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Abstract: Assuming the Multiple Point Principle (MPP) as a new law of Nature, we considered the
existence of the two degenerate vacua of the Universe: (a) the first Electroweak (EW) vacuum at
v1 ≈ 246 GeV—“true vacuum”, and (b) the second Planck scale “false vacuum” at v2 ∼ 1018 GeV.
In these vacua, we investigated different topological defects. The main aim of the paper is an
investigation of the black-hole-hedgehogs configurations as defects of the false vacuum. In the
framework of the f (R) gravity, described by the Gravi-Weak unification model, we considered
a black-hole solution, which corresponds to a “hedgehog”—global monopole, that has been
“swallowed” by the black-hole with mass core MBH ∼ 1018 GeV and radius δ ∼ 10−21 GeV−1.
Considering the results of the hedgehog lattice theory in the framework of the SU(2) Yang-Mills
gauge-invariant theory with hedgehogs in the Wilson loops, we have used the critical value of
temperature for the hedgehogs’ confinement phase (Tc ∼ 1018 GeV). This result gave us the possibility
to conclude that the SM shows a new physics (with contributions of the SU(2)-triplet Higgs bosons)
at the scale ∼10 TeV. This theory predicts the stability of the EW-vacuum and the accuracy of the MPP.
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1. Introduction

The present review is devoted to studying topological defects of the universal vacua.
During the expansion after the Planck era, the early Universe underwent a series of phase

transitions as a result of which there were arisen such vacuum topological defects (widely discussed
in literature) as monopoles or hedgehogs (point defects), strings (line defects), bubbles and domain
walls (sheet defects). These topological defects appeared due to the breakdown of local or global
gauge symmetries.

This paper is essentially based on the discovery that a cosmological constant of our Universe is
extremely small, almost zero [1–5]. We considered a Multiple Point Principle (MPP) first suggested by
D.L. Bennett and H.B. Nielsen [6], which predicts the existence in Nature of several degenerate vacua
with a very small energy density (cosmological constants).
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The model developed in this article confirms the existence of the two degenerate vacua of the
Universe: The first (“true”) Electroweak (EW) vacuum with VEV v1 ≈ 246 GeV, and the second
(“false”) Planck scale vacuum with VEV v2 ∼ 1018 GeV.

The main idea of this paper is the investigation of hedgehog’s configurations [7,8] as defects of
the false vacuum. We have shown that at super high (Planck scale) energies the black-holes-hedgehogs
are responsible for the creation of the false vacuum of the Universe. In the framework of the f (R)
gravity, we have obtained a solution for a global monopole, which is a black-hole-hedgehog at the
Planck scale. Here we have used the f (R) gravity predicted by the Gravi-Weak unification model
previously developed by authors in papers [9–12].

Using the results of Refs. [13,14] obtained for the SU(2) Yang-Mills theory of the gauge-invariant
hedgehog-like structures in the Wilson loops, we have considered the lattice theory giving the critical
value of temperature for the hedgehogs’ confinement phase. Considering the hedgehog lattice theory,
we have concluded that hedgehogs can exist only at the energy scale µ & 104 GeV. Triplet Higgs fields
Φa (with a = 1, 2, 3), which are responsible for the formation of hedgehogs, can show a new physics at
the scale ∼10 TeV.

In Section 2 we reviewed the Multiple Point Principle (MPP) suggested by D.L. Bennett and
H.B. Nielsen [6]. In the assumption of the existence of the two degenerate vacua (Electroweak
vacuum at v1 ≈ 246 GeV, and Planck scale one at v2 ∼ 1018 GeV), Froggatt and Nielsen [15]
obtained the first prediction of the top quark and Higgs boson masses, which was further improved
by several authors in the next approximations. Section 3 is devoted to the general properties of
topological defects of the universal vacua. We considered topological defects in the “false vacuum”,
which is presented as a spherical bubble spontaneously produced in the de-Sitter like Universe.
The space-time inside the bubble, which we refer to as a “true vacuum”, has the geometry of an open
Friedmann-Lemaitre-Robertson-Walker (FLRW) Universe. Section 4 is devoted to the Gravi-Weak
unification (GWU) model [9–12] as an example of the f (R) gravity. Section 4.1 considers the existence
of the de-Sitter solutions in the Planck phase. Section 4.2 is devoted to calculations of parameters of the
GWU-model, where we predicted the Planck scale false vacuum VEV equal to v2 ≈ 6.28× 1018 GeV.
In Section 5 we have investigated the hedgehog’s configurations as defects of the false vacuum.
We obtained a solution for a black-hole in the framework of the f (R) gravity, which corresponds to
a global monopole “swallowed” by a black-hole. The metric around of the global monopole was
considered in Section 5.1. The mass MBH , radius δ and “horizon radius” rh of the black-hole-hedgehog
were estimated in Section 5.2. Section 6 is devoted to the lattice-like structure of the false vacuum which
is described by a non-differentiable space-time: by a foam of black-holes, having lattice-like structure,
in which sites are black-holes with “hedgehog” monopoles inside them. This manifold is described by
a non-commutative geometry predicted an almost zero cosmological constant. The phase transition
from the “false vacuum” to the “true vacuum” was considered in Section 7, where it was shown that
the Electroweak spontaneous breakdown of symmetry SU(2)L ×U(1)Y → U(1)el.mag created new
topological defects of EW vacuum: the Abrikosov-Nielsen-Olesen closed magnetic vortices (“ANO
strings”) of the Abelian Higgs model and Sidharth’s Compton phase objects. Then the “true vacuum”
(EW-vacuum) again presents the non-differentiable manifold with non-commutative geometry and
again has an almost zero cosmological constant. Here we estimated the black-hole-hedgehog’s mass
and radius: MBH ≈ 3.65× 1018 GeV and δ ≈ 0.29λPl ≈ 10−21 GeV−1 near the second vacuum v2.
In Section 7.1 we emphasize that due to the energy conservation law, the vacuum density before the
phase transition is equal to the vacuum density after the phase transition, and we have

ρvac(at Planck scale) = ρvac(at EW scale).

Therefore, we confirmed the Multiple Point Principle: we have two degenerate vacua v1 and
v2 with an almost zero vacuum energy (cosmological constants). This means that our EW-vacuum,
in which we live, is stable. The Planck scale vacuum cannot be negative: Ve f f (min1) = Ve f f (min2),
these potentials are equal exactly. In Section 8 hedgehogs in Wilson loops of the SU(2) Yang-Mills
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theory, and phase transitions in this theory were investigated using the results of Refs. [13,14].
Their lattice results gave the critical value of the temperature for the hedgehog’s confinement phase:
βcrit ≈ 2.5, and this result gives the value of critical temperature Tc ∼ 1018 GeV. In Section 9 we
show that the hedgehog’s confinement happens at energy ∼10 TeV, which is a threshold energy of
the production of a pair of the SU(2)-triplet Higgs bosons. In Section 10 we reviewed the problem of
the vacuum stability (for example see Refs. [16]) in the Standard Model. In Section 11 we show that
hedgehogs can contribute at energy scale µ > 104 GeV. Therefore, a triplet Higgs field Φa provides a
new physics at the scale ∼10 TeV. In this Section 11, we predict an exact stability of the EW-vacuum
and the accuracy of the MPP.

2. Degenerate Vacua of the Universe

This paper is based on the new law of Nature named Multiple Point Principle (MPP) which was
suggested by D.L. Bennett and H.B. Nielsen in Ref. [6]. The MPP means: There exist in Nature several
degenerate vacua with very small energy density or cosmological constants.

Vacuum energy density of our Universe is the Dark Energy (DE). It is related with cosmological
constant Λ by the following way:

ρDE = ρvac = (Mred
Pl )

2Λ, (1)

where Mred
Pl is the reduced Planck mass: Mred

Pl ' 2.43 × 1018 GeV. At present, cosmological
measurements give:

ρDE ' (2× 10−3 eV)4, (2)

which means a tiny value of the cosmological constant:

Λ ' 10−84 GeV2. (3)

This tiny value of ρDE was first predicted by B.G. Sidharth in 1997 year [3,4]. In the 1998 year
S. Perlmutter, B. Schmidt and A. Riess [5] were awarded the Nobel Prize for the discovery of the
accelerating expansion of the Universe.

Having an extremely small cosmological constant of our Universe, Bennett, Froggatt and
Nielsen [6,15,17,18] assumed to consider only zero, or almost zero, cosmological constants for all
vacua existing in Nature.

The MPP theory was developed in a lot of papers by H.B. Nielsen and his collaborators (see for
example, Refs. [6,15,17–32] and recent Refs. [33–37] by other authors).

Restricted to pure Standard Model (SM) we assumed the existence of only three vacua:

1. Present Electroweak vacuum, “true vacuum”, in which we live.
It has vacuum expectation value (VEV) of the Higgs field equal to:

v1 = 〈φH〉 ≈ 246 GeV. (4)

2. High Higgs field vacuum, “false vacuum”—Planck scale vacuum, which has the following VEV:

v2 = 〈φH〉 ∼ 1018 GeV. (5)

3. Condensate vacuum. This third vacuum is a very speculative possible state inside the pure
SM, which contains a lot of strongly bound states, each bound from 6 top + 6 anti-top quarks
(see Refs. [38–42]).

