσ + g̃µσ g̃Bνρ −

1
2

g̃µν g̃ρσ

)
. (141)

The value ∆̃(x1 − x2) denotes the propagator for a scalar theory in the background metric g̃µν.
The full propagator for the vector field is

< aµ(x1)aν(x2) >= e2 g̃µν ∆̃(x1 − x2). (142)

As will be shown later, it is possible to formally construct ∆̃(x1 − x2) in a closed-form and with it
some of the diagrams can be effectively computed by employing the full propagator (140) (as well as
the full propagator of the Maxwell sector). The perturbative analysis by employing the full propagators
will be called the “first-layer” perturbation.16 We will see the use of the full tensor P̃µνρσ and ∆̃(x1− x2)

in one of the computations, the example of the first-layer perturbation below. For other diagrams, in

16 The first-layer perturbation should be particularly useful for two- and higher-loop analyses.
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particular, the vacuum-to-vacuum amplitudes, one may employ the “second-layer” perturbation17 by
splitting g̃, Ãµ into

g̃µν ≡ ϕµν + gµν , Ãµ ≡ Aµ + A0µ, (143)

where ϕµν, Aµ represents the background fields and gµν, A0µ the unperturbed fields—namely, the
classical solutions. For instance, we will take gµν = ηµν, A0µ = 0 in the flat spacetime analysis in the
next subsection. For a given diagram it often suffices, for a low-order evaluation, to replace P̃µνρσ by

P̃µνρσ ' Pµνρσ ≡
(2κ2)

2

(
gµρgνσ + gµσgνρ −

1
2

gµνgρσ

)
, (144)

where Pµνρσ is the leading-order ϕµν-expansion of P̃µνρσ. For the divergence analysis one can use
∆̃(x1 − x2) ' ∆(x1 − x2) where ∆(x1 − x2) denotes the scalar propagator for gµν = ηµν,

∆(x1 − x2) =
∫ d4k

(2π)4
eik·(x1−x2)

ik2 . (145)

In this “bottom-up” approach, the diagrams of the first-layer perturbation can be calculated
through the second-layer perturbation.

Let us set the stage for the perturbative analysis by expanding the action in terms of the fluctuation
fields hµν, aµ—one gets, including the gauge-fixing and ghost terms,

S =
∫ ( 1

κ2Lgrav + Lmatter

)
(146)

where

κ2Lgrav =
1
2
√
−g̃
(
− 1

2
∇̃γhαβ∇̃γhαβ +

1
4
∇̃γhα

α∇̃γhβ
β

+hαβhγδR̃αγβδ − hαβhβ
γR̃καγ

κ−hα
αhβγR̃βγ − 1

2
hαβhαβR̃ +

1
4

hα
αhβ

βR̃ + · · ·
)

−∇̃νC̄µ∇̃νCµ+R̃µνC̄µCν − 1
e2 ω∗∇̃µ F̃µνCν − 1

e2 ω∗ F̃µν∇̃µCν + · · · (147)

and

e2Lmatter = −
1
4
√
−g̃
[

g̃µν g̃ρσ − g̃µνhρσ − g̃ρσhµν +
1
2

g̃µν g̃ρσh + g̃µνhρκhσ
κ + g̃ρσhµκhν

κ

−1
2

g̃µνhhρσ − 1
2

g̃ρσhhµν + hµνhρσ +
1
8

g̃µν g̃ρσ(h2 − 2hκ1κ2 hκ1κ2)
](

fµρ fνσ+2 fµρ F̃νσ + F̃µρ F̃νσ

)

−1
2
√
−g̃ (∇̃κaκ)2 − ∇̃ω∗∇̃ω + · · · , (148)

17 The need for the second-layer perturbation for the gravity sector was discussed, e.g., in [25,26]. The second-layer perturbation
is not necessary in non-gravitational theories.
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where the indices are raised and lowered by g̃µν and g̃µν, respectively; (Cκ , ω) are the ghosts for the
diffeomorphism and vector gauge transformation, respectively.18 Putting it all together, a more useful
way of writing the action (146) is

S ≡ Sk + Sv, (150)

where Sk, Sv denote the kinetic part and the vertices, respectively; they are given by

Sk =
∫ √

−g̃
1

2κ2

(
− 1

2
∇̃γhαβ∇̃γhαβ +

1
4
∇̃γhα

α∇̃γhβ
β

)
− 1

4e2

√
−g̃

(
g̃µν g̃ρσ fµρ fνσ

)

− 1
2e2

√
−g̃ (∇̃κaκ)2 +

1
2κ2

√
−g̃ (−∇̃νC̄µ∇̃νCµ)−

1
e2

√
−g̃ ∇̃ρω∗∇̃ρω (151)

and

Sv =
∫ √

−g̃
1

2κ2

(
hαβhγδR̃αγβδ − hαβhβ

γR̃καγ
κ−hα

αhβγR̃βγ − 1
2

hαβhαβR̃

+
1
4

hα
αhβ

βR̃
)
− 1

4e2

√
−g̃(g̃µν g̃ρσ)

(
2 fµρ F̃νσ + F̃µρ F̃νσ

)
− 1

4e2

√
−g̃
[
− g̃µνhρσ

−g̃ρσhµν +
1
2

g̃µν g̃ρσh + g̃µνhρκhσ
κ + g̃ρσhµκhν

κ −
1
2

g̃µνhhρσ − 1
2

g̃ρσhhµν

+hµνhρσ +
1
8

g̃µν g̃ρσ(h2 − 2hκ1κ2 hκ1κ2)
](

fµρ fνσ+2 fµρ F̃νσ + F̃µρ F̃νσ

)

+
1

2κ2

√
−g̃

(
+R̃µνC̄µCν +

1
2e2 ∇̃

µω∗ F̃µνCν

)
+ · · · . (152)

Worth mentioning is how the graviton gauge-fixing has been implemented:

− 1
2

[
∇̃νhµν − 1

2
∇̃µh

]2
. (153)

This is the refined BFM version of the usual gauge-fixing (137) that is g̃µν-background
non-covariant (although gµν-background-covariant). The physical content of the gauge condition
satisfied by hµν is still (137); the BFM is just a convenience device that allows one to conduct the
analysis covariantly (or more so than otherwise). (The field ϕµν satisfies the same gauge-fixing) One
may expect that with the gauge-fixing (153) the 1PI effective action will come out to be g̃µν-covariant.
This turns out to be naive; we will see that some of the counterterms turn out non-covariant due to the
presence of the factors that can be removed by enforcing the strong form of the gauge condition.

Let us outline the steps of the amplitude computation for an arbitrary solution metric gµν and
the renormalization in the curved background gµν. The diagrams that we will consider are classified
into four categories in terms of the second-layer perturbation. The first class is the diagrams with both
vertices from the graviton sector: the pure gravity sector two-point amplitude and the corresponding
ghost-loop diagram in Figure 3. The second is the diagrams with both vertices from the matter sector;
several relatively simple matter-involving diagrams are listed in Figure 4a–c. The third is the diagrams
with one vertex from the graviton sector and the other from the matter sector, Figure 4d. All of the
diagrams so far have “homogeneous” loops, whereas the fourth class of the diagrams in Figure 5 have
“inhomogeneous” ones; as we will see they require special care.

18 These ghost terms correspond to the following transformations of the fluctuation fields [80]:

h′µν = hµν + (g̃µκ D̃ν + g̃νκ D̃µ)η
κ + (hµκ D̃ν + hνκ D̃µ)η

κ + ηκ D̃κhµν

a′µ = aµ + ηκ F̃κµ + D̃µη5 + aκ D̃µηµ + ηκ D̃κ aµ, (149)

under x′α = xα − ηα and the vector gauge transformation with the parameter −ηκ Ãκ + η5.
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To see in more detail how these diagrams arise and the precise form of the corresponding vertices
in the Lagrangian let us further expand (150). Because the graviton vertex makes the computation
lengthy and tedious, we restrict the maximum number of the graviton external legs to two. In the
gravity sector, the simplest diagrams are the second-order (in ϕαβ) diagrams in Figure 3. With the
split given in (143), the kinetic terms themselves yield the vertices for the second-layer perturbation
expansion. In the gravity sector, the graviton kinetic term is expanded as

2κ2Lgrav,kin = −1
2

∂γhαβ∂γhαβ +
1
4

∂γhα
α∂γhβ

β (154)

+
(

2gββ′ Γ̃α′γα − gαβΓ̃α′γβ′
)

∂γhαβ hα′β′ +
[1

2
(gαα′gββ′ϕγγ′ + gββ′gγγ′ϕαα′

+gαα′gγγ′ϕββ′)− 1
4

ϕ gαα′gββ′gγγ′ − 1
2

gγγ′gα′β′ϕαβ +
1
4
(−ϕγγ′ +

1
2

ϕgγγ′)gαβgα′β′
]
∂γhαβ ∂γ′hα′β′ ,

where the raising and lowering are done by gµν and gµν, respectively. The terms in the second and
third lines serve as the vertices responsible for Figure 3a. The corresponding ghost diagram is given in
Figure 3b.

h

h

ϕ ϕ

C

C

ϕ ϕ

(a) (b)

Figure 3. Graviton and ghost diagrams (indices on fields suppressed).
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4
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4
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1
2
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Figure 5. Diagrams with inhomogeneous loops.

