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Abstract: Constraints on neutron star masses and radii now come from a variety of sources: theoretical
and experimental nuclear physics, astrophysical observations including pulsar timing, thermal and
bursting X-ray sources, and gravitational waves, and the assumptions inherent to general relativity
and causality of the equation of state. These measurements and assumptions also result in restrictions
on the dense matter equation of state. The two most important structural parameters of neutron
stars are their typical radii, which impacts intermediate densities in the range of one to two times the
nuclear saturation density, and the maximum mass, which impacts the densities beyond about three
times the saturation density. Especially intriguing has been the multi-messenger event GW170817,
the first observed binary neutron star merger, which provided direct estimates of both stellar masses
and radii as well as an upper bound to the maximum mass.
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1. Introduction

The study of neutron stars represents our best chance to study matter under conditions of
high density, extreme isospin asymmetry, and relatively cold temperatures which cannot be examined
through heavy ion collisions. As explained below, neutron star matter is in strong- and weak-interaction
equilibrium, which for densities larger than the nuclear saturation density, ns ' 0.16 fm−3, which is
the normal density found inside atomic nuclei, results in very neutron-rich compositions in which the
neutron/proton ratio nn/np is 10 to 20. In laboratory nuclei, and in heavy-ion experiments, on the other
hand, one generally has more symmetric matter, np ' 0.9nn − nn. Limited information (see Ref. [1] for
a review and references) is available through nuclear structure studies of neutron-rich nuclei such as
mass, neutron skin, and giant monopole and dipole resonances that can probe cold matter up to ns,
but under relatively symmetric conditions; see Section 4. Recent advances in theoretical neutron matter
studies [2] complement experiments and probe extremely neutron-rich matter, but are expansions and
therefore limited to densities below about 2ns. Measurements of the radii of neutron stars are excellent
probes of neutron star matter from ns − 3ns, as the pressure of such matter in this range is highly
correlated with the radius [3], while the maximum mass neutron star mass probes densities in the range
from 3ns − 5ns. Lower and upper bounds on neutron star radii are found through the assumptions of
general relativity and causality [4], as discussed in Sections 2 and 5. Radii can be estimated through
studies of thermal X-ray emission from cooling neutron stars, either from young stars or from old, but
transiently accreting, sources in quiescence as discussed in Section 6, from pulsar moments of inertia,
and from tidal deformabilities and masses inferred from gravitational waves from neutron star–neutron
star or black hole–neutron star mergers, as summarized in Sections 7 and 8. Section 2 reviews the
lower limit to the neutron star maximum mass that comes from pulsar timing measurements of the
most massive pulsars, and an upper limit may be determined from multi-messenger merger events in
which both gravitational waves and electromagnetic signatures are seen, another topic of Section 8.
Observational data are expected to grow rapidly in the near future due to both ground-based (SKA [5],
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FAST [6], and LVC) and space-based (HST, NICER [7], ATHENA [8], and the proposed eXTP [9])
observatories.

2. General Mass and Radius Limits from First Principles

It is useful to examine the most extreme neutron star configurations. For example, Koranda,
Stergioulas and Friedman [10] suggested that the most compact stars result from an equation of state
(EOS) that is as soft as posssible at low (subsaturation) densities but as stiff as possible at the highest
densities. Here, soft and hard refer to the relative pressures p at the corresponding energy densities ε.
The extreme case can be modeled with the maximum compactness EOS where the pressure vanishes at
low density but is causal (i.e., having a sound speed equal to light speed) at high densities:

p = 0 ε ≤ ε0, p = ε− ε0 ε ≥ ε0, (1)

where ε0 represents a transition density which is the single parameter of this EOS. When employed in
the relativistic stellar structure equations

dp
dr

= −G(m + 4πpr3/c2)(ε + p)
r(rc2 − 2Gm)

,
dm
dr

= 4πr2 ε

c2 , (2)

where m is the mass interior to the radius r, one obtains solutions that depend only on the central
energy density εc and the parameter ε0. In particular, the solution with the maximum possible
mass has central values εc/ε0 = 3.034 and pc/ε0 = 2.034, as well as GMmax/(Rmaxc2) = 0.354,
where Mmax and Rmax are the total mass and radius [11]. Moreover, the maximum mass configuration
has Mmax = 0.08513c8/