From experimental results for these three vacua, cosmological constants—minima of the Higgs
effective potentials Ve f f (φH)—are not exactly equal to zero. Nevertheless, they are extremely small.
For this reason, Bennett, Froggatt and Nielsen assumed to consider zero cosmological constants as a
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good approximation. Then according to the MPP, we have a model of pure SM being fine-tuned in
such a way that these three vacua proposed have just zero energy density.

If the effective potential has three degenerate minima, then the following requirements
are satisfied:

Ve f f (φ
2
min1) = Ve f f (φ

2
min2) = Ve f f (φ

2
min3) = 0, (6)

and
V′e f f (φ

2
min1) = V′e f f (φ

2
min2) = V′e f f (φ

2
min3) = 0, (7)

where
V′(φ2) =

∂V
∂φ2 . (8)

Here we assume that:

Ve f f (φ
2
min1) = Vpresent, Ve f f (φ

2
min2) = Vhigh f ield, and Ve f f (φ

2
min3) = Vcondensate. (9)

Assuming the existence of the two degenerate vacua in the SM:

a. the first Electroweak vacuum at v1 ≈ 246 GeV, and
b. the second Planck scale vacuum at v2 ∼ 1018 GeV,

Froggatt and Nielsen predicted in Ref. [15] the top-quark and Higgs boson masses:

Mt = 173± 5 GeV; MH = 135± 10 GeV. (10)

In Figure 1 it is shown the existence of the second (non-standard) minimum of the effective Higgs
potential in the pure SM at the Planck scale.

246 GeV

M
Planck

Our Vacuum
Φ

min 1

1018 GeV

New Vacuum
Φ

min 2

|Φ|

V
eff 

(|Φ|)

Figure 1. Minima of the effective Higgs potential in the pure Standard Model, which correspond to the
first Electroweak “true vacuum”, and to the second Planck scale “false vacuum”.

3. Topological Defects of the Universal Vacua

Topological structures in fields are as important as the fields themselves. The presence of defects
determines the special features of the vacuum.

It is well known that in the early Universe topological defects may be created in the vacuum during
the vacuum phase transitions. The early Universe underwent a series of phase transitions, each one
spontaneously breaking some symmetry in particle physics and giving rise to topological defects of
some kind, which can play an essential role throughout the subsequent evolution of the Universe.

In the context of the General Relativity, Barriola and Vilenkin (see Ref. [43]) studied the
gravitational effects of a global monopole as a spherically symmetric topological defect. The authors
found, that the gravitational effect of the global monopole is repulsive in nature. Thus, one may
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expect that the global monopole and cosmological constants are connected through their common
manifestation as the origin of repulsive gravity. Moreover, both the cosmological constant and vacuum
expectation value (VEV) are connected while the VEV is connected to the topological defects. All these
points lead us to a simple conjecture: There must be a common connection among the cosmological
constant, topological defects and the vacuum expectation values (VEVs).

Different phase transitions have resulted, during the expansion of the early Universe after the
Planck era. They produced the formation of the various kind of topological defects: point defects
(monopoles, hedgehogs, etc.); line defects (strings, vortices), and sheet defects (for example, domain
walls). The topology of the vacuum manifold dictates the nature of these topological defects, appearing
due to the breakdown of local or global gauge symmetries.

In the present paper, we shall discuss another potentially observable manifestation of topological
defects. It has been shown in Ref. [44] that topological defects, like spherical domain walls and circular
loops of cosmic string, can be spontaneously produced in a de-Sitter like Universe. At the moment of
creation of the new Universe by the new vacuum or topological structure giving rise to the initial radii
of walls and strings are close to the de-Sitter horizon. This horizon corresponds to a radius today of
the order:

Run ' Rde-Sitter horizon ' 1028 cm. (11)

In the present paper, we study the evolution of the two bubbles: one having a “false vacuum”,
and the other one having a “true vacuum”. The bubble, which we shall refer to as the false vacuum, to
be a de-Sitter space with a constant expansion rate HF . It is convenient to use flat de-Sitter coordinates
to describe the background of the inflating false vacuum:

ds2 = dt2 − e2HFt(dr2 + r2dΩ2), (12)

where
dΩ2 = dθ2 + sin2 θdφ2. (13)

The space-time inside the bubble, which we shall refer to as a true vacuum, has the geometry of
an open Friedmann-Lemaitre-Robertson-Walker (FLRW) Universe (see for example review [45]):

ds2 = dτ2 − a(τ)2(dξ2 + sinh2 ξdΩ2), (14)

where a(τ) is a scale factor with cosmic time τ. In the true vacuum, we have a constant expansion
rate HT , which has the meaning of the slow-roll inflation rate inside the bubble at the early stage of
its evolution.

Cosmological theory of bubbles was developed in a lot of papers by A. Vilenkin and his
collaborators (see for example Refs. [44,46,47]). The physical properties of defects depend on the
embedding vacuum.

4. Gravi-Weak Unification and Hedgehogs as Defects of the False Vacuum

In the paper [9] (using the ideas of Refs. [48,49]) we have considered a Spin(4, 4)-group of the
gravi-weak unification which is spontaneously broken into the SL(2, C)(grav) × SU(2)(weak). Such a
model was constructed in agreement with experimental and astrophysical results. We assumed that
after the Bing Bang there existed a Theory of the Everything (TOE) which rapidly was broken down to
the direct product of the following gauge groups:
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G(TOE) → G(GW) ×U(4)→ SL(2, C)(grav) × SU(2)(weak) ×U(4)

→ SL(2, C)(grav) × SU(2)(weak) × SU(4)×U(1)Y

→ SL(2, C)(grav) × SU(2)(weak) × SU(3)c ×U(1)(B−L) ×U(1)Y

→ SL(2, C)(grav) × SU(3)c × SU(2)L ×U(1)Y ×U(1)(B−L)

→ SL(2, C)(grav) × GSM ×U(1)(B−L).

And below the see-saw scale (MR ∼ 109 ∼ 1014 GeV) we have the SM group of symmetry:

GSM = SU(3)c × SU(2)L ×U(1)Y.

The action S(GW) of the Gravi-Weak unification (obtained in Ref. [9]) was given by the
following expression:

S(GW) = − 1
guni

∫
M

d4x
√
−g
[

1
16

(
R|Φ|2 − 3

2
|Φ|4

)
+

1
16

(
aRµνRµν + bR2

)
+

1
2
DµΦ†DµΦ +

1
4

Fi
µνFi µν

]
, (15)

where guni is a parameter of the graviweak unification, parameters a, b (with a + b = 1) are “bare”
coupling constants of the higher derivative gravity, R is the Riemann curvature scalar, Rµν is the Ricci
tensor, |Φ|2 = ΦaΦa is a squared triplet Higgs field, where Φa (with a = 1, 2, 3) is an isovector scalar
belonging to the adjoint representation of the SU(2) gauge group of symmetry. In Equation (15):

DµΦa = ∂µΦa + g2εabc Ab
µΦc (16)

is a covariant derivative, and

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ + g2εabc Ab

µ Ac
ν (17)

is a curvature of the gauge field Aa
µ of the SU(2) Yang-Mills theory. The coupling constant g2 is a “bare”

coupling constant of the SU(2) weak interaction.
Some special case of the f (R) gravity studied in [50–52], but in a general case of the f (R) gravity,

the action contains matter fields and can be presented by the following expression:

S =
1

2κ

∫
d4x
√
−g f (R) + Sgrav + Sgauge + Sm, (18)

where Sm corresponds to the part of the action associated with matter fields, fermions and Higgs fields.
Using the metric formalism, we obtain the following field equations:

F(R)Rµν −
1
2

f (R)gµν −∇µ∇νF(R) + gµν�F(R) = κTm
µν, (19)

where:

F(R) ≡ d f (r)
dr

, (20)

κ = 8πGN , GN is the gravitational constant, and Tm is the energy-momentum tensor derived from the
matter action Sm.