The vertex, Vg, responsible for the diagrams in Figure 3a, is defined by rewriting (154) as

L =
1

κ′2
[
− 1

2
∂γhαβ∂γhαβ +

1
4

∂γhα
α∂γhβ

β + LVg

]
, (155)

where

κ′2 ≡ 2κ2, (156)



Universe 2019, 5, 71 32 of 53

and (LVg and Vg are related by Vg =
√−g LVg )

Vg ≡
√
−g
(

2gββ′ Γ̃α′γα−gαβΓ̃α′γβ′
)

∂γhαβ hα′β′+
√
−g
[1

2
(gαα′gββ′ϕγγ′ +gββ′gγγ′ϕαα′

+gαα′gγγ′ϕββ′)− 1
4

ϕ gαα′gββ′gγγ′ − 1
2

gγγ′gα′β′ϕαβ +
1
4
(−ϕγγ′ +

1
2

ϕgγγ′)gαβgα′β′
]
∂γhαβ ∂γ′hα′β′

+
√
−g̃
(

hαβhγδR̃αγβδ − hαβhβ
γR̃καγ

κ−hα
αhβγR̃βγ − 1

2
hαβhαβR̃ +

1
4

hα
αhβ

βR̃
)

. (157)

Concerning the g̃µν-containing quantities, expansion in terms of ϕµν to the appropriate orders
is to be understood. The vertex relevant for the ghost-loop diagram can similarly be identified by
expanding the terms quadratic in the ghost field:

VC ≡ −
√
−g
[1

2
ϕ∂µC̄ν∂µCν − Γ̃λ

µν(∂
µC̄νCλ − ∂µCνC̄λ)

−(gνβ ϕµα + gµα ϕνβ)∂βC̄α∂νCµ

]
+
√
−g RµνC̄µCν. (158)

The vertices responsible for the diagrams in Figures 4 and 5 can also be obtained by examining
the matter part of the action:

Vm1 ≡ −1
4
√
−g
[
− gρσ ϕµν − gµν ϕρσ

]
fµρ fνσ

Vm2 ≡ −1
4
√
−g
[

gµνhρκhσ
κ + gρσhµκhν

κ + hµνhρσ − 1
4

gµνgρσhκ1κ2 hκ1κ2
]

F̃µρ F̃νσ

Vm3 ≡ 1
2
√
−g
[

gµνhρσ + gρσhµν
]

fµρFνσ

Vm4 ≡ −1
2
√
−g
[

ϕµνhρσ + ϕρσhµν
]

fµρFνσ (159)

Above the trace part of the fluctuation metric, h ≡ g̃αβhαβ, has been set to zero [19,26,41]. Let us
lay out the calculation of counterterms to the diagrams in Figures 3–5. The graviton and ghost
contributions, respectively, are [26]

⇒ −1
2

1
κ′4

<
( ∫ {(

2gββ′ Γ̃α′γα − gαβΓ̃α′γβ′
)

∂γhαβ hα′β′

+
[1

2
(gαα′gββ′ϕγγ′ + gββ′gγγ′ϕαα′ + gαα′gγγ′ϕββ′)− 1

2
gγγ′gα′β′ϕαβ

−1
4

ϕγγ′gαβgα′β′
]
∂γhαβ ∂γ′hα′β′ +

(
hαβhγδR̃αγβδ − hαβhβ

γR̃καγ
κ −

1
2

hαβhαβR̃
)} )2

> (160)

and

⇒ −1
2

1
κ′4

<
( ∫
−
[1

2
ϕ∂µC̄ν∂µCν − Γ̃λ

µν(∂
µC̄νCλ − ∂µCνC̄λ)

−(gνβ ϕµα + gµα ϕνβ)∂βC̄α∂νCµ

]
+RµνC̄µCν

)2
> . (161)

Above and in what follows “⇒” means that the diagram on the left-hand side leads to the
counterterm(s) on the right-hand side after carrying out the contractions appropriately in reflection of
the diagram under consideration.

The numerical factors, − 1
2 ’s, are the combinatoric factors that arise when the vertices are brought

down from the exponential of the path integral. For the gravity sector, the one-loop counterterms
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are given by the sum of these two. (The result for the flat case is reviewed in the next subsection.)
The diagram in Figure 4a,c has two of the vertices Vm1 (Vm2) inserted; the correlator expressions are19

⇒ −1
2
<
( ∫

Vm1

)2
>= −1

2
<
[ ∫ 1

4
(gρσ ϕµν + gµν ϕρσ)( fµρ fνσ)

]2
>

(162)

⇒ −1
2
<
( ∫

Vm2

)2
>= −1

2
<
[ ∫ 1

4
(gµνhρκhσ

κ + gρσhµκhν
κ + hµνhρσ

−1
4

gµνgρσhκ1κ2 hκ1κ2)(F̃µρ F̃νσ)
]2

> (163)

The cross-term diagram in Figure 4d is given by the vacuum expectation value of the two vertices,
Vm2 and Vg:

⇒ − <
∫

Vm2

∫
Vg >= − <

∫ (
− 1

4

)[
gµνhρκhσ

κ + gρσhµκhν
κ + hµνhρσ

−1
4

gµνgµνhκ1κ2 hκ1κ2
](

F̃µρ F̃νσ

)
× 1

κ′2

∫ {(
2gββ′ Γ̃α′γα − gαβΓ̃α′γβ′

)
∂γhαβ hα′β′

+
[1

2
(gαα′gββ′ϕγγ′ + gββ′gγγ′ϕαα′ + gαα′gγγ′ϕββ′)− 1

2
gγγ′gα′β′ϕαβ

−1
4

ϕγγ′gαβgα′β′
]
∂γhαβ ∂γ′hα′β′ +

(
hαβhγδR̃αγβδ − hαβhβ

γR̃καγ
κ −

1
2

hαβhαβR̃
)}

> (164)

For most of the diagrams that we will consider, the structures of the vertices allow one to use,
for the given order, the approximate form of the tensor ∆̃(x1 − x2), namely, ∆(x1 − x2).

The diagrams with the inhomogeneous loops provide an example of the direct first-layer
calculation. For them it is necessary, for covariance, to use the full propagator in (140), a step not
needed for the other diagrams for which it was so far sufficient to use the leading-order propagator.
In the first-layer perturbation, the graph to calculate can be represented by thickened lines:

The external lines represent the full fields, i.e., the fields with tildes, and by the same token,
the internal lines the full propagators. The two diagrams in Figure 5 are the first two terms that result
from, so to speak, ϕαβ-expanding the graph in Figure 6; there are additional contributions (not drawn
here) coming from the internal lines when the full propagators are used. As for those diagrams in
Figure 5, they can be set up in a manner similar to the others:

⇒ −1
2
<
( ∫

Vm3

)2
>= −1

2
<
( ∫ 1

2
(gµνhρσ + gρσhµν) fµρFνσ

)2
>

⇒ − <
∫

Vm3

∫
Vm4 >= − <

∫ 1
2
(gµνhρσ + gρσhµν) fµρFνσ

×
∫ −1

2
(ϕµ′ν′hρ′σ′ + ϕρ′σ′hµ′ν′) fµ′ρ′Fν′σ′ > . (165)

We will come back to these inhomogeneous ones in Section 5.3 where we show a convenient
and effective way of calculating all the contributions, including those arising from the full internal
propagators.