√
G3ε0, which shows that ε0 = 16.74(Mmax/M�)−2εs where Mmax is the

neutron star maximum mass and εs ' 150 MeV fm−3 is the energy density at ns. At present,
the most massive, accurately-measured pulsars are PSR J0348 + 0432 [12], with M = 2.01± 0.04,
and PSR J0740 + 6620 [13], with M = 2.17+0.11

−0.10M�. While the former is technically a more accurate
measurement, it is subject to uncertainties in modeling thermal evolutions of white dwarfs, while the
latter is a Shapiro delay measurement not requiring theoretical modeling. With time, the uncertainties
of Shapiro delay measurements should decrease. Conservatively, we adopt 2.0M� for the minimum
value of Mmax, giving ε0 <∼ 4.19εs and εc <∼ 12.7εs. These represent the highest possible values for the
energy density in a neutron star; a larger measured Mmax will lower them.

For masses smaller than the maximum mass, stars become less compact, i.e., they have smaller
values of β = GM/(Rc2). From integration of Equation (2), one can determine the dimensionless
bounds on R/Rmax as a function of M/Mmax using Equation (1). Rescaling with assumed values for
Mmax, the region in the M− R diagram excluded by causality is displayed in Figure 1. A 1.4M� star
must have R1.4 ≥ 8.15 km if Mmax ≥ 2M�, with β1.4 ≤ 0.254 and redshift z1.4 ≤ 0.425, about half that
of the maximum mass star. For larger minimum values of Mmax, the excluded region grows as shown.

More realistic conditions (but not bounds) can be estimated with the high-density EOS
p = s(ε− ε0) with s = v2

s /c2 = 1/3, where vs is the sound speed. It is commonly believed that
the realistic high-density limit of the EOS, in which quarks are asymptotically free, is s = 1/3. In this
case, εc = 4.826ε0, pc = 1.275ε0, and GMmax/(Rmaxc2) = 0.271 in the maximum mass case. Thus,
Mmax = 0.05169c8/

√
G3ε0 and ε0 = 6.172(Mmax/M�)−2εs. Thus, ε0 = 1.53εs and εc = 7.37εs;

the latter is clearly smaller (by about a factor
√

3) than for s = 1, as expected.
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Figure 1. Left: Regions excluded by the maximum compactness conjecture. The dark (light) blue region
is excluded when Mmax = 2.01M� (2.4M�). Alternatively, regions excluded by the s = 1/3 EOS
are shown as the green and orange regions. The dashed line denotes the maximum radius from the
Keplerian constraint applied to the most-rapidly-spinning pulsar, PSR J1748-2446ad, adapted from
Ref. [14]. Right: The gray region is excluded by the unitary gas conjecture. Symbols indicate parameters
from various published EOSs and the colored polygons show neutron matter predictions, adapted from
Ref. [15].

The most rapidly-spinning pulsar, PSR J1748-2446ad, can be used to estimate the maximum radii
of neutron stars. It can be shown [16] in general relativity, under the assumption of uniform rotation
that the maximum (Keplerian) spin rate, where mass-shedding from the equator occurs, is, for a star of
non-rotating mass M and radius R,

fK ' 1.08
(

M
M�

)1/2 (10 km
R

)3/2
kHz.1 (3)

The spin frequency of PSR J1748-2446ad, 716 Hz [17], implies that R < 13.2(M/M�)1/3 km for
this pulsar, and automatically applies to all stars with masses greater than this pulsar, in particular
for the maximum mass configuration. However, although the mass of this pulsar is unknown, if it is
much less than Mmax, this limit should apply to most neutron stars.

Measured neutron star masses via pulsar timing are displayed in Figure 2 [14,18]. The figure
shows that the error-weighted average masses (dashed lines) are close to 1.4M� for all categories
of measurements, but the dispersion in masses is especially small in the case of double neutron
star systems. This figure does not include the recently discovered pulsar J0740 + 6620 with
M = 2.17+0.11

−0.10M� [13]. Some other massive estimates are noted, such as the black-widow pulsars
B19757 + 20 and PSR J1311-3430, but these have quite large uncertainties due to the unknown sizes
and shapes of their companions. These pulsars tend to be massive as they appear to be ’consuming’
their companions. Several additional systems are now known, and it is hoped further observations
and models will refine these mass estimates.