4.1. The Existence of the De-Sitter Solutions at the Early Time of the Universe

It is well-known that at the early time of the Universe an acceleration era is described by the
de-Sitter solutions (see for example [53,54]). The investigation of the problem that de-Sitter solutions
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exist in the case of the action (15) was considered by authors of Ref. [48]. Our model [9] is a special case
of the more general SU(N) model [48], and we can assume that the Universe is inherently de-Sitter.
Then the 4-spacetime is a hyperboloid in a 5-dimensional Minkowski space under the constraint:

x2
0 + x2

1 + x2
2 + x2

3 + x2
4 = r2

dS, (21)

where rdS is a radius of a curvature of the de-Sitter space, or simply “the de-Sitter radius”. The Hubble
expansion of the Universe is then viewed as a process that approaches the asymptotic limit of a pure
space which is de-Sitter in nature, evidenced that the cosmological constant Λ describes the dark
energy (DE) substance, which has become dominant in the Universe at later times:

ΩDE =
ρDE
ρcrit

' 0.75, (22)

where ρDE is the dark energy density and the critical density is:

ρcrit =
3H2

0
8πGN

' 1.88× 10−29 H2
0 , (23)

where H0 is the Hubble constant:
H0 ' 1.5× 10−42 GeV. (24)

Identifying the Einstein tensor as

Gµν = − 3
r2

dS
gµν, (25)

we see that the only nontrivial component that satisfies this equation is a constant for the Ricci scalar:

R0 =
12
r2

dS
. (26)

As it was shown in Ref. [48], the nontrivial vacuum solution to the action (15) is de-Sitter spacetime
with a non-vanishing Higgs vacuum expectation value (VEV) of the triplet Higgs scalar field Φ:
v2 = 〈Φ〉 = Φ0. The standard Higgs potential in Equation (15) has an extremum at Φ0 = R/3 (with
R > 0), corresponding to a de-Sitter spacetime background solution:

R = R0 =
12
r2

dS
= 3v2

2, (27)

which implies vanishing curvature:

F0 =
1
2

R0 −
1

16
Σ0Φ2

0 (28)

solving the field equations DF = dF + [A, F] = 0, and strictly minimizing the action (15).
Based on this picture, the origin of the cosmological constant (and DE) is associated with the

inherent spacetime geometry, and not with vacuum energy of particles (we consider their contributions
later). We note that as a fundamental constant under the de-Sitter symmetry, rdS is not a subject to
quantum corrections. Local dynamics exist as fluctuations with respect to this cosmological background.
In general, the de-Sitter space may be inherently unstable. The quantum instability of the de-Sitter
space was investigated by various authors. Abbott and Deser [55] have shown that de-Sitter space is
stable under a restricted class of classical gravitational perturbations. So any instability of the de-Sitter
space may likely have a quantum origin. Ref. [56] demonstrated through the expectation value of
the energy-momentum tensor for a system with a quantum field in a de-Sitter background space that
in general, it contains a term that is proportional to the metric tensor and grows in time. As a result,
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the curvature of the spacetime would decrease and the de-Sitter space tends to decay into the flat space
(see Ref. [57]). The decay time of this process is of the order of the de-Sitter radius:

τ ∼ rdS ' 1.33 H−1
0 . (29)

Since the age of our Universe is smaller than rdS, we are still observing the accelerating expansion
in action.

Of course, we can consider the perturbation solutions of the de-Sitter solution but these
perturbations are very small [53,54].

4.2. Parameters of the Gravi-Weak Unification Model

Assuming that at the first stage of the evolution (before the inflation), the Universe had
the de-Sitter spacetime—maximally symmetric Lorentzian manifold with a constant and positive
background scalar curvature R—we have obtained the following relations from the action (15):

(1) The vacuum expectation value v2—the VEV of “the false vacuum”—is given by the de-Sitter
scalar curvature R:

v2
2 =

R
3

. (30)

(2) At the Planck scale the squared coupling constant of the weak interaction is:

g2
2 = guni. (31)

The replacement:
Φa

g2
→ Φa (32)

leads to the following GW-action:

S(GW) = −
∫
M

d4x
√
−g

(
R
16
|Φ|2 −

3g2
2

32
|Φ|4 + 1

2
DµΦ†DµΦ +

1
4g2

2
Fi

µνFi µν

+grav. terms) , (33)

Now considering the VEV of the false vacuum as v = v2, we have:

v2 =
R

3g2
2

. (34)

The Einstein-Hilbert action of general relativity with the Einstein’s cosmological constant ΛE is
given by the following expression:

SEH = −1
κ

∫
d4x
√
−g
(

R
2
−ΛE

)
. (35)

(3) The comparison of the Lagrangian LEH with the Lagrangian given by Equation (33) near the
false vacuum v leads to the following relations for the Newton’s gravitational constant GN and
reduced Planck mass:

(Mred
Pl )

2 = (8πGN)
−1 =

1
κ
=

v2

8
. (36)

(4) Then we have:
v = 2

√
2Mred

Pl ≈ 6.28× 1018 GeV, (37)

and

ΛE =
3g2

2
4

v2. (38)
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Equation (36) gives:
1
κ

ΛE =
3g2

2
32

v4. (39)

Using the well-known in literature renormalization group equation (RGE) for the SU(2) running
constant α−1

2 (µ), where α2 = g2
2/4π and µ is the energy scale, we can use the extrapolation of

this value to the Planck scale [21,22] and obtain the following result:

α2(MPl) ∼
1

50
, guni = g2

2 = 4πα2(MPl) ≈ 4π × 0.02 ≈ 0.25. (40)

5. The Solution for the Black-Holes-Hedgehogs

A global monopole is described by the part Lh of the Lagrangian L(GW) given by the action (33),
which contains the SU(2)-triplet Higgs field Φa, VEV of the second vacuum v2 = v and cosmological
constant Λ = ΛE:

Lh = − R
16
|Φ|2 +

3g2
2

32
|Φ|4 − 1

2
∂µΦa∂µΦa + ΛE

= −1
2

∂µΦa∂µΦa +
λ

4

(
|Φ|2 − v2

)2
+

ΛE
κ
− λ

4
v4 (41)

= −1
2

∂µΦa∂µΦa +
λ

4

(
|Φ|2 − v2

)2
.

Here we have:

λ =
3g2

2
8

. (42)

Substituting in Equation (42) the value g2
2 ≈ 0.25 given by Equation (40), we obtain:

λ ≈ 3
32

. (43)

Equation (39) gives:
ΛE
κ

=
3g2

2
32

v4 =
λ

4
v4, (44)

and in Equation (42) we have the compensation of the Einstein’s cosmological term. Then

Lh = −1
2

∂µΦa∂µΦa + V(Φ), (45)

where the Higgs potential is:

V(Φ) =
λ

4

(
|Φ|2 − v2

)2
. (46)

This potential has a minimum at 〈|Φ|〉min = v, in which it vanishes:

V
(
|Φ|2min

)
= V′

(
|Φ|2min

)
= 0, (47)

in agreement with the MPP conditions (6) and (7).
The field configurations describing a monopole-hedgehog [7,8] are:

Φa = vw(r)
xa

r
,

Aa
µ = a(r)εµab

xb

r
, (48)
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where xaxa = r2 with (a = 1, 2, 3), w(r) and a(r) are some structural functions. This solution is
pointing radially. Here Φa is parallel to r̂—the unit vector in the radial, and we have a “hedgehog”
solution of Refs. [7,8]. The terminology “hedgehog” was first suggested by Alexander Polyakov
in Ref. [8].

The field equations for Φa in the flat metric reduces to a single equation for w(r):

w′′ +
2
r

w′ − 2
r2 w− w(w2 − 1)

δ2 = 0, (49)

where δ is the core radius of the hedgehog. In the flat space the hedgehog’s core has the following size:

δ ∼ 1√
λv

. (50)

The function w(r) grows linearly when r < δ and exponentially approaches unity as soon as
r > δ . Barriola and Vilenkin [43] took w = 1 outside the core which is an approximation to the exact
solution. As a result, the functions w(r) and a(r) are constrained by the following conditions:

w(0) = 0, and w(r)→ 1 when r → ∞,

a(0) = 0, and a(r) ∼ −1
r

when r → ∞. (51)

5.1. The Metric Around of the Global Monopole

The most general static metric around of the global monopole is a metric with spherical symmetry:

ds2 = B(r)dt2 − A(r)dr2 − r2(dθ2 + sin2θdϕ2). (52)

For this metric the Ricci tensor has the following non-vanishing components:

Rtt = − B′′

2A
+

B′

4A

(
A′

A
+

B′

B

)
− 1

r
B′

A
,

Rrr =
B′′

2B
+

B′

4B

(
A′

A
+

B′

B

)
− 1

r
A′

A
,

Rθθ = −1 +
r

2A

(
−A′

A
+

B′

B

)
+

1
A

,

Rϕϕ = sin2 θRθθ . (53)

The energy-momentum tensor of the monopole is given by

Tt
t = v2 w′2

2A
+ v2 w2

r2 +
1
4

λv4(w2 − 1)2,

Tr
r = −v2 w′2

2A
+ v2 w2

r2 +
1
4

λv4(w2 − 1)2,

Tθ
θ = Tϕ

ϕ = v2 w′2

2A
+

1
4

λv4(w2 − 1)2. (54)

Here κ = 1.
Considering the approximation used by Barriola and Vilenkin in Ref. [43], we obtain an

approximate solution for monopole-hedgehog taking w = 1 out the core of the hedgehog (see also



Universe 2019, 5, 78 11 of 25

Refs. [58–62]). In this case scalar curvature R is constant and Equation (19) comes down to the
Einstein’s equation:

1
A

(
1
r2 −

1
r

A′

A

)
− 1

r2 =
1
v2 Tt

t , (55)

1
A

(
1
r2 +

1
r

B′

B

)
− 1

r2 =
1
v2 Tr

r , (56)

where the energy-momentum tensor is given by the following approximation:

Tt
t = Tr

r ≈
v2

r2 ,

Tθ
θ = Tϕ

ϕ = 0. (57)

Taking into account Equation (57), we obtain the following result by substraction of Equations (55)
and (56):

A′

A
+

B′

B
= 0, (58)

and then asymptotically (when r → ∞) we have:

A ≈ B−1. (59)

From Equation (55) we obtain a general relation for the function A(r):

A−1(r) = 1− 1
r

∫ r

0
Tt

t r2dr. (60)

In the limit r → ∞ we obtain:

A(r) = 1− κv2 − 2GN M
r

+ ...

