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Abstract: A brief pedagogical introduction to correlation femtoscopy is given. We then focus on
the shape of the correlation function and discuss the possible reasons for its departure from the
Gaussian form and better reproduction with a Lévy stable distribution. With the help of Monte Carlo
simulations based on asymmetric extension of the Blast-Wave model with resonances we demonstrate
possible influence of averaging over many events and integrating over wide momentum bins on the
shape of the correlation function. We also show that the shape is strongly influenced by the use of the
one-dimensional parametrisation in the qinv variable.

Keywords: correlation femtoscopy; heavy-ion collisions; Lévy stable parametrisation; event-by-event
fluctuations

1. Introduction

Correlation femtoscopy is widely used in heavy-ion collisions for the determination of space–time
characteristics of hadron-emitting sources. Most commonly, the two-particle correlation functions are
fitted by a Gaussian parametrisation augmented with correction terms due to final-state interactions.
The widths of this parametrisation are interpreted in terms of space–time (co-)variances of the
homogeneity regions [1–5].

Nevertheless, clear indications exist, that the real shape of the correlation function is not Gaussian,
as we could also see in a few talks at the 2018 Zimányi School (see e.g., [6–8]). The shape is often better
reproduced by a fit with Lévy stable distribution [9]. The choice of this distribution is not random.
Stability is a generalisation of the concept of Central Limit Theorems. Lévy stable distributions possess
the property that the shape remains unchanged when one more elementary random process is added
to the ones which are already accounted for. The excitement about this particular parametrisation
is supported by the argument that with the help of such a fit one could access the critical exponents
of the strongly interacting matter [10]. We will show in this paper that the observed shape can be
caused by more mundane non-critical phenomena. Mostly, we are interested in the role of averaging
in influencing the shape of the correlation function. Note that here we shall only be interested in
correlation functions from nuclear collisions.

These ideas set out the outline of this contribution. We first review the basic relations of correlation
femtoscopy. Then we particularly look at the Lévy stable parametrisations and scrutinise various
effects that can lead to such a shape of the correlation function.

2. The Formalism of Correlation Femtoscopy

The two-particle correlation function is constructed in such a way as to reveal the effect of
correlations. Since this is a school, we stay on a pedagogical level and introduce the main elements of
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correlation femtoscopy one by one. For pion pairs one usually uses the correlation stemming from
the symmetrisation of the wave function. Nevertheless, the effect of final state interactions is always
present, as well. They can be due to electromagnetic or strong interactions. For identical charged pions,
the electromagnetic Coulomb final state interactions are important. We shall assume here, that their
influence can be factored out from the data with the help of a correction factor [11,12].

The correlation function is then experimentally obtained as

C(p1, p2) =
P(p1, p2)

Pmix(p1, p2)
, (1)

where P(p1, p2) is the two-particle distribution in the momenta, and Pmix(p1, p2) is an analogous
distribution in which each particle comes from a different event. Due to wave function symmetrisation
for boson pairs, the correlation function exhibits a peak for small momentum differences p1 − p2,
provided that Coulomb repulsion can be filtered out. Thus it is more convenient to study the
dependence of the correlation function on the momentum difference and the average momentum

q = p1 − p2 , K =
1
2
(p1 + p2) . (2)

The source, which produces particles, can be described with the help of a Wigner density S(x, p).
Its classical interpretation is that it is the probability to emit a particle with momentum p from a
space–time point x. The correlation function which we express as function of q and K is then given as

C(q, K)− 1 ≈
∣∣∫ d4x S(x, K) eiqx

∣∣2
(
∫

d4x S(x, K))2 . (3)

The approximation symbol stands here for two steps: (i) The on-shell approximation which replaces the
time-component of K0 (= (p0

1 + p0
2)/2) with EK =

√
~K2 + m2, and (ii) the smoothness approximation,

which assumes that the denominator can be evaluated at single value of K instead of the two momenta
of the particles of the pair: p1 = K + q/2 and p2 = K− q/2. After some manipulations the relation can
be rewritten as a simple Fourier transform:

C(q, K) ≈ 1 +

∫
d4r D(r, K) eiqr

(
∫

d4x S(x, K))2 , (4)

where
D(r, K) =

∫
d4X S

(
X +

r
2

, K
)

S
(

X− r
2

, K
)

. (5)

We see that the correlation function does not measure the distribution of the source itself. Instead, it is
a Fourier transform of the distribution of the differences between emission points! This is important!
The convolution in Equation (5) often produces a bell-shaped distribution D(r, K) even for emission
functions which might possess sharp edges. The Fourier transform in Equation (4) keeps this feature.
This is the reason why fitting the correlation function with Gaussian does not seem such a bad idea.

Unfortunately, even measurement of the distribution D(r, K) is not completely possible. Since the
momenta of the particles used in the measurement must fulfil the mass-shell constraint, we have

q · K = 0 ⇒ q0 =
~q · ~K
K0 = ~q · ~β (6)

where
~β =

~K
K0 ≈

~K
EK

. (7)

Hence, only three components of q are independent.
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In order to exploit the symmetries of the problem and simplify the interpretation of the
measurement, one adopts the out-side-long coordinate frame. The longitudinal (or z) direction is
parallel to the beam. The outward (or x) direction is identified with the direction of the transverse pair
momentum KT , so that ~K = (KT , 0, Kl). The sideward (or y) direction is perpendicular to the above
two. In this frame the Gaussian parametrisation of the correlation function reads

C(q, K)− 1 = exp
[
−q2

o R2
o − q2

s R2
s − q2

l R2
l − 2qoqsR2

os − 2qoql R2
ol − 2qsql R2

sl

]
. (8)

If this parametrisation is expanded up to second order in q and compared with such an expansion of
Equation (3), one recovers the model-independent expressions for the correlation radii [13]

R2
o =

〈
(x̃− βT t̃)2

〉
, R2

os = 〈(x̃− βT t̃)ỹ〉 ,

R2
s =

〈
ỹ2
〉

, R2
ol = 〈(x̃− βT t̃)(x̃− βl t̃)〉 , (9)

R2
l =

〈
(z̃− βl t̃)2

〉
, R2

sl = 〈ỹ(z̃− βl t̃)〉 .

Here, the averages are taken with the emission function

〈 f (x)〉(K) =
∫

d4x f (x) S(x, K)∫
d4x S(x, K)

, (10)

and the coordinates with the tilde are shifted with respect to the means

x̃ = x− 〈x〉 .

A caveat must be placed here in connection with the Expressions (9). They are well defined as long
as the (co)variances of the emission function can be calculated. If the emission function, however,
would be given by a Lévy stable distribution, they would not exist and the interpretation would
fail. Moreover—the interpretation is even more complicated: Below we discuss how the measured
correlation function results from averaging over different (effective) sources, so strictly speaking no
single emission function can be assigned to the measured correlations. Nevertheless, let us consider
the Expressions (9) as useful guidelines for the interpretation of measured Gaussian correlation radii.

Sometimes, poor statistics does not allow to sample the q-space densely enough with data so that a
decent fit to the histogram can be made. In this case, a one-dimensional parametrisation of the correlation
function is sometimes used, which is formulated in terms of the invariant momentum difference

q2
inv = q2

o + q2
s + q2

l − q2
0 = |~q|2 − (~q ·~β)2 . (11)

In order to calculate the correlation function C(qinv, K) one would need to integrate both the numerator
and the denominator of the three-dimensional C(q, K) separately over the hypersurface in q-space

C(qinv, K) = 1 +

∫
dqodqsdqlδ(|~q|2 − (~q ·~β)2 − q2

inv)
∣∣∫ d4x S(x, K)eiqx

∣∣2∫
dqodqsdqlδ(|~q|2 − (~q ·~β)2 − q2

inv) (
∫

d4x S(x, K))2 . (12)

Note that we still assume the validity of the smoothness and the on-shell approximations.
This can be most easily interpreted in the reference frame which co-moves with the particle pair,

i.e., with the velocity~β. There, all terms which contain~β vanish, and the correlation function becomes