1 This formula is accurate to a few percent, despite the fact that the equatorial radius increases by about 50% for
a maximally-rotating object.
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Figure 2. Masses measured from pulsar timing. Vertical dashed (dotted) lines indicate category
error-weighted (unweighted) averages. The figure is updated from that of Ref. [14].

3. Nuclear Physics Constraints on Neutron Star Radii

Lattimer and Prakash [3] discovered that neutron star radii and neutron star matter pressure
around ns − 2ns are highly correlated. Approximately,

R1.4 ' 9.52

(
MeV fm−1/3

ps

)1/4

, R1.4 ' 5.69

(
MeV fm−1/3

p2s

)1/4

, (4)

where ps(p2s) is the neutron star matter pressure at ns (2ns).2 One can define the symmetry energy
as the energy difference between pure neutron matter and symmetric nuclear matter at a given
density. Denoting Ex(n) as the baryonic energy per baryon as a function of density and proton
fraction x, the symmetry energy is S(n) = E0(n)− E1/2(n). It is usually assumed that the energy
of matter at arbitrary proton fraction 0 < x < 1/2 may be found with a quadratic interpolation
Ex(n) = E1/2(n) + S(n)(1− 2x)2. This is equivalent to expanding Ex in a power series expansion of

2 These formula were updated by Ref. [1] to comply with the Mmax >∼ 2M� constraint.



Universe 2019, 5, 159 5 of 20

(1− 2x) and neglecting terms higher than quadratic order, for which there is theoretical justification [19].
With this assumption, the symmetry energy may be expanded about ns:

S(n) ' SV +
L
3

n− ns

ns
+

Ksym

18

(
n− ns

ns

)2
+ . . . , (5)

where SV = S(ns) ∼ 32 MeV, L ∼ 50 MeV and Ksym ∼ −100 MeV are symmetry energy parameters.
Neutron star matter has a composition determined by energy minimization ∂(E + Ee)/∂x = 0,
where Ee = (3/4)h̄cx(3π2nx)1/3 is the energy due to electrons. This minimization is equivalent
to beta-equilibrium, µn − µp = µe, where the µs are chemical potentials, which leads to x ' 0.04 at ns.
Thus, one can approximate neutron star matter by pure neutron matter, and it follows that the neutron
matter energy and pressure at ns are

E0(ns) ' SV + E1/2(ns) ≡ SV − B ∼ 13− 17 MeV, (6)

p0(ns) =

(
n2 ∂E0(n)

∂n

)
ns

' Lns

3
∼ 2.1− 3.7 MeV fm−3. (7)

Here, B ' 16 MeV is the bulk binding energy of nuclear matter at ns.
A valuable experimental and theoretical lower limit to the energy of neutron matter and the

symmetry energy parameters exists from unitary gas considerations which sets a larger lower limit
to radii than does causality. A unitary gas refers to the idealized state of fermions interacting via
a pairwise short-range s-wave interaction having an infinite scattering length and zero range [20].
The unitary gas conjecture posits that the lower limit to the neutron matter energy at any density is
that of a unitary gas [15]. Pure neutron matter has an s-wave scattering length of a0 = −18.9 fm,
giving (a0kF)

−1 = −0.03 at ns, where kF = (3π2n)1/3 is the Fermi wave number, whereas a unitary
gas has (a0kF)

−1 = 0. Neutron matter also has an effective range re f f ∼ 2.7 fm, compared to a unitary
gas which has re f f = 0. However, both distinctions, as well as its higher-order spin terms and tensor
interactions, make neutron matter more repulsive, with therefore a greater energy, than a unitary gas

A unitary gas has the universal behavior

EUG = 3ξ0EF/5 ' 12.6(n/ns)
2/3 MeV, PUG = n2dEUG/dn ' 1.35(n/ns)

5/3 MeV fm−3, (8)

where ξ0 ' 0.37 is the Bertsch parameter, well-measured in cold atom experiments,
and EF = (h̄2k2