19 The vector coupling constant e2 is often suppressed.
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by the sum of these two. (The result for the flat case is reviewed in the next subsection.) The diagram706

in Fig. 4 (a) ((c)) has two of the vertices Vm1 (Vm2) inserted; the correlator expressions are19
707

⇒ −1
2
<
( ∫

Vm1

)2
>= −1

2
<
[ ∫ 1

4
(gρσ ϕµν + gµν ϕρσ)( fµρ fνσ)

]2
>

(5.41)

708

⇒ −1
2
<
( ∫

Vm2

)2
>= −1

2
<
[ ∫ 1

4
(gµνhρκhσ

κ + gρσhµκhν
κ + hµνhρσ

−1
4

gµνgρσhκ1κ2 hκ1κ2)(F̃µρ F̃νσ)
]2

> (5.42)

The cross-term diagram in Fig. 4 (d) is given by the vacuum expectation value of the two vertices, Vm2709

and Vg:710

⇒ − <
∫

Vm2

∫
Vg >= − <

∫ (
− 1

4

)[
gµνhρκhσ

κ + gρσhµκhν
κ + hµνhρσ

−1
4

gµνgµνhκ1κ2 hκ1κ2
](

F̃µρ F̃νσ

)
× 1

κ′2

∫ {(
2gββ′ Γ̃α′γα − gαβΓ̃α′γβ′

)
∂γhαβ hα′β′

+
[1

2
(gαα′gββ′ϕγγ′ + gββ′gγγ′ϕαα′ + gαα′gγγ′ϕββ′)− 1

2
gγγ′gα′β′ϕαβ

−1
4

ϕγγ′gαβgα′β′
]
∂γhαβ ∂γ′hα′β′ +

(
hαβhγδR̃αγβδ − hαβhβ

γR̃καγ
κ −

1
2

hαβhαβR̃
)}

> (5.43)

For most of the diagrams that we will consider, the structures of the vertices allow one to use, for the711
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The diagrams with the inhomogeneous loops provide an example of the direct first-layer
calculation. For them it is necessary, for covariance, to use the full propagator in (5.19), a step
not needed for the other diagrams for which it was so far sufficient to use the leading-order propagator.
In the first-layer perturbation, the graph to calculate can be represented by thickened lines:

Figure 6. first-layer perturbation diagram

The external lines represent the full fields, i.e., the fields with tildes, and by the same token, the internal713

lines the full propagators. The two diagrams in Fig. 5 are the first two terms that result from, so to714

speak, ϕαβ-expanding the graph in Fig. 6; there are additional contributions (not drawn here) coming715

19 The vector coupling constant e2 is often suppressed.

Figure 6. First-layer perturbation diagram.

5.3. Flat Space Analysis

In what follows we present the explicit flat spacetime computations for the two-point
diagrams considered for a generic background gµν in the previous section. (The analysis of the
vacuum-to-vacuum amplitudes and tadpoles will be presented in Section 5.4) Although the techniques
employed are similar to those used in the pure gravity [26] and gravity-scalar [51] cases, the present
analysis has several additional complications due to the fact that the matter part itself is a gauge system.

Let us consider a flat background:

ĝµν ≡ hµν + g̃µν , Âµ ≡ aµ + Ãµ, (166)

where

g̃µν ≡ ϕµν + gµν , Ãµ ≡ Aµ + A0µ, (167)

with

gµν = ηµν , A0µ = 0. (168)

5.3.1. Two-Point Diagrams

Consider the ghost loop diagram in Figure 3b first. In the flat spacetime the ghost vertex takes

VC = −
[
− Γ̃λ

µν(−Cλ∂µC̄ν + C̄λ∂µCν)− (ηνβ ϕµα + ηµα ϕνβ)∂βC̄α∂νCµ

]
+RµνC̄µCν.

It is convenient to define

VC = VC,I + VC,I I , (169)

with

VC,I ≡ −
[
− Γ̃λ

µν(−Cλ∂µC̄ν + C̄λ∂µCν)− (ηνβ ϕµα + ηµα ϕνβ)∂βC̄α∂νCµ

]

VC,I I ≡ RµνC̄µCν. (170)

The correlator to be computed is

−1
2

1
κ′4

<
( ∫

VC,I + VC,I I

)2
>= −1

2
1

κ′4
<
{ ∫ [

− Γ̃λ
µν(∂

µC̄νCλ − ∂µCνC̄λ)

−(ηνβ ϕµα + ηµα ϕνβ)∂βC̄α∂νCµ

]
− RµνC̄µCν

}2
> . (171)

The dimensional analysis and covariance can be utilized to recognize the covariance of the final
results. To see this consider, e.g., < (

∫
VC,I)

2 >; a direct calculation yields

−1
2

1
κ′4

<
( ∫

VC,I

)2
>= −1

2
Γ(ε)
(4π)2

∫ [
− 2

15
∂2 ϕµν∂2 ϕµν +

4
15

∂2 ϕακ∂κ∂σ ϕσ
α −

1
30

(∂α∂β ϕαβ)2
]
, (172)
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where the parameter ε is given by

D = 4− 2ε. (173)

Lengthy index contractions were carried out with the help of the Mathematica package
xAct‘xTensor‘. Invoking dimensional analysis and covariance, one expects the result to be a sum
of R2 and R2

µν to the second order of ϕρσ with appropriate coefficients. With the traceless condition
ϕ = 0 explicitly enforced, R2 and R2

µν are given, to the second order in ϕαβ, by

R2 = ∂µ∂ν ϕµν ∂ρ∂σ ϕρσ

RαβRαβ =
1
4

[
∂2 ϕµν ∂2 ϕµν − 2∂2 ϕακ∂κ∂σ ϕσ

α + 2(∂µ∂ν ϕµν)2
]
; (174)

comparing with these it follows that

−1
2

1
κ′4

<
( ∫

VC,I

)2
>= −1

2
Γ(ε)
(4π)2

∫ [
− 8

15
R̃αβR̃αβ +

7
30

R̃2
]
. (175)

The tildes will be omitted from now on. Completing the other terms in (171), one gets

⇒ −1
2

Γ(ε)
(4π)2

∫ [ 7
15

RµνRµν+
17
30

R2
]
. (176)

The vertex Vg, which is relevant for the graviton-loop diagram in Figure 3a, takes, in the flat space,

Vg ≡
(

2ηββ′ Γ̃α′γα−ηαβΓ̃α′γβ′
)

∂γhαβ hα′β′+
[1

2
(ηαα′ηββ′ϕγγ′ +ηββ′ηγγ′ϕαα′

+ηαα′ηγγ′ϕββ′)− 1
2

ηγγ′ηα′β′ϕαβ − 1
4

ϕγγ′ηαβηα′β′
]
∂γhαβ ∂γ′hα′β′

+
(

hαβhγδR̃αγβδ − hαβhβ
γR̃καγ

κ −
1
2

hαβhαβR̃
)

. (177)

Let us define:

Vg,I ≡
(

2ηββ′ Γ̃α′γα − ηαβΓ̃α′γβ′
)

∂γhαβ hα′β′

Vg,I I ≡
[1

2
(ηαα′ηββ′ϕγγ′ + ηββ′ηγγ′ϕαα′ + ηαα′ηγγ′ϕββ′)

−1
4

ϕ ηαα′ηββ′ηγγ′ − 1
2

ηγγ′ηα′β′ϕαβ

+
1
4
(−ϕγγ′ +

1
2

ϕηγγ′)ηαβηα′β′
]
∂γhαβ ∂γ′hα′β′ (178)

Vg,I I I =
√
−g̃
(

hαβhγδR̃αγβδ − hαβhβ
γR̃καγ

κ −
1
2

hαβhαβR̃
)

. (179)

Again, by employing the traceless propagator one can show that

⇒ −1
2

Γ(ε)
(4π)2

∫ [
− 23

20
RµνRµν − 23

40
R2
]
. (180)
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The correlators for the matter-involving sector have also been outlined for an arbitrary background
in the previous section. The diagrams in Figure 4a–c lead, for the flat spacetime, to

⇒ Γ(ε)
(4π)2

∫ ( 1
30

R2 − 1
10

RαβRαβ
)

⇒ − Γ(ε)
(4π)2

1
15

∫
RαβRαβ

⇒ κ′4 Γ(ε)
(4π)2

3
64

∫
(FαβFαβ)2. (181)

These results are covariant as expected. On the other hand, the direct calculation of the diagram
in Figure 4d yields