B(r) =

(
1− κv2 − 2GN M

r
+ ...

)−1
(61)

5.2. The Mass, Radius and Horizon Radius of the Black-Hole-Hedgehog

Equation (60) suggests the following equation for the hedgehog mass M:

M = 8π
∫ ∞

0
Tt

t r2dr, (62)

or

M = 8πv2
∫ ∞

0

(
w′2 +

w2 − 1
r2 +

(w2 − 1)2

4δ2

)
r2dr. (63)

The function w(r) was estimated in Ref. [61] at r < δ:

w(r) ≈ 1− exp
(
− r

δ

)
, (64)

and we obtain an approximate value of the hedgehog mass:

M = MBH ≈ −8πv2δ. (65)
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There is a repulsive gravitational potential due to this negative mass. A freely moving particle
near the core of the black-hole experiences an outward proper acceleration:

r̈ = −GN M
r

=
GN |M|

r
. (66)

We have obtained a global monopole with a huge mass (65), which has a property of the hedgehog.
This is a black-hole solution, which corresponds to a global monopole-hedgehog that has been
“swallowed” by a black-hole. Indeed, we have obtained the metric result by M. Barriola et al. [43] like:

ds2 =

(
1− κv2 +

2GN |M|
r

)
dt2 − dr2

1− κv2 + 2GN |M|
r

− r2
(

dθ2 + sin2 θdϕ2
)

. (67)

A black-hole has a horizon. A horizon radius rh is found by solving the equation A(rh) = 0:

1− κv2 +
2GN |M|

rh
= 0, (68)

and we have a solution:

rh =
2GN |M|
κv2 − 1

. (69)

According to Equation (36), κv2 = 8, and we obtain the black-hole-hedgehog with a
horizon radius:

rh =
2
7

GN |M| =
2
7
× κ

8π
× |M| = 2

7
× κ

8π
× 8πv2δ ≈ 16

7
δ ≈ 2.29δ. (70)

We see that the horizon radius rh is more than the hedgehog radius δ:

rh > δ,

and our concept that “a black-hole contains the hedgehog” is justified.

6. Lattice-Like Structure of the False Vacuum and Non-Commutativity

Now we see, that at the Planck scale the false vacuum of the Universe is described by a
non-differentiable space-time: by a foam of black-holes, having lattice-like structure, in which
sites are black-holes with “hedgehog” monopoles inside them. This manifold is described by a
non-commutative geometry [3,4,41,63–71].

In Refs. [3,4] B.G. Sidharth predicted:

(1) That a cosmological constant is given by a tiny value:

Λ ∼ H2
0 , (71)

where H0 is the Hubble rate in the early Universe:

H0 ' 1.5× 10−42 GeV. (72)

(2) That a Dark Energy density is very small:

ρDE ' 10−12 eV4 = 10−48 GeV4; (73)

(3) That a very small DE-density provides an accelerating expansion of our Universe after the
Big Bang.
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Sidharth proceeded from the following points of view [65]: Modern Quantum Gravity [72]
(Loop Quantum Gravity, etc.,) deal with a non-differentiable space-time manifold. In such an approach,
there exists a minimal space-time cut off λmin, which leads to the non-commutative geometry, a feature
shared by the Fuzzy Space-Time also.

If the space-time is fuzzy, non-differentiable, then it has to be described by a non-commutative
geometry with the coordinates obeying the following commutation relations:

[dxµ, dxν] ≈ βµνl2 6= 0. (74)

Equation (74) is true for any minimal cut off l.
Previously the following commutation relation was considered by H.S. Snyder [73]:

[x, p] = }
(

1 +
(

l
}

)2
p2

)
, etc., (75)

which shows that effectively 4-momentum p is replaced by

p→ p

(
1 +

(
l
}

)2
p2

)−1

. (76)

Then the energy-momentum formula becomes as:

E2 = m2 + p2

(
1 +

(
l
}

)2
p2

)−2

, (77)

or

E2 ≈ m2 + p2 − 2
(

l
}

)2
p4. (78)

In such a theory the usual energy momentum dispersion relations are modified [66–70]. In the
above equations, l stands for a minimal (fundamental) length, which could be the Planck length λPl ,
or for more generally—Compton wavelength λc.

Writing Equation (78) as
E = E′ + E′′, (79)

where E′ is the usual (old) expression for energy, and E′′ is the new additional term in modification.
E′′ can be easily verified as E′′ = −mbc2—for boson fields, and E′′ = +m f c2—for fermion fields with
masses mb, m f , respectively. These formulas help to identify the DE density, what was first realized by
B.G. Sidharth in Ref. [4].

DE density is a density of the quantum vacuum energy of the Universe. Quantum vacuum,
described by Zero Point Fields (ZPF) contributions, is the lowest state of any Quantum Field Theory
(QFT), and due to the Heisenberg’s principle has an infinite value, which is renormalizable.

As it was pointed out in Refs. [63,74], the quantum vacuum of the Universe can be a source of the
cosmic repulsion. However, a difficulty in this approach has been that the value of the cosmological
constant turns out to be huge [74], far beyond the value which is observed by astrophysical
measurements. This phenomenon has been called “the cosmological constant problem” [75].

A global monopole is a heavy object formed as a result of the gauge-symmetry breaking during the
phase transition of the isoscalar triplet Φa system. The black-holes-hedgehogs are similar to elementary
particles because a major part of their energy is concentrated in a small region near the monopole core.
Assuming that the Planck scale false vacuum is described by a non- differentiable space-time having
lattice-like structure, where sites of the lattice are black-holes with “hedgehog” monopoles inside them,
we describe this manifold by a non-commutative geometry with a minimal length l = λPl . Using the
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non-commutative theory of the discrete space-time, B.G. Sidharth predicted in Refs. [4,63] a tiny value
of the cosmological constant: Λ ' 10−84 GeV2 as a result of the compensation of ZPF contributions by
non-commutative contributions of the hedgehog lattice.

7. The Phase Transition from the “False Vacuum” to the “True Vacuum”

In the Guendelman-Rabinowitz theory [58] of the universal vacua, the authors investigated the
evolution of the two phases:

(1) one being the “false vacuum” (Planck scale vacuum), and
(2) the other—the “true vacuum” (EW-scale vacuum).

By cosmological theory, the Universe exists in the Planck scale phase for extremely short time.
By this reason, the Planck scale phase was called “the false vacuum”. The presence of hedgehogs as
defects is responsible for the destabilization of the false vacuum. The decay of the false vacuum
is accompanied by the decay of the black-holes-hedgehogs. These configurations are unstable,
and at some finite cosmic temperature which is called the critical temperature Tc, a system exhibits a
spontaneous symmetry breaking, and we observe a phase transition from the bubble with the false
vacuum to the bubble with the true vacuum. After the phase transition, the Universe begins its
evolution toward the low energy Electroweak (EW) phase. Here the Universe underwent the inflation,
which led to the phase having the VEV v1 ≈ 246 GeV. This is a “true” vacuum, in which we live.

Guendelman and Rabinowitz [58] also allowed a possibility to consider an arbitrary domain wall
between these two phases. During the inflation, domain wall annihilates, producing gravitational
waves and a lot of the SM particles, having masses.

The Electroweak spontaneous breakdown of symmetry SU(2)L ×U(1)Y → U(1)el.mag leads to
the creation of the topological defects in the EW vacuum. They are the Abrikosov-Nielsen-Olesen
closed magnetic vortices (“ANO strings”) of the Abelian Higgs model [76,77], and Sidharth’s Compton
phase objects [78–80]. Then the electroweak vacuum again presents the non-differentiable manifold,
and we have to consider the non-commutative geometry.

Kirzhnits [81] and Linde [82] were first who considered the analogy between the Higgs mechanism
and superconductivity, and argued that the SM (SU(2)-doublet) Higgs field condensate v1 = 〈H〉 ≈
246 GeV disappears at high temperatures, leading to the symmetry restoration. As a result, at high
temperatures T > Tc all fermions and bosons are massless. These conclusions were confirmed, and the
critical temperature was estimated (see review by A. Linde [83]).

At the early stage, the Universe was very hot, but then it began to cool down. Black-holes-
monopoles (as bubbles of the vapour in the boiling water) began to disappear. The temperature
dependent part of the energy density died away. In that case, only the vacuum energy will survive.
Since this is a constant, the Universe expands exponentially, and an exponentially expanding Universe
leads to the inflation (see review [84]). While the Universe was expanding exponentially, so it
was cooling exponentially. This scenario was called supercooling in the false vacuum. When the
temperature reached the critical value Tc, the Higgs mechanism of the SM created a new condensate
φmin1, and the vacuum became similar to a superconductor, in which the topological defects are
magnetic vortices. The energy of black-holes is released as particles, which were created during the
radiation era of the Universe, and all these particles (quarks, leptons, vector bosons) acquired their
masses mi through the Yukawa coupling mechanism Yf ψ̄ f ψ f φ. Therefore, they acquired the Compton
wavelength, λi = h̄/mic. Then according to the Sidharth’s theory of the cosmological constant, in the
EW-vacuum we again have lattice-like structures formed by bosons and fermions, and the lattice
parameters “li” are equal to the Compton wavelengths: li = λi = h̄/mic.