C(qinv, K) = 1 +

∫
dqodqsdqlδ(|~q|2 − q2

inv)
∣∣∫ d4x S(x, K)eiqx

∣∣2∫
dqodqsdqlδ(|~q|2 − q2

inv) (
∫

d4x S(x, K))2 . (13)
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If the modification is done on the level of Gaussian parametrisation

C(qinv, K) = 1 +
1
N

∫
dqodqsdql δ(|~q|2 − q2

inv) exp
(
−qiqj〈xixj〉

)
, (14)

where
N ≡

∫
dqodqsdql δ(|~q|2 − q2

inv) (15)

ensures that the normalization of the correlation function is unaffected by integral over the q-surface.
Hence, in this frame the averaging runs over the q-surface with constant |~q|. The observed width of
C(qinv, K) results from this averaging.

The value of qinv can become 0 (where one would expect the maximum of the correlation function)
also for non-vanishing q components (where the maximum is not expected). Therefore, a new variable
has been introduced [14]

qLCMS =
(

q2
o + q2

s + q2
l,LCMS

)1/2
where q2

l,LCMS =
(p1zE2 − p2zE1)

2

K2
0 − K2

l
. (16)

Note that qLCMS is invariant under longitudinal boosts. The motivation for this particular variable

is that in the longitudinally co-moving frame (Kl = 0) it reduces just to
√

q2
o + q2

s + q2
l . This variable

is thus reasonable for spherically symmetric sources. We have checked that there is no dramatic
qualitative difference between the results obtained with qinv and those obtained with qLCMS [15].
Here we shall show results obtained with qinv, while results with qLCMS will be shown elsewhere [15].

We have indicated in Equation (10) that the measured (co-)variances of the source depend on
the pair momentum K. Why? The reason is that the particles with specified momentum only come
from a part of the whole fireball, the so-called homogeneity region. If we change the momentum K,
i.e., we focus on particles with different momentum, then these will be emitted from a different part
of the fireball. That part also may have different size. Consequently, the sizes of the (co-)variances in
Equation (9) change.

3. Averaging

We shall deal with two kinds of averaging in the discussions of the shape of the correlation
function: Averaging over different momenta and averaging over many events.

Averaging over momentum comes through the binning in pair momentum K. Both histograms in
q—the numerator and the denominator in Equation (1)—are constructed for ~K within certain interval.
The bins always have finite size in the transverse component as well as in the azimuthal angle of ~K.
The latter is often even integrated over the whole 2π interval. As we pointed out, the correlation
function measures the homogeneity lengths corresponding to a given ~K. Then by taking an interval of
~K one makes an average over different homogeneity regions. Since the intervals of ~K are integrated on
the level of the two histograms in Equation (1), the resulting correlation function is given as

C(q, K) ≈ 1 +

∫
bin dK

∣∣∫ d4x S(x, K)eiqx
∣∣2(∫

bin dK
∫

d4x S(x, K)
)2 . (17)

Averaging over events results from summing up entries to the histograms from a large number of
events. Both the numerator and the denominator fluctuate from event to event, because in each event
we have a fireball of different sizes and dynamical state. Averaging must therefore be carried out for the
numerator and denominator separately [16,17]. We thus conclude that the correlation function will be

C(q, K) ≈ 1 +

∫
dR ρ(R)

∣∣∫ d4x S(x, K; R)eiqx
∣∣2∫

dR ρ(R) (
∫

d4x S(x, K; R))2 (18)
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where ρ(R) is the distribution of the source sizes. For brevity, we do not write out the averaging over
other features of the fluctuating source explicitly; this would be implemented in the same way.

A non-Gaussian shape of the correlation function will be here fitted with the Lévy stable
distribution. In one dimension is reads

C(q) = 1 + λe−(qR)α
. (19)

The three-dimensional generalisation can be formulated as [9]

C(q) = 1 + λe−(q
2
o R′2o +q2

s R′2s +q2
l R′2l )

α/2
. (20)

The Lévy exponent α is one of the fit parameters, together with λ and the R′’s. The value α = 2
corresponds to Gaussian shape, meaning that a lower value (α < 2) implies a non-Gaussian
correlation function.