∣∣∣∣
Vg,I+Vg,I I

⇒ κ′2 Γ(ε)
(4π)2

∫ ( 1
16

FµνFµν∂α∂β ϕαβ +
1
2

Fµκ Fν
κ∂2 ϕµν

)
, (182)

which is non-covariant. In fact, this is the diagram whose examination leads to the solution for the
gauge choice-dependence problem as we will see below. The Vg,I I I vertex also contributes to the
diagram above:

∣∣∣∣
Vg,I I I

⇒ κ′2 Γ(ε)
(4π)2

∫ (3
4

Fακ Fβ
κ Rαβ +

1
8

FαβFαβR

+
1
4

FαδFβγRαβγδ − 1
4

FαβFγδRαβγδ
)

. (183)

Concerning the diagrams with the inhomogeneous loops, the first-layer diagram to be computed
is the one in Figure 6. It corresponds to several second-layer diagrams, two of which are Figure 5a,b;
one can show

⇒ κ′2

2
Γ(ε)
(4π)2

∫ (1
3

∂αFα
κ∂βFβκ − 1

12
∂ρFαβ∂ρFαβ

)

⇒ κ′2
Γ(ε)
(4π)2

∫ (1
3

Fακ∂λ∂βFβ
κ ϕαλ − 1

12
Fακ∂2Fβ

κ ϕαβ
)

, (184)

where all of the index contractions are carried out with the flat metric. The first diagram is covariant
at the leading order; the second diagram, however, is not at its given order, the ϕαβ-linear order.
Moreover, there are also contributions arising from the higher-order internal propagators, and all of
these three different contributions are required for the covariance since they altogether correspond
to the single first-layer diagram in Figure 6. Keeping track of the higher-order internal propagators
obviously requires the full (or at least higher-order) propagator expression ∆̃. Because of these it will
be more economical to compute them with one stroke by the first perturbation. For the first-layer
perturbation calculation, the relevant vertex is

V ≡ 1
2

[
g̃ρσhµν + g̃µνhρσ

]
fµρFνσ, (185)

where the index contractions are carried out by g̃µν. At this point let us introduce the orthonormal
basis eµ

α :

ẽµ
α ẽν

β g̃µν = ηαβ, α, β = 0, 1, 2, 3. (186)



Universe 2019, 5, 71 37 of 53

The full scalar propagator ∆̃ can be written

∆̃(X1 − X2) =
∫ d4L

(2π)4
eiLδ(X1−X2)

δ

iLαLβηαβ
, (187)

where Xα and Lδ are the coordinates and momenta associated with the orthonormal basis. Then the
computation of the two-point amplitude goes identically with that of Figure 5a. Once the result is
obtained, one can switch back to the original frame. With this one gets

⇒ −1
2
<
( ∫

V
)2

>=
κ′2

2
Γ(ε)
(4π)2

∫ (1
3
∇αFα

κ∇βFβκ − 1
12
∇ρFαβ∇ρFαβ

)
. (188)

5.3.2. On Restoring Gauge-Choice Independence

Above, the counterterms for the diagrams in Figures 3–6 have been evaluated, leading to different
types of the counterterms. One of them, i.e., Equation (182) (Figure 4c), has turned out non-covariant.
This means that the effective action, as it stands, is non-covariant and gauge fixing-dependent. These
two problems can be solved simply by enforcing the gauge-fixing

∂µ ϕµν = 0 (189)

explicitly on the effective action. One can see this by examining the non-covariant counter-terms given
in (182). (Although this is just one example, we believe that the claim that the strong form of the
gauge-fixing solves the problems will be generally true.) Note that the first term in (182) vanishes
upon imposing the strong form of the gauge condition ∂µ ϕµν = 0, which implies

∂ν∂µ ϕµν = 0. (190)

With this, Equation (182) now becomes

∣∣∣∣
Vg,I+Vg,I I

⇒ κ′2 Γ(ε)
(4π)2

∫ (1
2

Fµκ Fν
κ∂2 ϕµν

)
= −κ′2 Γ(ε)

(4π)2

∫
Fµκ Fν

κ Rµν,

(191)

where the second equality is valid, as usual, up to (and including) the linear order of ϕαβ. Above the
following identity valid at ϕρσ-linear order has been used:

Rµν =
1
2
(∂κ∂µ ϕκν + ∂κ∂ν ϕκµ − ∂µ∂ν ϕ− ∂2 ϕµν) = −

1
2

∂2 ϕµν, (192)

where the second equality results once the gauge conditions are enforced.
Among the terms explicitly evaluated above, only (182) has an issue; all the other results

are gauge-fixing-independent. The analysis above suggests that after enforcing ∂ν ϕµν =

0, the effective action becomes fully covariant and gauge-choice-independent. In this
sense, the gauge-choice-dependence found in the present work is milder compared to the
gauge-choice-dependence found in the previous literature, and we attribute this to the use of the
traceless propagator and refined background field method. Just as the classical action is fully covariant
but is to be supplemented by a gauge-fixing condition, one should view the covariant 1PI action as
still to be supplemented by the gauge-fixing. If one chooses a different gauge-fixing and carries out
the amplitude computations in that gauge, one should get exactly the same covariant effective action
up to the terms that can be removed by explicitly enforcing that gauge condition. In other words,
this time, the covariant action is supplemented with the very gauge-fixing condition that one has chosen.
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Therefore, the gauge-choice-independence of the effective action should be interpreted to mean that the
action is covariant after enforcing the strong form of the gauge condition and that the covariant action
is to be supplemented by the gauge-fixing condition of one’s choice. The gauge-choice-dependence
seems to have deep roots, having something to do with how the BFM itself works. More detailed
discussion on this can be found in [82].

5.4. Renormalization Procedure

In this subsection we carry out two tasks: renormalization of the coupling constants and explicit
one-loop renormalization via a metric field redefinition. We first analyze the renormalization of the
three coupling constants: the cosmological constant, Newton’s constant, and the vector coupling
constant. The vacuum-to-vacuum and tadpole diagrams given in Figure 7 are responsible for
the renormalization of the first two. (Unlike in a non-gravitational theory, the tadpole diagrams
play an important role.) As for the vector coupling, the diagram in Figure 7 should be considered.
Afterwards we carry out the renormalization via a metric field redefinition.
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Figure 7. Diagram for vector coupling renormalization.

5.4.1. Renormalization of Coupling Constants

In terms of the first-layer perturbation, the loop corrections of the cosmological and Newton’s
constants are brought by the vacuum-to-vacuum and tadpole diagrams, respectively. See Figure 8 for
a list of the diagrams for the pure gravity sector; there are similar diagrams for the matter-involving
sector. For the graviton vacuum-to-vacuum amplitude, for example, one is to compute

∫
∏

x
dhκ1κ2 e

i
κ′2
∫ √−g̃

(
− 1

2 ∇̃γhαβ∇̃γhαβ

)
.

(193)

This vacuum energy amplitude in the first-layer perturbation will give a vacuum diagram and
a tadpole diagram in the second-layer perturbation analysis. These diagrams as well as the genuine
tadpole diagrams are analyzed below.
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Figure 8. Vacuum and tadpol diagrams.

Let us first frame the analysis of the vacuum and tadpole diagrams in preparation for the flat
space calculation. The vacuum-to-vacuum amplitude Figure 8a takes the form of the cosmological
constant term and diverges (see, e.g., in [51,83]).20 However, in dimensional regularization the vacuum
energy diagram vanishes—which is an undesirable feature of dimensional regularization when dealing

20 The discussion here is for a flat spacetime, but the divergence will be quite generically produced for an arbitrary background.
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with a massless theory21—due to an identity Equation (199) below. (If we were dealing with a massive
theory instead, a counterterm of the form of the cosmological constant of an infinite value would be
required to remove the divergence.) The diagrams responsible for the renormalization of the Newton’s
constant are the tadpole diagrams. As we will see in detail below, the (would-be) shift in the Newton’s
constant is caused by a diagram that arises from self-contraction of two fluctuation fields within the
given vertex. This time, the following identity makes the dimensional regularization unhandy for the
tadpole diagrams: ∫

dDk
1

(k2)ω
= 0, (194)

where ω is an arbitrary number: the tadpole diagram vanishes due to this. In other words,
the divergence that would otherwise renormalize the Newton’s constant vanishes in dimensional
regularization. For reasons to be explained, we will introduce the shifts in the cosmological and
Newton’s constants through finite renormalization.