F/2mn) is the Fermi energy of non-interacting non-relativistic neutrons. The unitary gas
conjecture automatically sets the lower limits SV ≥ 28.6 MeV, L ≥ 25.3 MeV and Ksym ≥ −275 MeV [15].
This rules out large portions of the L− SV plane (right panel of Figure 1), and establishes that many
commonly-used dense matter EOSs have poor choices for the symmetry parameters. The lower limit
to the neutron pressure at ns, Lns/3 ≥ 1.35 MeV fm−3, also establishes that R1.4 >∼ 9.7 km, 1.6 km
larger than the causal limit.

4. Constraints Based on Neutron Matter Theory and Nuclear Experiments

There has been much progress in refining the energy of neutron matter from chiral many-body
approaches (see Ref. [15] for a summary of recent work). Some examples of their predictions for the
symmetry parameters SV and L are shown in Figure 1, which are seen to be consistent with the unitary
gas conjecture, and predict relatively small values of L, in the range 30 MeV< L < 70 MeV, and therefore
radii, 10 km <∼ R1.4 <∼ 13 km. Although uncertainties in these calculations increase as the density is
increased, error analyses indicate that they are useful up to about 2ns.

The symmetry energy parameters can also be constrained from nuclear measurements. The most
accurate measurements are those of nuclear masses. According to the liquid drop model, the nuclear
mass can be described primarily as the sum of volume, surface and Coulomb contributions, which scale
as A, A2/3 and (Z/A)2 A5/3, respectively. The volume and surface energies both decrease as the nuclear
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asymmetry is increased, so that the symmetry energy of a nucleus is positive and proportional to
(1− 2Z/A)2:

Esym,i = (1− 2Zi/Ai)
2(SV Ai − Ss A2/3

i ), (9)

where the subscript i refers to the ith nucleus. Additionally, there are shell and pairing contributions to
the total energy, but the symmetry energies can be accurately found, modulo the Coulomb term, by

Esym,i =
16
A2 [EN+2,Z − 2EN+1,Z+1 + 2EN+1,Z−1 + EN,Z+2 (10)

− 4EN,Z + EN.Z−2 − 2EN−1,Z+1 − 2EN−1,Z−1 + EN−2,Z] . (11)

To optimize the symmetry parameters Sv and Ss, one minimizes the quantity

χ2 = (N σ2)−1
N
∑

i
(Eexp,i − Esym,i)

2, (12)

whereN is the number of nuclei and σ ' 1 MeV is a standard error. This results in a narrow correlation
ellipse in the Ss − SV plane with orientation 10◦ with respect to the Ss axis, and widths σv ' 2.3σ and
σs = 13.2σ [14]. To a reasonable approximation, L/SV = (Ss/SV)

0.7 can be used to propagate this to
the L− SV plane, as seen in Figure 3.

Figure 3. Experimental constraints on the nuclear symmetry properties compared with those of the
unitary gas conjecture. HIC, IAS and GDR are from heavy-ion collisions, isobaric analog states and
centroid energies of giant dipole resonances, respectively (see Lattimer and Lim [1] for details).
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In a similar way, constraints from neutron skin, dipole polarizability, giant dipole resonance and
heavy ion collisions can be overlaid to obtain a relatively small region of overall consistency (Figure 3)
suggesting that 30 MeV <∼ Sv <∼ 32 MeV and 40 MeV <∼ L <∼ 60 MeV.