As it was shown in Ref. [41], the Planck scale vacuum energy density (with the VEV v2) is equal to:

ρvac(at Planck scale) = ρZPF(at Planck scale)− ρ
(NC)
black holes ≈ 0, (80)
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and the EW-vacuum gives:

ρvac(at EW scale) =

ρZPF(at EW scale)− ρ
(NC)
vortex contr. − ρ

(NC)
boson f ields + ρ

(NC)
f ermion f ields ≈ 0. (81)

In the above equations “NC” means the “non-commutativity” and “ZPF” means “zero
point fields”.

Assuming by example that hedgehogs form a hypercubic lattice with lattice parameter l = λPl ,
we have the negative energy density of such a lattice equal to:

ρlat ' −MBH M3
Pl . (82)

If this energy density of the hedgehogs lattice compensates the Einstein’s vacuum energy (44),
we have the following equation:

λ

4
v4 ≈ |MBH |M3

Pl , (83)

Using the estimation (37), we obtain:

3
2

M4
Pl ≈ |MBH |M3

Pl , (84)

or
|MBH | =

3
2

MPl ≈ 3.65× 1018 GeV. (85)

Therefore hedgehogs have a huge mass of order of the Planck mass. Equation (65) predicts a
radius δ of the hedgehog’s core:

δ ≈ |MBH |
8πv2 ≈

(
128π

3
MPl

)−1
∼ 10−21 GeV−1. (86)

7.1. Stability of the EW Vacuum

Here we emphasize that due to the energy conservation law, the vacuum density before the phase
transition (for T > Tc) is equal to the vacuum density after the phase transition (for T < Tc), therefore
we have:

ρvac(at Planck scale) = ρvac(at EW scale). (87)

The analogous link between the Planck scale phase and EW phase was considered in the paper [78].
It was shown that the vacuum energy density (DE) is described by the different contributions
to the Planck and EW scale phases. This difference is a result of the phase transition. However,
the vacuum energy densities (DE) of both vacua are equal, and we have a link between gravitation and
electromagnetism via the Dark Energy. According to the last equation (87), we see that if ρvac (at the
Planck scale) is almost zero, then ρvac (at EW scale) also is almost zero, and we have a triumph of the
Multiple Point Principle: we have two degenerate vacua with almost zero vacuum energy density.
Almost zero cosmological constants are equal:

Λ1 = Λ2 ≈ 0,

where Λi is a cosmological constant for i-vacuum with VEV vi (here i = 1, 2).
Now we see that we have obtained a very important result: our vacuum, in which we live, is

stable. The Planck scale vacuum cannot be negative: Ve f f (min1) = Ve f f (min2) exactly.
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8. Hedgehogs in the Wilson Loops and the Phase Transition in the SU(2) Yang-Mills Theory

The authors of Ref. [13] investigated the gauge-invariant hedgehog-like structures in the Wilson
loops of the SU(2) Yang-Mills theory. In this model the triplet Higgs field Φ̂ = 1

2 Φaσa vanishes at the
centre of the monopole x = x0: Φ(x0) = 0, and has a generic hedgehog structure in the spatial vicinity
of this monopole.

In the Yang-Mills theory, a hedgehog structure can be entirely defined in terms of Wilson-loop
variables [14]. In general, we consider an untraced Wilson loop, beginning and ending at the point x0

on the closed loop C:

WC(x0) = P exp ig
∮

C
dxµ Âµ. (88)

To improve the analogy with the triplet Higgs field Φ̂, we subtract the singlet part from WC(x0):

Γ̂C(x0) = WC(x0)− 1 · 1
2

TrWC(x0). (89)

This is a traceless adjoint operator similar to the field Φ̂. Associating the triplet part Γ̂C(x0) of
Wilson loop WC(x0) with the triplet Higgs field Φ̂, we notice the following property: As the Higgs field
vanishes in all points x, belonging to the monopole trajectory, similarly ΓC vanishes on the hedgehog
loop C:

WC ∈ Z2 ⇔ ΓC = 0.

In conventional superconductivity [76], Abrikosov vortices are singularities in the superconducting
condensate (i.e., in the Cooper-pair field). Abrikosov vortices are “two-dimensional hedgehogs”
(see Ref. [58]). In the core of the Abrikosov’s vortices, the superconductivity is broken, and the normal
state is restored. As temperature increases, the condensate weakens, and nucleation of the vortices due
to thermal fluctuations strengthens. Thus, the higher the temperature is, the density of the (thermal)
vortices should be larger. It can be expected in the YM theory that the density of hedgehog loops is
also sensitive to the phase transition.

The order parameter of the phase transition is the vacuum expectation value (trace) of the
Polyakov line:

L̂(x) = P exp ig
∫ 1/T

0
dx4 A4(~x, x4). (90)

Here T is a temperature and VEV is L = 1
2 TrL̂. Functional L̂(x), called the thermal Wilson line, is

a basic variable in an effective theory, which describes the properties of the finite-temperature phase
transition of the system. In the confinement phase, the expectation value of the Polyakov line is zero:
〈L〉 = e−TFq = 0, indicating that the free energy of a single quark becomes infinite when Fq → ∞.
In the deconfinement phase, the Polyakov line has a non-zero expectation value: 〈L〉 6= 0, and the
quarks are no longer confined. Considering lattice model of the SU(2) Yang-Mills theory, Belavin,
Chernodub and Kozlov showed numerically that the density of hedgehogs structures in the thermal
Wilson-Polyakov lines is very sensitive to the finite-temperature phase transition. The hedgehog
line density behaves like an order parameter: the density is almost independent of the temperature
in the confinement phase and changes substantially as the system enters the deconfinement phase.
These authors obtained a very important result: βcrit ≈ 2.5, which shows that the critical temperature
Tc, corresponding to the hedgehogs’ confinement, is smaller than the Planck scale value.

Indeed,

β = 1/g2 = 1/(4πα) =
1

TλPl
. (91)

Then the critical temperature is:

Tc =
MPl
βcrit

≈ 0.4MPl ≈ 1018 GeV. (92)



Universe 2019, 5, 78 17 of 25

9. Threshold Energy of the SU(2)-Triplet Higgs Bosons

Equation (91) also gives the critical value of the couplingconstant g2
crit of the SU(2) Yang-Mills

theory:
g2

crit ≈ 0.4, (93)

or
α−1

crit ≈ 4π × 2.5 ≈ 31.4. (94)

The renormalization group equation (RGE) for α−1(µ) (see for example [85] and references there)
is given by the following expression at the one-loop level:

α−1(µ) = α(Mt)
−1 + bt, (95)

where t = ln(µ/Mt), and Mt ' 173.34 GeV is the top quark mass.
Usually RGE is a function of x: x = log10 µ. Then

t = ln
(

10x

Mt

)
= x ln 10− ln Mt ≈ 2.30x− 5.16. (96)

For SU(2)-gauge theory b ≈ 19/12π and α−1
2 (Mt) ≈ 29.4± 0.02, and we obtain the following

RGE equation [85]:
α−1

2 (x) ≈ 29.4 + 0.504(2.30x− 5.16). (97)

Then we can calculate xcrit using the following result:

α−1
crit ≈ 31.4 = 29.4 + 1.16xcrit − 2.60, (98)

which gives:
xcrit ∼ 4,

or
µcrit ∼ 104 GeV.

This result means that the hedgehog’s confinement happens at energy of 10 TeV, which is a
threshold energy of the production of a pair of the SU(2)-triplet Higgs bosons Φa:

Ethreshold ∼ 104 GeV = 10 TeV. (99)

At this energy we can expect to see at LHC the production of the triplet Higgs particles with mass
∼5 TeV. If we assume that in the region E > Ethreshold the effective Higgs potential has an interaction
between the triplet field Φa and Higgs doublet Hα (here a = 1, 2, 3 and α = 1, 2), then we have such an
effective Higgs potential with two Higgs fields: SU(2)-triplet Φa and SU(2)-doublet H:

Ve f f = λh, e f f (h)
(
|Φ|2 − v2

2

)2
+ λH, e f f (H)

(
|H|2 − v2

1

)2

+λhH, e f f (h, H)
(
|Φ|2 − v2

2

) (
|H|2 − v2

1

)
+ Λ. (100)

At T = Tc, we have the phase transition in the Universe when the electroweak spontaneous
breakdown of symmetry SU(2)L ×U(1)Y → U(1)el.mag creates new topological defects of the EW
vacuum: the Abrikosov-Nielsen-Olesen closed magnetic vortices (“ANO strings”) of an Abelian Higgs
model [76,77] and point-like Compton phase objects [78–80]. Therefore below energy E = Ethreshold we
have the following effective Higgs potential:

V(1)
e f f = λH, e f f (H)

(
|H|2 − v2

1

)2
+ Λ, (101)
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which has the low-energy first vacuum with the VEV v1.
Here it is necessary to comment that our Gravi-Weak unification described in Section 4 is not

valid exactly due to the presence of a mixing term in the effective Higgs potential Ve f f . This unification
is not correct if the mixing coupling constant λhH, e f f is not very small and negligible. The hedgehog’s
parameters obtained in Sections 4 and 5 are approximately valid if λhH, e f f � 1. In this paper,
we assume that this coupling λhH, e f f is negligibly small.