The kinetic terms, which we quote here for convenience, are responsible for the first-layer
vacuum-to-vacuum amplitudes:

2κ2L =
√
−g̃
(
− 1

2
∇̃γhαβ∇̃γhαβ +

1
4
∇̃γhα

α∇̃γhβ
β

)

= −1
2

∂γhαβ∂γhαβ +
1
4

∂γhα
α∂γhβ

β + Vg,I + Vg,I I , (195)

where

Vg,I ≡
(

2ηββ′ Γ̃α′γα − ηαβΓ̃α′γβ′
)

∂γhαβ hα′β′

Vg,I I ≡
[1

2
(ηαα′ηββ′ϕγγ′ + ηββ′ηγγ′ϕαα′ + ηαα′ηγγ′ϕββ′)

−1
4

ϕ ηαα′ηββ′ηγγ′ − 1
2

ηγγ′ηα′β′ϕαβ

+
1
4
(−ϕγγ′ +

1
2

ϕηγγ′)ηαβηα′β′
]
∂γhαβ ∂γ′hα′β′ (196)

Vg,I I I =
√
−g̃
(

hαβhγδR̃αγβδ − hαβhβ
γR̃καγ

κ −
1
2

hαβhαβR̃
)

. (197)

The first-layer vacuum-to-vacuum amplitudes are split into two parts in the second-layer
perturbation; the vacuum-to-vacuum amplitudes and the tadpoles. Let us consider the
second-layer vacuum-to-vacuum amplitudes. The vacuum energy leads to the cosmological constant
renormalization and comes from

∫
∏

x
dhκ1κ2 e

i
κ′2
∫ (
− 1

2 ∂γhαβ∂γhαβ

)
(198)

The result is a constant term in the 1PI action (see, e.g., the analysis given in [83]): the calculation
above leads to a quantum-level cosmological constant. The divergent part, which will be denoted
by A0 below, of the constant term is essentially the coefficient of the cosmological constant term.
Here is the difference between gravity and a non-gravitational theory. In a non-gravitational theory,
appearance of a term absent in the classical action would potentially signal non-renormalizability.
In a gravitational theory one has an additional leverage of a metric field redefinition (more on this

21 For instance, the identities in (194) and (199) often obscure cancellations between the bosonic and fermionic amplitudes in a
supersymmetric field theory, making them vanish separately.
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later). (Even in a non-gravitational theory, appearance of a finite number of new couplings is taken to
be compatible with renormalizability.)

The one-loop vacuum-to-vacuum amplitude, whether it is from the graviton or the ghost
(or matter), involves the following integral that vanishes in dimensional regularization:

∫
d4 p ln p2 = 0. (199)

Nevertheless, we introduce renormalization of the coupling constants through finite
renormalization for the following reasons. Although the expression above is taken to vanish in
dimensional regularization, the vacuum energy expression, in particular A0 in (201), will not, in general,
vanish in other regularizations for a curved background. To examine the behavior of the integral let us
add a mass term m2 that will be taken to m2 → 0 at the end,

∼
∫

d4 p ln (p2 + m2). (200)

For its evaluation, one can then take derivatives with respect to m2; the result takes the form of

A f + A0 + A1m2 + A2m4, (201)

where A’s are some m-independent constants; the finite piece, A f , takes

A f ∼ m4 ln m2. (202)

With the limit m2 → 0, only the term with the constant A0, which is infinite, survives, and
dimensional regularization amounts to setting A0 = 0. Although each term in (201) either vanishes
or is taken to zero in dimensional regularization, not introducing nonvanishing finite pieces seems
unnatural (and ultimately, unlikely to be consistent with the experiment); in a more general procedure
of renormalization of a quantum field theory, one can always conduct finite renormalization regardless
of the presence of the divergences. (As we will see below, not only the quantum shift but also a
“classical” piece of the cosmological constant must be introduced.) Once a finite piece is introduced
and the definition of the physical cosmological constant is made (say, as the coefficient of the

∫ √−g̃
term), the renormalized coupling will run basically due to the presence of the scale parameter µ (more
details below).

Let us now consider the tadpole diagrams. For the second-layer tadpoles, the rest of the vertices in
the kinetic term in (195)—which are nothing but Vg,I and Vg,I I—as well as Vg,I I I are relevant; the former
are part of the first-layer vacuum-to-vacuum amplitude whereas the latter is associated with a genuine
first-layer tadpole. It turns out that Vg,I , Vg,I I lead to vanishing results in dimensional regularization.
Let us illustrate that with Vg,I ,

Vg,I =
(

2ηββ′ Γ̃α′γα − ηαβΓ̃α′γβ′
)

∂γhαβ hα′β′ . (203)

The self-contraction of the hµν’s in (203) leads to a momentum loop integral with an odd integrand,
which thus vanishes. (The other terms in (195) vanish because the self-contraction leads to the trace
of ϕµν.) The vertex Vg,I I I similarly leads to a vanishing result. To see this, consider contraction of the
hαβ-fields in Vg,I I I . The index structures yield the Ricci scalar R but the self-contraction vanishes in
dimensional regularization due to the identity (194). Then, as in the case of the cosmological constant,
the dimensional regularization does not lead to a divergence for the tadpole diagram; the shift is
introduced through finite renormalization.
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The diagram relevant for the vector coupling renormalization is given in Figure 7, a tadpole
diagram with the graviton running on the loop. The relevant first-layer vertex is

− 1
4

∫ √−g̃
[

g̃µνhρκhσ
κ + g̃ρσhµκhν

κ − 1
2 g̃µνhhρσ − 1

2 g̃ρσhhµν + hµνhρσ + 1
8 g̃µν g̃ρσ(h2 − 2hκ1κ2 hκ1κ2)

]
F̃µρ F̃νσ. (204)

The correlator to be computed is

− i
4µ2εe2

∫ √−g̃F̃µρ F̃νσ

〈
g̃µνhρκhσ

κ + g̃ρσhµκhν
κ − 1

2 g̃µνhhρσ − 1
2 g̃ρσhhµν + hµνhρσ + 1

8 g̃µν g̃ρσ(h2 − 2hκ1κ2 hκ1κ2)
〉

, (205)

where the self-contractions of the fluctuation fields are to be performed. The correlator leads to
a counterterm of the form ∼ F̃2

αβ. Again the result vanishes due to the identity (194) in dimensional
regularization. The shift can be introduced through finite renormalization. In Section 5.5 below,
we revisit the renormalization of the coupling constants by employing an alternate renormalization
scheme where the cosmological constant is treated as a formal graviton mass.

5.4.2. Renormalization through Metric Field Redefinition

The one-loop renormalization procedure is in order: we are ready to show that the Einstein–Hilbert
action with the counter-terms can be rewritten as the same form of the Einstein–Hilbert action but now
in terms of a redefined metric. Afterwards we contemplate on several possible alternative procedures
of renormalization. We also comment on the higher-loop extension of the present work. The analysis
here is to illustrate the renormalization procedure and is based on the computation that we have
carried out in the sections so far. Some of the diagrams that we did not explicitly calculate will change
the numerical values of some of the coefficients.

Collecting the results, the renormalized action plus the counterterms is given by
∫ √

−g (e1 + e2R + e3R2 + e4R2
αβ)

+
∫ √

−g
(

e5Fµκ Fν
κ Rµν + e6FαβFαβR + e7FαδFβγRαβγδ (206)

+e8FαβFγδRαβγδ + e9∇αFακ∇βFβ
κ + e10∇λFµν∇λFµν + e11(FαβFαβ)2 + · · ·

)
,

where e1 is the constant previously denoted by A0. More precisely, [e1] = A0, where the square bracket
[ei] denotes the infinite parts of the coefficient ei calculated in dimensional regularization. Similarly,
the would-be divergence of the tadpole diagrams will be denoted B0 = [e2]. (A0, B0 are taken to vanish
in dimensional regularization.) For the rest of the coefficients, one has, by collecting the results in the
previous sections,

[e3] = −
17
60

+
23
80

+
1

30
, [e4] = −

7
30

+
23
40
− 1

10
− 1

15
,

[e5] =
(
− 1 +

3
4

)
κ′2, [e6] =

κ′2

8
, [e7] =

κ′2

4
, [e8] = −

κ′2

4
,

[e9] =
κ′2

6
, [e10] = −

κ′2

24
, [e11] =

3
64

κ′4, , (207)

where the common factor Γ(ε)
(4π)2 appearing in dimensional regularization has been suppressed. The finite

pieces of each coefficient can be determined, say, by the MS scheme. Not all of the counter-terms
are independent, due to the following relationships, the second of which is valid up to total
derivative terms:

FαβFγδRαβγδ = ∇µFνρ∇µFνρ + 2Fµκ Fν
κ Rµν − 2∇λFλκ∇σFσ

κ

FαδFβγRαβγδ = −1
2

FαβFγδRαβγδ. (208)
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Upon substituting these into (206), one gets
∫ √

−g
[
e1 + e2R + e3R2 + e4R2

αβ + (e5 − e7 + 2e8)Fµκ Fν
κ Rµν

+e6FαβFαβR + (e7 − 2e8 + e9)∇αFακ∇βFβ
κ (209)

+(−e7/2 + e8 + e10)∇λFµν∇λFµν + e11(FαβFαβ)2 + · · ·
]
.