5. Extrapolations of the EOS to Higher Densities

Having observed that reasonably strict constraints on the energy density and pressure exist
up to about ns from nuclear experiments and up to about 2ns from neutron matter theory, it is
interesting to couple these with the global constraints of causality and Mmax >∼ 2M� to limit the
EOS at higher densities. A useful parameterization consists of piecewise polytropes. Read et al. [21]
demonstrated that three polytropes in addition to a low-density crust are sufficient to adequately
describe most existing models of dense matter from Skyrme-like non-relativistic and Walecka-like
relativistic field-theoretical models. In principle, continuity of the EOS at the boundaries between these
regions requires eight parameters, for example, the boundary densities and pressures ni, pi for i ∈ 0− 3.
We assume the crust boundary is n0 = ns/2.7 and p0 = 0.2177 MeV fm−3 to match the SLy4 EOS [22]
that we use at lower densities.3 Furthermore, we assume ni = 1.85(2i−1)ns for i ∈ 1− 3 following
Ref. [21] who found these were expedient choices to match a variety of published EOSs. Therefore,
only three parameters remain unspecified. The range of p1, 8.4 MeV fm−3 < p1 < 20 MeV fm−3 can
be inferred from neutron matter studies, since n1 = 1.85ns is small enough that these calculations
are still valid. We note that a considerably smaller lower limit to p1, 3.74 MeV fm−3, would follow
from the unitary gas conjecture. For the studies reported here, the upper limit to p1 was arbitrarily
increased by 50%.4 The ranges of p2 and p3 are restricted from above by causality and from below by
the Mmax >∼ 2M� constraint. The parameter ranges and the details of this scheme are summarized in
Ref. [4].

The regions of M− R and p− ε space that result from sampling these parameters within their
allowed ranges are displayed in Figure 4. These ranges are sensitive to the assumed lower limit to
Mmax; increasing Mmax raises the minimum R as a function of M and the minimum p as a function
of ε. Had the lower limit to p1 been taken from the unitary gas conjecture, the lower limits to R for
M ' 1.4M� would have been reduced by about 0.5 km for Mmax < 2.1M� but effectively unchanged
for larger values of Mmax. Nevertheless, the lower limits to R for all M are substantially larger than
those implied by the maximum compactness conjecture (Figure 1).

Figure 4. Left: Allowed regions of M − R space. Right: Allowed regions of p/ε − ε space.
Colors denote the results of varying the assumed minimum value of Mmax.

3 It has been verified that the use of realistic alternate crust EOSs and boundaries has negligible effects on our conclusions.
4 This increase was made so as to make the priors for p1 uninformative when studying GW170817.
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6. Astrophysical X-Ray Constraints on Mass and Radius

In general, thermal emissions from neutron stars can be used to infer masses and radii.
If neutron stars were non-relativistic blackbodies, measurements of total fluxes, peak spectral energies
(which are in the X-ray band), and distances D would suffice to predict the source radius. However,
thermal measurements need to be corrected for the surface redshift, their uncertain atmospheres and
magnetic field structures, and interstellar absorption that may extinguish a large fraction of their
emission before it reaches the Earth. Due to the gravitational redshift, the observed flux is reduced
by two redshift factors, one for the energy and one for the time, and the observed temperature Te f f
is reduced by a single redshift factor. Since the flux is proportional to (R/D)2T4

e f f , where D is the

source distance, the inferred radius is increased by one redshift factor, R∞ = R/
√

1− 2GM/(Rc2).
The atmosphere/magnetic field effectively changes the location of the spectral peak from which the
color temperature Tc is inferred; this is described by the introduction of a color-correction factor
fc = Tc/Te f f . With predictions of fc, one can thus infer the angular area of the star (R∞/D)2, and with
a distance estimate, the apparent radius R∞. If one or more spectral lines can be identified, the star’s
redshift z = (1 − 2β)−1/2 − 1 could be found, allowing both M and R to be inferred. However,
it has not yet been possible to observe any such spectral features. An additional complication is
that a large fraction of the lower-energy X-rays may be absorbed by the interstellar medium before
reaching Earth. Either the amount of absorption, usually described in terms of the column density of
hydrogen, NH , is treated as a fitting parameter along with M and R, which increases the uncertainty in
a radius estimate, or must be taken from pulsar dispersion measures or observed extinctions along the
line-of-sight to each source. To summarize, uncertainties in D, fc and NH dominate the uncertainties
in X-ray inferences of neutron star radii.

Focus has therefore been on four classes of sources: (i) isolated neutron stars nearby whose
distance can be inferred by parallax, (ii) sources in globular clusters for which estimates of D and
NH are available, (iii) certain bursting sources, which have the advantage of providing an additional
observable, related to the Eddington luminosity that depends on M and R, and (iv) phase-resolved
spectroscopy of periodic flux variations from rotating neutron stars.