A cosmological constant Λ in Equations (100) and (101) is given by the tiny value of DE
(see Equation (3)).

10. The Higgs Mass and Vacuum Stability/Metastability in the Standard Model

As it was mentioned in Section 2, assuming the existence of two degenerate vacua in the SM
(the first Electroweak vacuum and the second Planck scale one), Froggatt and Nielsen predicted the
top-quark and Higgs boson masses: Mt = 173± 5 GeV and MH = 135± 10 GeV [15]. Their prediction
for the mass of the SM SU(2)-doublet Higgs boson was improved in Ref. [86] by calculations
of the two-loop radiative corrections to the effective Higgs potential Ve f f (H) (here H2 ≡ φ†φ)).
The prediction of Ref. [86]: MH = 129± 2 GeV provided the possibility of the theoretical explanation
of the value MH ' 125.7 GeV observed at LHC.

The authors of reference [87] extrapolated the SM parameters up to the high (Planck) energies
with full 3-loop NNLO RGE precision. From Degrassi et al. calculation [86], the effective Higgs field
potential Ve f f (H) has a minimum, which slightly goes under zero, so that the present EW-vacuum
is unstable for the experimental Higgs mass MH ' 125.09± 0.24 GeV, while the value that would
have made the second minimum v2 just degenerate with the present vacuum v1 would be rather
mH ' 129.4 GeV.

A theory of a single scalar field is given by the effective potential Ve f f (φc) which is a function of
the classical field φc. In the loop expansion Ve f f is given by a series:

Ve f f = V(0) + Σn=1V(n), (102)

where V(0) is the tree-level potential of the SM:

V(0) = −1
2

m2
Hφ2 +

1
4

λHφ4. (103)

The vast majority of the available experimental data is consistent with the SM predictions. No sign
of new physics has been detected. Until now there is no evidence for the existence of any particles
other than those of the SM, or bound states composed of other particles. All accelerator physics seems
to fit well with the SM, except for neutrino oscillations. These results caused a keen interest in the
possibility of the emergence of new physics only at very high (Planck scale) energies and generated a
great attention to the problem of the vacuum stability: whether the EW-vacuum is stable, unstable,
or metastable. A largely explored scenarios assume that new physics comes only at the Planck scale
MPl = 1.22× 1019 GeV. According to these scenarios, we need the knowledge of the Higgs effective
potential Ve f f (φ) at very high values of φ.

The loop corrections give the Ve f f with values of φ, which are much larger than v1 ≈ 246 GeV.
The effective Higgs potential develops a new minimum at v2 � v1. The position of the second
minimum depends on the SM parameters, especially on the top and Higgs masses, Mt and MH .
This Ve f f (min2) can be higher or lower than the Ve f f (min1) showing a stable EW vacuum (in the first
case), or metastable one (in the second case). The red solid line of Figure 2 by Degrassi et al. shows the
running of the λH,e f f (φ) for MH ' 125.7 GeV and Mt ' 171.43 GeV, which just corresponds to the
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stability line, that is, to the stable EW-vacuum. In this case the minimum of the Ve f f (H) exists at the
φ = φ0 ∼ 1018 GeV, where according to MPP:

λH,e f f (φ0) = β(λH,e f f (φ0)) = 0.

Unfortunately, according to Refs. [86,87], this case does not correspond to the current
experimental values.

Figure 2. The renormalization group (RG) evolution of the Higgs selfcoupling λ for Mt ' 173.34
GeV and αs = 0.1184 given by ±3σ. Blue lines present metastability for current experimental data,
red (thick) line corresponds to the stability of the EW vacuum.

In Figure 2 blue lines (thick and dashed) present the RG evolution of λH(µ) for current
experimental values MH ' 125.7 GeV and Mt ' 173.34 GeV. The thick blue line corresponds to
the central value of αs = 0.1184 and dashed blue lines correspond to its errors equal to ±0.0007. We see
that absolute stability of the Higgs potential is excluded by at 98% C.L. for MH < 126 GeV. Figure 2
shows that asymptotically λH(µ) does not reach zero but approaches to the negative value:

λH → −0.01± 0.002, (104)

indicating the metastability of the EW vacuum. According to the paper [86], the stability line is given
in Figure 2 by the red thick line and corresponds to MH = 129.4± 1.8 GeV. We see that the current
experimental values of MH and Mt show the metastability of the present EW-vacuum of the Universe,
and this result means that the MPP law is not exact.

11. A New Physics in the SM

Can the MPP be exact due to the corrections from hedgehogs’ contributions? We think that it
is possible.

If we assume that in the region E > Ethreshold the effective Higgs potential contains not only the
SU(2)-triplet field Φa, but also the SU(2)-doublet Higgs field Hα (where a = 1, 2, 3 and α = 1, 2),
then there exists an interaction (mixing term) between these two Higgs fields as it was shown in
Equation (100). Of course, the effective Higgs self-interaction coupling constant λH, e f f (µ) is a running
function presenting loop corrections to the Higgs mass MH , which arise from the Higgs bosons H
(∆λH(µ)) and from hedgehogs h (δλH(µ)):

λH,e f f (µ) =
GF√

2
M2

H + ∆λH(µ) + δλH(µ), (105)
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where GF is the Fermi constant. The main contribution to the correction δλH(µ), described by a series
in the mixing coupling constant λhH , is a term λS given by the Feynman diagram of Figure 3 containing
the hedgehog h in the loop:

δλH(µ) = Σncn(µ)λ
2n
hH = λS(µ) + .... (106)

Here the effective Higgs self-interaction coupling constant λH,e f f (µ) is equal to λe f f (µ) considered
in Refs. [86,87].

Figure 3. The main Feynman diagram containing hedgehogs in the loop, which corrects the effective
Higgs mass.

Our hedgehog is an extended object with a mass Mh and radius Rh, therefore it is easy to estimate
λS at high energies µ > Ethreshold by methods of Ref. [33]:

λS(µ) ≈
1

16π2
λ2

hH(µ)

(Rh Mh)4 , (107)

where λhH(µ) is a running coupling constant of the interaction of hedgehogs h with the Higgs fields
H (see Equation (100)). In Equation (32) parameters Mh = |MBH | and Rh are the running mass and
radius of the hedgehog, respectively. According to Equations (65), (85) and (86), we have:

Mh(µ) = 8πv2δ(µ) and Rh(µ) = δ(µ). (108)

At high Planck scale energies, they are:

Mh ∼ 1018 GeV, Rh ∼ 10−21 GeV−1, (109)

and
Rh Mh ∼ 10−3. (110)

As a result, asymptotically we have:

λS ∼
λhH

2

16π2 1012. (111)

If hedgehog parameter λhH is:
λhH ∼ 10−6, (112)

then
λS ∼ 0.01, (113)

and the hedgehogs’ contribution transforms the metastable (blue) curve of Figure 2 into the stable
(red) curve, and we have an exact stability of the EW-vacuum and the accuracy of the MPP with two
degenerate vacua in the Universe.

A tiny value of the mixing coupling λhH , given by Equation (112), confirms a good accuracy of our
calculations in the framework of the GWU model. Of course, the results obtained in our investigation
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depend on details of the f (R) gravity and Gravi-Weak unification model. Nevertheless, we predict a
production of triplet Higgs bosons at LHC at energy scale∼10 TeV and the existence of two degenerate,
or almost degenerate vacua of our Universe provided by the existence of black-holes-hedgehogs in the
false Planck scale vacuum.

12. Conclusions

(1) In this investigation, we have based on the discovery that a cosmological constant of our Universe
is extremely small, almost zero, and assumed a new law of Nature which was named as a Multiple
Point Principle (MPP). The MPP postulates: There are two vacua in the SM with the same energy
density, or cosmological constant, and both cosmological constants are zero, or approximately
zero. We considered the existence of the following two degenerate vacua in the SM: (a) the first
Electroweak vacuum at v1 = 246 GeV, which is a “true” vacuum, and (b) the second “false”
vacuum at the Planck scale with VEV v2 ∼ 1018 GeV.

(2) The bubble, which we refer to as “the false vacuum”, is a de-Sitter space with its constant
expansion rate HF. The initial radius of this bubble is close to the de-Sitter horizon, which
corresponds to the Universe radius. The space-time inside the bubble, which we refer to as “the
true vacuum”, has the geometry of an open FLRW Universe.

(3) We investigated the topological structure of the universal vacua. Different phase transitions,
which were resulted during the expansion of the early Universe after the Planck era, produced
the formation of the various kind of topological defects. The aim of this investigation is the
consideration of the hedgehog configurations as defects in the false vacuum. We have obtained a
solution for a black-hole in the region which contains a global monopole in the framework of the
f (R) gravity, where f (R) is a function of the Ricci scalar R. Here we have used the results of the
Gravi-Weak unification (GWU) model. The gravitational field, isovector scalar Φa with a = 1, 2, 3,
produced by a spherically symmetric configuration in the scalar field theory, is pointing radially:
Φa is parallel to r̂—the unit vector in the radial direction. In this GWU approach, we obtained
a “hedgehog” solution (in Alexander Polyakov’s terminology). We also showed that this is
a black-hole solution, corresponding to a global monopole that has been “swallowed” by a
black-hole.