4. The Blast-Wave Model

For the actual calculation of various effects we will generate artificial events with the help of
DRAGON Monte Carlo event generator [18,19]. It is based on the Blast-Wave (BW) model [20–24] with
resonance decays included. The BW model is described by the emission function

S(x, K) d4x = 1
(2π)3

(
exp

(
uµ(x)pµ

T

)
± 1
)−1

Θ(r− R(θ)) δ(τ− τf o)mt cosh(η− y)τ dτ dη r dr dθ . (21)

As spatial coordinates we use here the usual polar coordinates r and θ for the plane transverse to the
beam direction, the space–time rapidity η and the longitudinal proper time τ

η =
1
2

ln
t + z
t− z

, τ =
√

t2 − z2 . (22)

Let us explain the formula representing this particular emission function.

• The factor (2π)−3 stands for the elementary phase-space cell volume. Recall that S(x, K) represents
the distribution in phase-space. (And recall that h̄ = c = 1.)

• The thermal distribution—Bose-Einstein or Fermi-Dirac—is formulated with the energy in the
rest frame of the fluid, E∗ = uµ pµ, where uµ is the (local) velocity of the fluid.

• The fireball is modelled with a sharp cutoff in the transverse direction: Θ(r− R(θ)). However,
the radius R depends on the azimuthal angle in order to simulate the fireball in non-central collisions.

• Freeze out happens along a hypersurface given by constant τ = τf o.
• The fireball is manifestly boost-invariant. There is no limit set on the space–time rapidity.

Nevertheless, by choosing the rapidity of particles one effectively selects just a part of the fireball
(the relevant homogeneity region) which contributes to the production at that rapidity.

• The factor mt cosh(η− y)τ dτ dη r dr dθ, where y is the rapidity of the emitted particle, comes from
the Cooper-Frye [25] factor which stands for the flux of particles across the freeze-out hypersurface
Σ: pµdΣµ.

Our model does not include any corrections to the thermal momentum distribution due to viscosity.
The transverse radius of the fireball depends on the azimuthal angle in order to implement the

second-order anisotropy
R(θ) = R0 [1− a2 cos (2(θ− θ2))] , (23)

where R0 and a2 are model parameters, and θ2 is the angle of the second-order event plane.
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The collective expansion velocity field is parametrised with the help of η and the transverse
rapidity ηt(r, θb)

uµ(x) = (cosh η cosh ηt(r, θb), cos θb sinh ηt(r, θb), sin θb sinh ηt(r, θb), sinh η cosh ηt(r, θb)) , (24)

where the transverse rapidity depends on r and the azimuthal angle

ηt(r, θb) = ρ0
r

R(θ)
[1 + 2ρ2 cos(2(θb − θ2))] . (25)

The model parameters ρ0 and ρ2 scale the overall magnitude and the second-order oscillation of the
transverse flow, respectively. We have indicated that ηt depends on θb, and not directly on θ. The angle
θb gives the direction perpendicular to the surface of the fireball, and can be obtained from the relation

tan
(

θb −
π

2

)
=

dx2

dx1
=

dx2
dθ
dx1
dθ

=
dR(θ) sin(θ)

dθ
dR(θ) cos(θ)

dθ

, (26)

where the functional dependences x1(θ), x2(θ) refer to the transverse boundary of the fireball [26].
DRAGON also includes resonance decays. Mesonic resonances are included up to masses of

1.5 GeV, baryonic up to 2 GeV. Resonances are produced according to the same emission function as
direct pions, with their pole masses. The decay vertex of a given resonance is determined according
to an exponential distribution whose width is the lifetime of the resonance in question (in its rest
frame): ρ(τd) ∝ e−ΓRτd . Both two- and three-body decays are included as well as the possibility that
one resonance type can decay via various channels according to their branching ratios. Cascades of
decays, in which several resonances decay consecutively, are also possible within the model.