The classic case of a nearby isolated source with a measured parallax is RX J1856-4754. The distance
is D = 115± 8 pc [23], which, coupled with a magnetic hydrogen atmosphere model of Ho et al. [24],
gives R∞ = 14.3± 1.0 km. For M = 1.4M�, this gives R1.4 = 11.4± 1.1 km. For this value of R∞,
note that dR/dM ' −3 km M−1

� , so even if the mass is different by 0.25M�, the radius would change
by only 0.75 km. This source has a featureless spectrum, so its atmospheric composition cannot be
confirmed. No other sources have yielded reliable radius estimates.

Globular cluster source measurements are much more prolific. Guillot and Rutledge [25] measured
five quiescent (non-bursting) sources, Özel and Freire [18] summarized results for eight sources,
and recently, Bogdanov et al. [26] studied an additional source. These sources were found to have
best-fit values of R∞ ranging from 8.6 to 23.0 km, but this wide range can be reduced significantly if
pulsar dispersion measures [27] or reddening measurements [28] are used to find NH . In this case, it is
found that 9.5 km < R∞ < 13.7 km result [29]. The average, for a 1.4M� star, implies a radius of about
9.6 km. However, some sources may have He rather than H atmospheres, which would increase R∞

by 3–5 km. Since these sources are likely to have similar masses, the large variations in their estimated
radii point to unresolved problems with systematic uncertainties involving interstellar absorption,
atmospheric composition, and distance.

In the case of photospheric radius expansion bursts, the radiation pressure from the thermonuclear
ignition of surface layers temporarily levitates the photosphere, and it is possible to infer the
corresponding Eddington flux necessary for radiation pressure to balance gravity. With surface
redshift corrections,

FEdd,∞ =
GMc
κD2

√
1− 2β, (13)
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where κ is the atmospheric opacity, FEdd can be inferred from the maximum observed flux during
a burst. The flux falls rapidly from the peak, and within seconds the apparent emitting angular
area A = F∞/(σBT4

∞) = f−4
c (R∞/D)2 can be inferred from simultaneous flux and temperature

measurements on the ’tail’ of the burst. Together with FEdd, A provides the additional information
needed to separately estimate M and R, assuming that D, κ and fc estimates are valid. Using this
method for six photospheric radius expansion bursts, Özel & Freire [18] obtained a mean radius of
11.1± 0.4 km. While the stated uncertainty is gratifyingly small, it is probably an artifact of the model
being oversimplified, as one can easily demonstrate.

Observations of many bursts from each source yield values for FEdd and A, and their standard
deviations δFEdd and δA. One can construct two parameters α and γ:

α =
FEdd√

A
κD
f 2
c c3 = β(1− 2β), γ =

A f 4
c c3

κFEdd
=

R∞

α
. (14)

From α, the stellar compactness can be found: β = (1/4)± (1/4)
√

1− 8α, which requires α ≤ 1/8
for a real solution. However, in every burst source observed so far, α exceeds 1/8 by more than δα

and often by 2δα. This inconsistency may be caused by one or more of the model’s simplifying
assumptions: spherical source geometry, constant opacity κ and color-correction factor fc during the
burst. Uncertainties in a source’s composition and distance also contribute to systematic uncertainties.
Furthermore, the redshift factor in Equation (13) may be diminished if FEdd is estimated while the
photosphere is extended above the surface. Larger radii, and more realistic uncertainties, result if this
redshift factor is eliminated [30].

Related to this burst method is the so-called cooling-tail method [31] which focuses on the late-time
evolutions. In this method, one fits both the observed spectra and model spectra with blackbody
spectra. In addition to the color-correction factor fc, one introduces the dilution factor w defined so that
the bolometric luminosity is conserved

L =
∫ ∞

0
wπBνdν = wσB( fcTe f f )

4, (15)

where Bν( fcTe f f ) is the Planck function. It is convenient to define TEdd,∞ = (FEdd,∞D2/(σBR2
∞))1/4

as a parameter that does not depend on distance. Note that TEdd,∞ = (c3/(κγ))1/4 in terms of the
previously-used γ. Another fitting factor introduced is ` = L/LEdd = (Te f f /TEdd)