(4) We estimated all parameters of the Gravi-Weak unification model, which gave the prediction of
the Planck scale false vacuum VEV equal to v = 2

√
2Mred

Pl ≈ 6.28× 1018 GeV.
(5) We have shown, that the Planck scale Universe vacuum is described by a non-differentiable

space-time: by a foam of black-holes, or by lattice-like structure, where sites are black-holes
with the “hedgehog” monopoles inside them. This manifold is described by a non-commutative
geometry, leading to a tiny value of cosmological constant Λ ≈ 0.

(6) Taking into account that the phase transition from the “false vacuum” to the “true vacuum” is
a consequence of the electroweak spontaneous breakdown of symmetry SU(2)L ×U(1)Y →
U(1)el.mag, we considered topological defects of EW-vacuum: the Abrikosov-Nielsen-Olesen
closed magnetic vortices (“ANO strings”) of the Abelian Higgs model and Sidharth’s Compton
phase objects. We showed that the “true vacuum” (EW-vacuum) again is presented by
the non-differentiable manifold with non-commutative geometry leading to an almost zero
cosmological constant.

(7) By solving the gravitational field equations we estimated the black hole-hedgehog’s mass, radius
and horizon radius are Mh ≈ 3.65× 1018 GeV, Rh ∼ 10−21 GeV−1 and rh ≈ 2.29Rh respectively.

(8) We considered that due to the energy conservation law, the vacuum energy density before
the phase transition is equal to the vacuum energy density after the phase transition:
ρvac(at Planck scale) = ρvac(at EW scale). This result confirms the Multiple Point Principle:
we have two degenerate vacua v1 and v2 with an almost zero vacuum energy density
(cosmological constants). By these considerations, we confirmed the vacuum stability of the
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EW-vacuum, in which we live. The Planck scale vacuum cannot be negative because of the exact
equality Ve f f (min1) = Ve f f (min2).

(9) Hedgehogs in the Wilson loops of the SU(2) Yang-Mills theory, and phase transitions in this
theory were investigated revising the results of Refs. [13,14]. Using their lattice result for the
critical value of the temperature of hedgehog’s confinement phase: βcrit ≈ 2.5, we predicted the
production of the SU(2)-triplet Higgs bosons at LHC at energy scale µ ∼ 10 TeV, providing a
new physics in the SM.

(10) We considered an additional confirmation of the vacuum stability and accuracy of the MPP taking
into account that hedgehog fields Φa produce a new physics at the scale ∼10 TeV, and calculating
at high energies the contribution of the black-hole-hedgehog corrections to the effective Higgs
potential. This result essentially depends on the hedgehog field parameters: mass, radius and
mixing coupling constant λhH of the interaction of hedgehogs with the SM doublet Higgs fields H.

Funding: This research received no external funding.

Acknowledgments: L.V.L. greatly thanks to the B.M. Birla Science Centre (Hyderabad, India) and personally
B.G. Sidharth, for hospitality, collaboration and financial support. H.B.N. wishes to thank the Niels Bohr Institute
for the status of professor emeritus and corresponding support. C.R.D. is thankful to BLTP Director D.I. Kazakov
for support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Das, C.R.; Laperashvili, L.V.; Nielsen, H.B.; Sidharth, B.G. Cosmological model with black-holes-hedgehogs
and two degenerate vacua of the Universe. Math. Model. Geom. 2018, 6, 12–27. [CrossRef]

2. Sidharth, B.G.; Das, C.R.; Laperashvili L.V.; Nielsen, H.B. Gravi-weak unification and the black-hole-
hedgehog’s solution with magnetic field contribution. Int. J. Mod. Phys. A 2018, 33, 1850188. [CrossRef]

3. Sidharth, B.G. An alternative perspective in quantum mechanics and general relativity. In Proceedings
of the 8th Marcell Grossmann Meeting on General Relativity, Jerusalem, Israel, 22–27 June 1997; Piran, T.;
Ruffini, R.; Eds.; World Scientific: Singapore, 1999; pp. 476–479.

4. Sidharth, B.G. The Universe of fluctuations. Int. J. Mod. Phys. A 1998, 13, 2599–2612. [CrossRef]
5. Perlmutter, S.; Aldering, G.; della Valle, M.; Deustua, S.; Ellis, R.S.; Fabbro, S.; Fruchter, A.; Goldhaber, G.;

Goobar, A.; Groom, D.E.; et al. Discovery of a supernova explosion at half the age of the Universe and its
cosmological implications. Nature 1998, 391, 51–54. [CrossRef]

6. Bennett, D.L.; Nielsen, H.B. Predictions for nonAbelian fine structure constants from multicriticality. Int. J.
Mod. Phys. A 1994, 9, 5155–5200. [CrossRef]

7. t Hooft, G. Magnetic Monopoles in Unified Gauge Theories. Nucl. Phys. B 1974, 79, 276–284. [CrossRef]
8. Polyakov, A.M. Particle Spectrum in the Quantum Field Theory. J. Exp. Theor. Phys. Lett. 1974, 20, 194–195.
9. Das, C.R.; Laperashvili, L.V.; Tureanu, A. 24. Graviweak Unification, Invisible Universe and Dark Energy.

Int. J. Mod. Phys. A 2013, 28, 1350085. [CrossRef]
10. Froggatt, C.D.; Das, C.R.; Laperashvili, L.V.; Nielsen, H.B.; Tureanu, A. Gravi-Weak Unification and Multiple

Point Principle. In Proceedings of the Conference on Physics of Fundamental Interactions, Protvino, Russia,
5–8 November 2013.

11. Laperashvili, L.V.; Nielsen, H.B.; Tureanu, A. Standard Model and Graviweak Unification with
(Super)Renormalizable Gravity. Part I: Visible and Invisible Sectors of the Universe. Int. J. Mod. Phys. A 2015,
30, 1550044. [CrossRef]

12. Laperashvili, L.V.; Nielsen, H.B.; Sidharth, B.G. Planck Scale Physics, Gravi-Weak Unification and the Higgs
Inflation. arXiv 2015, arXiv:1503.03911.

13. Belavin, V.A.; Chernodub, M.N.; Kozlov, I.E. Hedgehogs in Wilson loops and phase transition in SU(2)
Yang-Mills theory. Nucl. Phys. B 2000, 748, 524–539. [CrossRef]

14. Chernodub, M.N. A gauge-invariant object in non-Abelian gauge theory. Phys. Lett. B 2006, 634, 255–261.
[CrossRef]

15. Froggatt, C.D.; Nielsen, H.B. Standard Model Criticality Prediction: Top mass 173 +/− 5 GeV and Higgs
mass 135 +/− 9 GeV. Phys. Lett. B 1996, 368, 96–102. [CrossRef]

http://dx.doi.org/10.26456/mmg/2018-622
http://dx.doi.org/10.1142/S0217751X18501889
http://dx.doi.org/10.1142/S0217751X98001335
http://dx.doi.org/10.1038/34124
http://dx.doi.org/10.1142/S0217751X94002090
http://dx.doi.org/10.1016/0550-3213(74)90486-6
http://dx.doi.org/10.1142/S0217751X13500851
http://dx.doi.org/10.1142/S0217751X1550044X
http://dx.doi.org/10.1016/j.nuclphysb.2006.05.017
http://dx.doi.org/10.1016/j.physletb.2006.01.062
http://dx.doi.org/10.1016/0370-2693(95)01480-2


Universe 2019, 5, 78 23 of 25

16. Guendelman, E.I.; Portnoy, J. Is Our Vacuum Stable? In The Future of the Universe and the Future of Our
Civilization; World Scientific: Singapore, 2000, 120–129.

17. Bennett, D.L.; Froggatt, C.D.; Nielsen, H.B. Multiple point criticality, fine structure constants and mass
hierarchies. In Proceedings of the 27th International Conference on High Energy Physics (ICHEP 94),
Glasgow, UK, 20–27 July 1994; Bussey, P.J.; Knowles, I.G.; Eds.; Institute of Physics Publishing Ltd.: Bristol,
UK; Philadelphia, PA, USA, 1995; Volume 2, pp. 557–560.

18. Bennett, D.L.; Nielsen, H.B. Gauge couplings calculated from multiple point criticality yield α−1 = 137± 9:
At last the elusive case of U(1). Int. J. Mod. Phys. A 1999, 14, 3313–3385. [CrossRef]

19. Bennett, D.L.; Nielsen, H.B. The multiple point principle: Realized vacuum in nature is maximally degenerate.
In Proceedings of the 5th International Conference on Symmetry in Nonlinear Mathematical Physics
(SYMMETRY 03), Kiev, Ukraine, 23–29 June 2003; Volume 4, p. 235.

20. Bennett, D.L. The multiple point principle: Characterization of the possible phases for the SMG.
In Proceedings of the 12th Workshop on What Comes beyond the Standard Models, Bled, Slovenia,
14–24 July 2009.

21. Bennett, D.L.; Laperashvili, L.V.; Nielsen, H.B. Finestructure constants at the Planck scale from multiple
point principle. In Proceedings of the 10th Workshop on What Comes Beyond the Standard Model, Bled,
Slovenia, 17–27 July 2007.

22. Bennett, D.L.; Laperashvili, L.V.; Nielsen, H.B. Relation between the structure constants at the Planck scale
from multiple point principle. In Proceedings of the 9th Workshop on What Comes Beyond the Standard
Model, Bled, Slovenia, 16–26 September 2006.