The strategy is to absorb these counterterms by redefining the metric in the bare action.
Upon inspection one realizes that the counterterms of the forms ∇λFµν∇λFµν,∇αFακ∇βFβ

κ cannot be
absorbed by a bare action that consists of the Einstein–Hilbert term and the Maxwell term. However,
they can be absorbed by introducing the cosmological constant term as well. To see this in detail,
consider a metric shift gµν → gµν + δgµν; the Einstein–Hilbert part shifts

√
−g R→

√
−g R + R δgµν δ

√−g
δgµν

+
√
−g δgµν δR

δgµν
(210)

so the shifted part comes either with R or Rµν, and is thus inadequate to absorb the aforementioned
counterterms; as is the shifted part from the Maxwell’s action. From now on we assume the presence
of the cosmological constant in the bare action. Let us consider the following shifts [38,51],

κ → κ + δκ , Λ→ Λ + δΛ

gµν → Gµν ≡ l0gµν + l1gµνR + l2Rµν + l3gµνF2
ρσ + l4Fµκ Fν

κ

+l5RFµκ Fν
κ + l6RµνF2

κ1κ2
+ l7gµνRF2

ρσ + l8gµνRαβFακ Fβ
κ

+l9Rµ
α

ν
βFακ Fβ

κ + l10R(Fκ1κ2 Fκ1κ2)2

+l11∇µFκ1κ2∇νFκ1κ2 + l12∇λFλµ∇κ Fκν. (211)

One can straightforwardly show that under these, the gravity and matter sectors shift, respectively,

−( 2
κ2 Λ)

∫ √
−g +

1
κ2

∫
d4x
√
−g R→ −2

(Λ
κ2 +

δΛ
κ2 −

2δκΛ
κ3 + 2l0Λ

) ∫ √
−g

+
( 1

κ2 −
2δκ

κ3 +
l0
κ2 −

Λ
κ2 (4l1 + l2)

) ∫ √
−g R +

1
κ2

∫ √
−g
[
(l1 +

1
2

l2)R2 − l2RµνRµν
]

+
1
κ2

∫ √
−g
[
−Λ(4l3 + l4)FαβFαβ +

(
l3 + l4/2−Λ[l5 + l6 + 4l7]

)
RFαβFαβ

−Λ(4l8 + l9)RαβFακ Fβ
κ − 4Λl10(FρσFρσ)2 −Λl11(∇µFνρ)

2 −Λl12(∇κ Fκν)
2 + . . .

]
, (212)

and

−1
4

∫ √
−g F2

µν → −
1
4

∫ √
−g F2

µν +
∫ √

−g
[
− l2

8
RFαβFαβ

+
l2
2

RαβFακ Fβ
κ +

l3
2
(FρσFρσ)2 +

l4
2

Fακ Fβ
κ Fακ′Fβ

κ′ + · · ·
]

. (213)
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Combining these two, one gets

1
κ2

∫
d4x
√
−g (R− 2Λ)− 1

4

∫ √
−g F2

µν → −2
(Λ

κ2 +
δΛ
κ2 −

2δκΛ
κ3 + 2l0Λ

) ∫ √
−g

+
( 1

κ2 −
2δκ

κ3 +
1
κ2 l0 −

1
κ2 Λ(4l1 + l2)

) ∫ √
−g R− 1

4

∫ √
−g F2

µν

+
1
κ2

∫ √
−g
[
(l1 +

1
2

l2)R2 − l2RµνRµν
]
+

1
κ2

∫ √
−g
[
−Λ(4l3 + l4)FαβFαβ

+
(

l3 +
l4
2
−Λ[l5 + l6 + 4l7]−

l2
8

κ2
)

RFαβFαβ +
(

κ2 l2
2
−Λ[4l8 + l9]

)
RαβFακ Fβ

κ

(κ2l3/2− 4Λl10)(FρσFρσ)2 − l11(∇µFνρ)
2 − l12(∇κ Fκν)

2 + . . . .
]

(214)

Not all of the terms in the expansion have been explicitly recorded; some of them would be
relevant for additional diagrams such as three-pt amplitudes.

Let us consider the first several coefficients of the shifted action and compare them with those
appearing in (209). We start with the cosmological constant term and the Einstein–Hilbert term.
Their counterterms can be absorbed by setting

− 2
κ2

(
δΛ− 2δκΛ

κ

)
= A0 (215)

and

− 2
κ3 δκ +

1
κ2 l0 −

Λ
κ2 (4l1 + l2) = B0, (216)

respectively. Recall that the constants A0, B0 now contain the non-vanishing finite pieces introduced
by the aforementioned finite renormalization. Equation (216) determines the infinite part of δκ

δκ =
κ

2
l0 −

κΛ
2

(4l1 + l2)−
κ3

2
B0. (217)

The value δΛ is determined once this result is substituted into (215):

δΛ = l0Λ−Λ2(4l1 + l2)−
κ2

2
A0. (218)

The counterterms of the forms R2, R2
µν can be absorbed by setting

l1 +
1
2

l2 = e3 , −l2 = e4,

(219)

which yields

l1 = e3 +
1
2

e4 , l2 = −e4. (220)

Inspection of the coefficients of F2
αβ implies

4l3 + l4 = O(κ4). (221)

The coefficients of RFαβFαβ, RαβFακ Fβ
κ should match with the corresponding coefficients in (209):

l3 +
l4
2
−Λ(l5 + l6 + 4l7)−

l2
8

κ2 = e6 ,
κ2

2
l2 −Λ(4l8 + l9) = e5 − e7 + 2e8.
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These constraints are to be combined with those coming from the higher-order counter-terms.
As for the two- [84] and higher-loop-order renormalization, the following can be said: at two-loop,

no such identity as (1) is available and one must therefore rely on the holography-inspired reduction.
The two- and higher-loop renormalizability in an asymptotically flat background can be achieved by
following the outlines presented in [36].

5.5. Beta Function Analysis

In the previous subsection we have initially carried out the analysis without including the
cosmological constant. As we have reviewed, dimensional regularization has a technical subtlety:
the flat propagator yields vanishing results for the vacuum and tadpole diagrams. Because of
this, the shifts in the coupling constants were viewed as having been introduced through finite
renormalization. Through the analysis in Section 5.4, it has been revealed that the cosmological
constant is generically generated by the loop effects and the renormalizability requires its presence in
the bare action. This status of the matter seems to suggest the possibility of carrying out an alternative
renormalization procedure by including the cosmological constant in the starting renormalized action.
Once the cosmological constant is included and expanded around the fluctuation metric, it can be
treated as a source for additional vertices. As for the second-order fluctuation term, it can be treated as
the “graviton mass” term. With this arrangement, the vacuum-to-vacuum and tadpole diagrams yield
non-vanishing results. Here we carry out the beta function analysis of the vector coupling constant to
illustrate this alternative procedure.

An analysis of renormalization of the vector coupling was previously carried out in [29,30] by
employing the setup of [27]. An interesting role of the cosmological constant was noted: its presence
led to running of the matter coupling constant that was absent when the cosmological constant was not
present [85]. It was observed that the presence of the cosmological constant generates the formal mass
terms for the photon and graviton. Our beta function calculation below confirms the result obtained
in [85].