5. Results

We begin by considering the effects that the averaging over many fireballs with different shapes
may have on the value of the Lévy parameter α. Indeed, in real experiments each fireball is different,
with different sizes, eccentricities, and orientations of the event plane. We therefore anticipate that
averaging over a distribution of source shapes, as in Equation (18), will cause α to deviate from 2.
In this treatment, we limit our focus to second-order anisotropies.

With the help of DRAGON we generated sets of 50,000 events. The basic setting of the parameters
includes the freeze-out temperature of 120 MeV, the average transverse radius R = 7 fm, freeze-out
time τf o = 10 fm/c, and the strength of the transverse expansion ρ0 = 0.8. To keep the source simple,
no resonance decays are included at this point. The correlation function is evaluated in one dimension
as a function of qinv.

We first study the effect of averaging over different values of a2.
Figure 1 (left) compares the Lévy parameter α from two sets of Monte Carlo events. In the first

set, all events have spatial eccentricity with a2 = 0.05. In the other set, the eccentricity fluctuates with
a2 between −0.1 and 0.1. We perform the study in a narrow interval of KT, where the shape of the
correlation function changes strongly, even though it cannot be accessed experimentally (although
the correlation function has been averaged over the azimuthal angle of ~K). We see that the value of α

departs from 2 considerably and reaches values between 1.27 and 1.62. The averaging makes up only a
small portion of this decrease, at most at a level of 0.05.
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Figure 1. The Lévy parameter of the 1D fits to the correlation function in qinv. Mean transverse
momentum KT in bins of 10 MeV. A green circle shows results calculated with fixed anisotropies.
The purple data show results calculated for averaging over a2 (left); averaging over ρ2 (middle),
and averaging over θ2 (right). Vertical error bars show the 1σ intervals, resulting from fitting the
correlation function with the ansatz of Equation (19).

Almost identical results quantitatively come from the averaging over flow anisotropy (Figure 1,
middle) and the event plane orientation (Figure 1, right). In the middle panel we compare Lévy index
α obtained from a set with ρ2 fixed to 0.05 with a set with events for which ρ2 fluctuates between −0.1
and 0.1. For the event plane averaging we see no change (except in the bin with smallest KT) if θ2

fluctuates in comparison to θ2 fixed to 0. The anisotropy parameters a2 and ρ2 in this case fluctuate
between −0.1 and 0.1.

We investigate next the influence of resonances on the obtained value of α. We use the source of
direct particles with the same basic parameters as in the previous case, and we compare correlation
functions obtained with and without resonance decays.

In Figure 2 we show the Lévy indices α obtained from fits to the correlation functions as a function
of KT . We know from the previous Figure already, that the one-dimensional correlation function has
quite a non-Gaussian shape. Now we see that the inclusion of the resonance decays pushes down the
value of α by another 0.2. The influence of resonance decays is much bigger than that of averaging
over different events!

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0  100  200  300  400  500  600  700  800  900  1000

α

KT [MeV]

Resonances on
Resonances off

Figure 2. The Lévy parameter α of the 1D fits to the correlation function in qinv. The result from the
fits to the correlation function from a source without resonances (green circles) and with resonances
(purple squares). Vertical error bars show the 1σ intervals.

We want to perform our analysis more differentially, however. We start by looking individually at
each direction of the correlation function and fitting with the Lévy prescription of Equation (19). This is
not a three-dimensional analysis, since we do not fit the correlation function in the whole q-space
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and confine ourselves only to fits along the axes. The aim is to see the differences in its shape along
different directions.

Indeed, we observe in Figure 3 that the differences are rather large. If resonance decays are
not included, the value of α is around 2 in both transverse directions. However, in the longitudinal
direction the Lévy index α is lowered to 1.8 at KT = 0 and increases gradually towards 2 at KT = 1 GeV.
In addition, the influence of resonance decays is different for longitudinal and transverse directions.
In the longitudinal direction the resonance decays cause a decrease of α by about 0.2. In the transverse
directions, however, α drops as low as 1.4 once resonance decays are included.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0  100  200  300  400  500  600  700  800  900  1000

α

KT [MeV]

x, Resonances on
x, Resonances off
y, Resonances on
y, Resonances off
z, Resonances on
z, Resonances off

Figure 3. The Lévy parameter α from 1D fits to the correlation function in qinv along the different
axes, with or without resonances. Vertical error bars show the 1σ intervals, resulting from fitting the
correlation function with the ansatz of Equation (19).