23. Froggatt, C.D.; Laperashvili, L.; Nevzorov, R.; Nielsen, H.B.; Sher, M. Implementation of the multiple point
principle in the two-Higgs doublet model of type II. Phys. Rev. D 2006, 73, 095005. [CrossRef]

24. Froggatt, C.D.; Nevzorov, R.; Nielsen, H.B. Smallness of the cosmological constant and the multiple point
principle. J. Phys. Conf. Ser. 2008, 110, 072012. [CrossRef]

25. Das, C.R.; Laperashvili, L.V. Phase transition in gauge theories, monopoles and the Multiple Point Principle.
Int. J. Mod. Phys. A 2005, 20, 5911–5988. [CrossRef]

26. Froggatt, C.D.; Laperashvili, L.V.; Nevzorov, R.B.; Nielsen, H.B.; Sher, M. The Two Higgs doublet model
and the multiple point principle. In Proceedings of the 7th Workshop on What Comes Beyond the Standard
Model, Bled, Slovenia, 19–30 July 2004.

27. Froggatt, C.D.; Laperashvili, L.; Nevzorov, R.; Nielsen, H.B. No-scale supergravity and the multiple point
principle. In Proceedings of the 7th Workshop on What Comes Beyond the Standard Model, Bled, Slovenia,
19–30 July 2004.

28. Laperashvili, L.V. The Standard Model and the fine structure constant at Planck distances in Bennet-Brene-
Nielsen-Picek random dynamics. Phys. Atom. Nucl. 1994, 57, 471–478.

29. Laperashvili, L.V.; Nielsen, H.B. Multiple point principle and phase transition in gauge theories. In Proceedings
of the Workshop on What Comes Beyond the Standard Model, Bled, Slovenia, 29 June–9 July 1998.

30. Laperashvili, L.V. The Multiple point principle and Higgs bosons. In Proceedings of the International
Bogolyubov Conference on Problems of Theoretical and Mathematical Physics, Moscow, Russia,
2–6 September 2004.

31. Froggatt, C.D.; Laperashvili, L.V.; Nevzorov, R.B.; Nielsen, H.B. Cosmological constant in SUGRA models
and the multiple point principle. Phys. Atom. Nucl. 2004, 67, 582–589. [CrossRef]

32. Nielsen, H.B.; Kleppe, A. Towards a Derivation of Space. In Proceedings of the 16th Workshop on What
Comes Beyond the Standard Model, Bled, Slovenia, 14–21 July 2013.

33. Laperashvili, L.V.; Nielsen, H.B.; Das, C.R. New results at LHC confirming the vacuum stability and Multiple
Point Principle. Int. J. Mod. Phys. A 2016, 31, 1650029. [CrossRef]

34. Volovik, G.E. Coexistence of different vacua in the effective quantum field theory and Multiple Point
Principle. J. Exp. Theor. Phys. Lett. 2004, 79, 101–105. [CrossRef]

35. Kawana, K. Multiple Point Principle of the Standard Model with Scalar Singlet Dark Matter and Right
Handed Neutrinos. Prog. Theor. Exp. Phys. 2015, 023B04. [CrossRef]

36. Kawana, K. Multiple Point Principle of the Gauged B-L Model. arXiv 2015, arXiv:1504.06707.
37. Haba, N.; Ishida, H.; Okada, N.; Yamaguchi, Y. Multiple-point principle with a scalar singlet extension of the

standard model. Prog. Theor. Exp. Phys. 2017, 013B03. [CrossRef]

http://dx.doi.org/10.1142/S0217751X9900155X
http://dx.doi.org/10.1103/PhysRevD.73.095005
http://dx.doi.org/10.1088/1742-6596/110/7/072012
http://dx.doi.org/10.1142/S0217751X05025279
http://dx.doi.org/10.1134/1.1690068
http://dx.doi.org/10.1142/S0217751X16500299
http://dx.doi.org/10.1134/1.1719122
http://dx.doi.org/10.1093/ptep/ptv006
http://dx.doi.org/10.1093/ptep/ptw186


Universe 2019, 5, 78 24 of 25

38. Froggatt, C.D.; Nielsen, H.B. Trying to understand the Standard Model parameters. Surv. High Energy Phys.
2003, 18, 55–75. [CrossRef]

39. Froggatt, C.D.; Nielsen, H.B.; Laperashvili, L.V. Hierarchy-problem and a bound state of 6 t and 6 anti-t.
In Proceedings of the Coral Gables Conference on Launching of Belle Epoque in High-Energy Physics
and Cosmology (CG 2003), Fort Lauderdale, FL, USA, 17–21 December 2003; Curtright, T., Frampton, P.,
Kursunoglu, B., Mintz, S., Perlmutter, A., Eds.; World Scientific: Singapore, 2005; pp. 20–27.

40. Froggatt, C.D.; Nielsen, H.B.; Laperashvili, L.V. Hierarchy-Problem and a Bound State of 6 t and 6 t bar. Int. J.
Mod. Phys. A 2005, 20, 1268–1275. [CrossRef]

41. Nielsen, H.B.; Laperashvili, L.; Froggatt, C.D.; Das, C.R. Topological Structure of the Vacuum, Cosmological
Constant and Dark Energy. Int. J. Mod. Phys. A 2016, 31, 1630051.

42. Nielsen, H.B. F(750), we miss you as bound state of 6 top and 6 antitop. Int. J. Mod. Phys. A 2016, 31, 1650186.
[CrossRef]

43. Barriola, M.; Vilenkin, A. Gravitational Field of a Global Monopole. Phys. Rev. Lett. 1989, 63, 341–343.
[CrossRef]

44. Basu, R.; Guth, A.H.; Vilenkin, A. Quantum creation of topological defects during inflation. Phys. Rev. D
1991, 44, 340–351. [CrossRef]

45. Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 2006, 15, 1753–1936.
[CrossRef]

46. Vilenkin, A. A quantum measure of the multiverse. J. Cosmol. Astropart. Phys. 2014, 2014, 005. [CrossRef]
47. Garriga, J.; Vilenkin, A.; Zhang, J. Black holes and the multiverse. J. Cosmol. Astropart. Phys. 2016, 2016, 064.

[CrossRef]
48. Garrett Lisi, A.; Smolin, L.; Speziale, S. Unification of gravity, gauge fields, and Higgs bosons. J. Phys. A

2010, 43, 445401. [CrossRef]
49. Bennett, D.L.; Laperashvili, L.V.; Nielsen, H.B.; Tureanu, A. Gravity and Mirror Gravity in Plebanski

Formulation. Int. J. Mod. Phys. A 2013, 28, 1350035. [CrossRef]
50. Carroll, S.M.; Duvvuri, V.; Trodden, M.; Turner, M.S. Is cosmic speed-up due to new gravitational physics?

Phys. Rev. D 2004, 70, 043528. [CrossRef]
51. Fay, S.; Tavakol, R.; Tsujikawa, S. f(R) gravity theories in Palatini formalism: Cosmological dynamics and

observational constraints. Phys. Rev. D 2007, 74, 063509. [CrossRef]
52. Nojiri, S.; Odintsov, S.D.; Unifying inflation with LambdaCDM epoch in modified f(R) gravity consistent

with Solar System tests. Phys. Lett. B 2007, 657, 238–245. [CrossRef]
53. Chen, P. Gauge Theory of Gravity with de Sitter Symmetry as a Solution to the Cosmological Constant

Problem and the Dark Energy Puzzle. Mod. Phys. Lett. A 2010, 25, 2795–2803. [CrossRef]
54. Odintsov, S.D.; Oikonomou, V.K. Viable Mimetic F(R) Gravity Compatible with Planck Observations.

arXiv 2015, arXiv:1508.07488.
55. Abbott, L.F.; Deser, S. Stability of Gravity with a Cosmological Constant. Nucl. Phys. B 1982, 195, 76–96.

[CrossRef]
56. Ford, L.H. Quantum Instability of De Sitter Space-time. Phys. Rev. D 1985, 31, 710–717. [CrossRef]
57. Antoniadis, I.; Iliopoupos, J.; Tomaras, T.N. Quantum Instability of De Sitter Space. Phys. Rev. Lett. 1986,

56, 1319–1322. [CrossRef] [PubMed]
58. Guendelman, E.I.; Rabinowitz, A. The Gravitational field of a hedgehog and the evolution of vacuum

bubbles . Phys. Rev. D 1991, 44, 3152–3158. [CrossRef]
59. Lustosa, F.B.; Guimaraes, M.E.X.; Ferreira, C.N.; Neto, J.L. Thermodynamical Analysis of a Black Hole with a

Global Monopole Within a Class of a f(R) Gravity. arXiv 2015, arXiv:1510.08176.
60. Delice, O. Gravitational hedgehog, stringy hedgehog and stringy sphere. J. High Energy Phys. 2003, 2013, 058.

[CrossRef]
61. Shi, X.; Li, X.-Z. The gravitational field of a global monopole. Class. Quantum Gravity 1991, 8, 761–767.

[CrossRef]
62. Caramês, T.R.P.; Bezerra de Mello, E.R.; Pessoa, J.; Guimarães, M.E.X. On the motion of a test particle around
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