In the present context, treating a cosmological constant-type term as the graviton mass term
was considered in [51] in an Einstein-scalar theory with a Higgs-type potential; the scalar part of the
Lagrangian is

S = −
∫

d4x
√
−g

(1
2

gµν∂µζ∂νζ + V
)

. (222)

with the potential V given by

V =
λ

4

(
ζ2 +

1
λ

ν2
)2

, (223)

where λ is the scalar coupling and ν2 is the mass parameter. In [51] we treated the constant term from
the potential as the graviton mass term:

m2 =
κ′2

8
ν4

λ
. (224)

In the present case we similarly treat the quadratic part of the cosmological constant term as
a formal mass term for the graviton:

m2 = −2Λ. (225)

For the detailed analysis of the beta function, it is convenient, and common, to introduce a scale
parameter µ by making the following scalings :

κ2 → µ2εκ2 , e2 → µ2εe2 , Λ→ µ−2εΛ (226)
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With this, Equation (122) takes

S =
∫ √

−ĝ
( 1

κ2µ2ε
(R̂− 2Λµ−2ε)− 1

4e2µ2ε
F̂2

µν

)
. (227)

Now the kinetic part of the gravity sector is

Lkin =
1

2κ2µ2ε

√
−g̃
[
− 1

2
∇̃γhαβ∇̃γhαβ −

1
2
(−2Λ)hµνhµν)

]
. (228)

Treating the cosmological constant-containing term as the “mass” term has the effect of changing
(187) to

∆̃(X1 − X2) =
∫ d4L

(2π)4
eiLδ(X1−X2)

δ

i(LαLβηαβ − 2Λ)
. (229)

The correlator relevant for the vector coupling renormalization is

− i
4µ2εe2

∫ √−g̃F̃µρ F̃νσ

〈
g̃µνhρκhσ

κ + g̃ρσhµκhν
κ − 1

2 g̃µνhhρσ − 1
2 g̃ρσhhµν + hµνhρσ + 1

8 g̃µν g̃ρσ(h2 − 2hκ1κ2 hκ1κ2)
〉

(230)

Carrying out the self-contractions of the fluctuation fields, one gets

= −3iµ2εκ′2

8µ2εe2

∫ √
−g̃ F̃µρ F̃µρ

∫ d4L
(2π)4

1
i(L2 − 2Λµ−2ε)

= −3µ2εκ′2

8µ2εe2
Γ(ε)(2Λµ−2ε)

(4π)2

∫ √
−g̃ F̃µρ F̃µρ

' 3
32π2(D− 4)

κ2Λ
µ2εe2

∫ √
−g̃ F̃µρ F̃µρ, (231)

where the second equality has been obtained by performing the momentum integration after a Wick
rotation; the third equality is obtained by keeping only the pole term of Γ(ε). The result above implies
that the one-loop-corrected vector coupling e1 is given by

e1 = eµε
(

1 +
3

8π2(D− 4)
κ2Λ

) 1
2 ' eµε

(
1 +

3
16π2(D− 4)

κ2Λ
)

. (232)

From this it follows that
µ

∂e1

∂µ
= εeµε − 3µε

32π2 κ2Λ e. (233)

Taking ε→ 0, one gets the following beta function:

β(e) = − 3
32π2 κ2Λe. (234)

This is the same as the result obtained in [85].22 The result in [85] was obtained by employing
the standard one-loop determinant formula.23 Although, strictly speaking, the formula makes sense
only when the traceless part of the fluctuation field is taken out, once the formula is used it doesn’t
matter how it is obtained. In other words, the result in [85] was obtained, so to speak, by bypassing the

22 Note that κ2 in [85] is twice κ2 here.
23 In a schematic notation, the formula reads ∫

Dξ e−
1
2 ξ K ξ = e−

1
2 tr ln K

2π . (235)
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traceful propagator, and we believe that this is why our beta function result—obtained by employing
the traceless propagator—agrees with that therein obtained.24

6. Future Astrophysical Applications

With the renormalization of gravity reasonably under control, we ponder astrophysical
applications of the present quantization scheme. Although the quantum gravitational effects are
viewed as small conventionally, one of the lessons learned through a series of the recent works is
that this is essentially not true in general for the following two reasons. Firstly, there is an issue
of the boundary conditions. Suppose one starts with a classical action with the standard Dirichlet
boundary condition. At the quantum-level, the action comes to contain various higher-order terms,
and for this the boundary conditions must be reexamined. As we will review below, the change in the
boundary condition brings “order-1” effects to the classical picture. Secondly, there is a subtlety
in taking the classical limit of the quantum-corrected quantities. Due to this there may again
be “order-1” modifications to the classical picture. In [86,87] (see an earlier related work [88]),
the energy measured by an infalling observer was studied for two different cases: quantum-corrected
time-dependent dS-Schwarzschild and AdS black holes. It turns out that the infalling observer
encounters a trans-Planckian energy near the horizon of the black hole, which is consistent with the
Firewall proposal [89,90]. For this, the quantum effects and time-dependence are crucial. In particular,
the so-called non-Dirichlet quantum modes play an important role in the trans-Planckian energy
observed in [87]. Since these effects are non-perturbative and “big” they must be experimentally
observable and have astrophysical significance. Below we discuss two potentially interesting
astrophysical applications of the present quantization scheme: applications to AGN and gravitational
wave physics.

As we will point out, the quantum gravitational effects substantially modify the geometry near
the event horizon of a black hole. Because of this the horizon is no long featureless vacuum-like place
but instead a potentially quite volatile place. Based on this we raise two questions and frame our future
investigation. The first question pertains to the strength with which the quantum effects modify the
near-horizon geometry. As we will show, the quantum effects do seem to cause an infalling observer
to encounter a Firewall-type effect near the horizon when the black hole is time-dependent. Although
no strictly Planck-scale physics has ever been directly observed experimentally, there is a phenomenon
that seems fairly close—the high energy radiation by an AGN. Some of the extremely high-energy
cosmic particles are believed to originate from AGNs. Their energy scales (∼1019 ev) are not quite as
high as the Planck energy. However, their energy losses on the way, e.g., the loss caused by climbing
up the potential hill of the supermassive black hole, must be taken into account.

Another potentially interesting implication of the unconventional event horizon pertains to the
boundary condition at the event horizon. In the conventional picture, one imposes the so-called
perfect-infall boundary condition at the event horizon when studying the response of the black hole
to an outside perturbation. Together with the entirely outgoing-wave boundary condition at the
asymptotic region, the linearized metric field equation leads to the quasi-normal mode solutions.
However, once the horizon is deformed by the quantum effects, other boundary conditions that would
allow reflection at the event horizon are highly plausible possibilities. We frame future investigation
by examining the Einstein-scalar system studied in [87].

The two issues above can be illustrated by taking the following AdS gravity-scalar system: at the
classical level the system is given by

S =
1
κ2

∫
d4x
√
−g
[

R− 2Λ
]
−
∫

d4x
√
−g
[1

2
(∂µζ)2 +

1
2

m2ζ2
]

(236)

24 Incidentally it also turns out that the result (230) remains the same even if one employs the traceful propagator, which
should be a coincidence.
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where m2 = − 2
L2 . It admits an AdS black hole solution,

ζ = 0 , ds2 = − 1
z2

(
Fdt2 + 2dtdz

)
+ W2(dx2 + dy2) (237)

with

F = −Λ
3
− 2Mz3 , W =

1
z

, ζ = 0 (238)

where M is proportional to the mass of the black hole. At the classical level, the system admits the
following form of a time-dependent solution [91]:

ds2 = − 1
z2

[
F(t, z)dt2 + 2dt dz

]
+ W(t, z)2(dx2 + dy2)

ζ = ζ(t, z)

with

F(t, z) = F0(t) + F1(t)z + F2(t)z2 + F3(t)z3 + ...

W(t, z) =
1
z
+ W0(t) + W1(t)z + W2(t)z2 + W3(t)z3 + ...