Note the wiggly behaviour of the data points, particularly for larger KT. Due to the limited statistics
of particle pairs, the measured values of the correlation function will tend to fluctuate. The parameter α

comes from the fit to the correlation function with Equation (19). The error bars show the ±1σ intervals
for this particular correlation function. They underestimate the real uncertainty of the determination of α.
We plan to improve the statistics and the uncertainty intervals in a forthcoming paper [15].

We would like to understand these differences and hence we checked the shape of the source
which emits pions.

The profiles of the emission function are plotted in Figure 4, for pions with transverse momentum
from the interval (300, 400) MeV. Note that they are produced just from a part of the whole fireball,
the so-called homogeneity region. We show the distribution of the production points of pions, with pions
from resonance decays included. In order to assess the effect of resonances, we also plot separately both
contributions: Directly produced pions as well as those from resonance decays. The upper row shows
that there is quite a difference between the longitudinal and the transverse directions. One could argue,
however, that due to the on-shell constraint (6) it is not the distribution in x, that is measured, but rather
the distribution in (x− βtt). We plot this in the lower left panel of Figure 4.

At this place we would again like to touch upon the discussion concerning the proper choice
of the one-dimensional momentum difference variable (qinv vs. qLCMS). We recall that qLCMS was
introduced as a reasonable variable for spherically symmetric sources. Figure 4 shows that in this case
the symmetry is not present, neither concerning the sizes, nor concerning the shape of the source in
different directions.
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Figure 4. The spatial distribution of the emission points of pions for KTs. Upper row: The profiles
of the emission points distribution along the x (left), y (middle), and z-axis (right). Lower row: The
profile along the variable (x− βtt) (left), and two-dimensional distributions in the transverse plane
(middle and right). A green × shows the profile of direct pions, a purple + shows the profile of pions
produced by resonances and a blue ∗ shows their sum. All these distributions were calculated as
narrow integrals over the remaining coordinates with width 2 fm.

Finally, we extend the fitting to the whole three-dimensional correlation function from the previous
simulations. The fit is performed with the three-dimensional Lévy distribution of Equation (20), so it
always results in a single value of α.

This is plotted in Figure 5 as a function of KT . We can see that the obtained α’s are closer to 2
than in the case of fitting the one-dimensional correlation functions in qinv, although considerable
deviations from 2 are still present. Inclusion of resonance decays lowers α by about 0.1–0.3, depending
on KT .

 1.4
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 1.7

 1.8
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 0  100  200  300  400  500  600  700  800  900  1000

α

KT [MeV]

Resonances on
Resonances off

Figure 5. The Lévy parameter of the 3D fits to the correlation function according to Equation (20).
Compared are simulations with and without resonances. Vertical error bars show the 1σ intervals,
resulting from fitting the correlation function with the ansatz of Equation (20).
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6. Conclusions

We explained in the introductory section of this paper that in addition to the generalisation of the
concept of Central Limit Theorem [9], an especially important motivation for the use of Lévy stable
parametrisation is the search for critical behaviour [10]. The simulations presented here show that
the Lévy parameter α may clearly deviate from 2 even for “usual”, non-critical sources, like those
described by the blast-wave model.

Even without the presence of resonances, the shape of the correlation function looks rather
non-Gaussian in the longitudinal direction. Once resonance decays are included, however, the shape
deviates even further from Gaussian, especially in the two transverse directions. In this respect it
appears interesting to test this with kaons, since a smaller part of them (although not negligible) comes
from resonance decays.

In the three-dimensional fit, the value of α is lowered through the influence of resonance decays
by about 0.1–0.3, depending on KT .

It is very important to realise that in our simulations the biggest effect on lowering the value of α

was in using only one-dimensional parametrisation of the correlation function in qinv.
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