ζ(t, z) = ζ0(t) + ζ1(t)z + ζ2(t)z2 + ζ3(t)z3 + ... . (239)

Substituting these ansatz into the field equations and imposing the Dirichlet boundary condition,
one gets (we have set L = 1 and 6

L2 = −2Λ):

ζ0 = W0 = F1 = 0, F0 = 1, W1 = −1
8

ζ2
1, F2 = −1

4
ζ2

1, W2 = −1
6

ζ1ζ2

ζ3 =
1
2

(
1
2

ζ1
2ζ1 + 2ζ̇2

)
, W3 =

1
96

[
− 11

4
ζ1

4 − 8ζ2
2 − 12ζ1ζ̇2

]
, Ḟ3 = −1

2
ζ1ζ̇2 +

1
2

ζ1ζ̈2. (240)

Unlike one’s naive expectation, the quantum corrections modify the classical solution significantly,
changing it to a qualitatively different black hole solution. The one-loop 1PI effective action is given
by [51]

S =
1
κ2

∫
d4x
√
−g
[

R− 2Λ
]
−
∫

d4x
√
−g
[1

2
(∂µζ)2 +

1
2

m2ζ2
]

+
1
κ2

∫
d4x
√
−g
[
e1κ4Rζ2 + e2κ2R2 + e3κ2RµνRµν + e4κ6(∂ζ)4 + e5κ6ζ4 + · · ·

]
, (241)

where e’s are numerical constants that can be determined with fixed renormalization conditions.
The quantum-level field equations can be obtained by varying the action (241). As a matter of fact,
the boundary conditions must be considered before varying the action. As can be seen from the
generalization of the GHY-term in Section 4.3, the quantum corrections in (241) will require various
forms of the GHY-terms in case one wants to impose the Dirichlet boundary condition even at the
quantum level. Recall that the quantum corrections above are generated after starting with a classical
action with the Dirichlet boundary condition. In spite of the initial Dirichlet boundary condition,
the quantum action comes to receive the higher-order terms that make the quantum-level field equation
subject to the non-Dirichlet boundary condition if no additional GHY-terms are added. This seems
to indicate that the quantum corrections are at odds with the Dirichlet boundary condition. It will
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therefore be of some interest to examine the form of the solution that is not restricted by the Dirichlet
boundary condition25—which is one of the two order-1 effects mentioned in the beginning.

The quantum system (241) admits the following form of the time-dependent solution:

ds2 = − 1
z2

(
F(t, z)dt2 + 2dtdz

)
+ W2(t, z)(dx2 + dy2), (242)

with the quantum-corrected series

F(t, z) = F0(t) + F1(t)z + F2(t)z2 + F3(t)z3 + ...

+ κ2
[

Fh
0 (t) + Fh

1 (t)z + Fh
2 (t)z

2 + Fh
3 (t)z

3 + ...
]

W(t, z) =
1
z
+ W0(t) + W1(t)z + W2(t)z2 + W3(t)z3 + ...

+ κ2
[Wh
−1(t)
z

+ Wh
0 (t) + Wh

1 (t)z + Wh
2 (t)z

2 + Wh
3 (t)z

3 + ...
]
. (243)

Similarly, for the scalar:

ζ(t, z) = ζ0(t) + ζ1(t)z + ζ2(t)z2 + ζ3(t)z3 + ...

+ κ2
[
ζh

0(t) + ζh
1(t)z + ζh

2(t)z
2 + ζh

3(t)z
3 + ...

]
, (244)

where the modes with superscript ‘h’ represent the quantum modes. Upon substituting the ansatz into
the field equations one gets, for the classical modes,

m2 =
2Λ0

3
, ζ0 = 0, F0 = −Λ0

3
, W1 = 0, F1 = −F0W0 −Λ0W0

W2 = 0, F2 =
1
4

(
4F0W0

2 − 8Ẇ0

)

ζ3 = 0, W3 = 0, F3 = const, ζ4 = 0, W4 = 0, F4 = −F3W0 ; (245)

and for the quantum modes,

ζh
0 = 0, Fh

0 = −1
3

κ2Λ1, Wh
1 = 0, Fh

1 =
2
3

(
3Fh

0 W0 + Λ0W0Wh
−1 −Λ0Wh

0 − 3Ẇh
−1

)
,

Wh
2 = 0, Fh

2 =
1
3

(
− κ2Λ1W0

2 + 2Λ0W0
2Wh
−1 − 2Λ0W0Wh

0 + 6Wh
−1Ẇ0 − 6Ẇh

0

)
,

ζh
3 = − 1

Λ0

(
Λ0ζh

1W0
2 + 2Λ0ζh

2W0 + 3W0ζ̇
h
1 + 3ζh

1Ẇ0 + 3ζ̇
h
2

)
, Wh

3 = 0, Ḟh
3 = −3F3Ẇh

−1

Fh
4 = F3W0Wh

−1 − F3Wh
0 − Fh

3 W0, Wh
4 = −3e2F3W0

2 + 3e2F5 − 2e3F3W0
2 + 2e3F5

ζh
4 =

F3ζh
1

2Λ0
+

12ζ̇h
1Ẇ0

Λ2
0

+
6W0ζ̈h

1
Λ2

0
+

6ζh
1Ẅ0

Λ2
0

+
6ζ̈h

2
Λ2

0
+

9W0
2ζ̇h

1
Λ0

+
9W0ζ̇h

2
Λ0

+
9ζh

1W0Ẇ0

Λ0

+2ζh
1W3

0 + 3ζh
2W2

0 . (246)

The quantum corrections of the action imply a deformation of the geometry by quantum
effects [74,86]. (See also [92,93] for related works.) One striking difference between the classical
solution (240) and the quantum-level solution (245) and (246) is that although the building blocks
for the classical solutions are the classical modes (ζ1, ζ2), they are constrained to vanish once the

25 The precise forms of the required boundary condition with the corresponding GHY-type terms will not be pursued in the
present work. We will assume that such a boundary condition exists, and examine the implications of the series solution
given in (243) and (244).
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quantum-level field equations are considered; it is the quantum modes including (ζh
1 , ζh

2) that newly
come to serve as the building blocks. This phenomenon is the other “order-1” effect and seems to have
its origin in the subtlety in going to the classical limit [94]. In the present case, the subtlety is as follows.
Reinserting the h̄-dependence, one gets the following form for the h̄-order field equation,

h̄(· · · ) = 0 (247)

as the h̄-order parts of the field equations must vanish separately from the classical parts. Inside the
parenthesis, some of the classical modes come to appear. If one takes the h̄→ 0-limit too early, some of
the quantum-level constraints will become omitted, which corresponds to the “usual” classical limit.

For the energy measured by an infalling observer when the observer is near the horizon,
an expansion around the horizon should be useful. The metric field equation implies that the solution
generically takes the form of

ζ =
ξ

κ
(248)

where ξ represents a rescaled scalar field. As shown in [87], the classical part of the ξ(t, z)-series
expansion identically vanishes and thus one gets

ξ(t, z) = κ2
[
ξ̃h

0(t) + ξ̃h
1(t)(z− zEH) + ξ̃h

2(t)(z− zEH)
2 + ξ̃h

3(z− zEH)
3 + · · ·

]
, (249)

where zEH denotes the location of the classical horizon. This expansion serves two purposes. Firstly,
it is useful, as has just been mentioned, to demonstrate the trans-Planckian energy encountered
by an infalling observer. Secondly, it allows one to examine the behavior of the solution near the
horizon and thus the perfect-infall boundary condition that one typically imposes in the context of the
quasi-normal modes. The leading-order energy comes from the scalar kinetic term in the stress-energy
tensor—ρ ≡ ∂µζ∂νζ UµUν, where Uµ denotes the four-velocity of the infalling observer. One can show
that as z→ zq

EH , with zq
EH denoting the quantum-corrected event horizon,

ρ ≡ ∂µζ∂νζ UµUν ∼ [ ˙̃ξh
0(t)]

2

κ2 . (250)

Note that it is the “horizon quantum mode” ξ̃h
0(t) that has led to this trans-Planckian energy.

For a more realistic case, one should consider an Einstein–Maxwell case and investigate whether or
not the energy density and Poynting vector reveal a similar behavior.

Finally, let us examine the behavior of the solution near the event horizon z ∼ zEH . Let us
consider (249). With the quantum corrections, the ξ̃h

0 mode is generically present (for a large class
of boundary conditions) and this means that the boundary condition is such that there will be
both transmitted and reflected waves. This shows that the quantum effects make the boundary
condition deviate from the perfect-infall boundary condition. Therefore it will be of great interest to
investigate various boundary conditions and how the associated physics departs from the quasi-normal
mode physics.
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LQG Loop quantum gravity
BFM Background field method
ADM Arnowitt Deser Misner
LGT Large gauge transformation
BMS Bondi Metzner Sachs
GHY Gibbons–Hawking–York
AGN Active galactic nuclei
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