1/4.
In this method, one defines the blackbody normalization KBB = wR2

∞/D2. Note that, if KBB was
equal to the normalization A, it would follow that w f 4

c = 1, but this would lead to non-conservation
of bolometric flux. All changes to KBB occurring after the burst’s peak are due to changes in w.
The observed evolution of KBB − FBB on the tail of the burst is equivalent to the evolution of w−w f 4

c `,
allowing the determination of R2

∞/D2 and FEdd, and therefore TEdd,∞. This gives a trajectory in the
M− R plane, which still depends on the assumed opacity and gravity used in the model atmosphere
models. Fortunately, for the composition there are only two realistic cases: a solar H/He atmosphere
or a pure helium atmosphere. They give results so different that only one choice produces reasonable
radii. For a particular composition, an assumed distance then determines another trajectory in the
M− R plane. The resulting radii determinations are, of course, limited by the distance uncertainties
as in the photospheric radius expansion technique. Results with the cooling-tail method indicate
radii larger than in the photospheric radius expansion technique [32–34], but their similarly small
uncertainties will be systematically affected by imprecisely known distances.

M − R measurements can also be deduced from periodic flux oscillations stemming
from thermonuclear bursts on the surfaces of neutron stars, which introduce temperature
inhomogeneities [35]. The amplitude of the bursts, their deviation from sinusoids, and their
dependence on X-ray energy, are sensitive to gravitational light-bending and can be used to probe
M− R space. Recently, the Neutron Star Interior Composition and ExploreR (NICER) was attached to



Universe 2019, 5, 159 10 of 20

the International Space Station with a primary mission to measure neutron star masses and radii to 5%
accuracy through phase-resolved spectroscopy [7]. Although the redshift will be the best-determined
quantity, oscillation amplitudes vary with X-ray energies in a way that probes a function of M and
R orthogonal to redshift. The two pulsars under primary initial consideration are PSR J0437-4715,
whose mass (1.44± 0.07M�) is already known from pulsar timing, and PSR J0030+0451.

A mid-2020s Chinese-European Enhanced X-ray Timing and Polarimetry (eXTP) space
telescope [9] is also planned. This mission will contribute to spin measurements, burst spectra and
properties of accretion flows onto neutron stars. The effective surface area will be approximately five
times larger than NICER with significantly lower background. A variety of pulsars, including those
with known masses in a wide range from 1.20M� to 1.93M�, can be studied.

7. Neutron Star Moments of Inertia, Binding Energies, and Deformabilities

The discovery of the system PSR J0737-3039 containing two pulsars will allow the measurement
of the moment of inertia I of the more massive pulsar [36] through the additional periastron advance
induced by spin-orbit coupling. A measurement of I accurate to about 10% is ultimately expected.
Since I ∝ MR2, and M is known to better than 0.1%, a tight constraint on the radius should follow.
Piecewise polytropes, with constraints of causality and Mmax > 2M�, yield [37]:

I
M� km2 ' 0.080MR2

[
1 + (2.29± 0.26)M km

RM� + (−7.20± 1.15)
(

M km
RM�

)2
+ 10.5

(
M km
RM�

)3
]

, (16)

with +(−) signs indicating upper (lower) bounds, as displayed in the left panel of Figure 5.
For the particular case of PSR J0737-3039A, with M0737 = 1.3381M�, the bounds on R0737 from

a measurement of I0737 become tighter (right panel of Figure 5). Ref. [37] finds a fit of the dimensionless
Ī0737 = I0737c4/(G2M3

0737), including these bounds, to be

Ī0737 '
(

R0737

2.371 km

)2
− R0737

0.3711 km
+ 19.485 + (−87± 312)

(
km

R0737

)3
. (17)

The binding energy is another structural quantity that either can be measured or is important
in analyzing astrophysical observations. Indeed, the first multi-messenger event was SN 1987A,
not GW170817, in which about 20 neutrinos in a 10 s burst were observed in the Kamiokande and IMB
detectors from a gravitational-collapse supernova in the Large Magellanic Cloud on 23 February 1987.5

The next galactic supernova will likely result in the detection of tens of thousands of neutrinos lasting
for many tens of seconds. The most straightforward observable is the total radiated neutrino energy,
all of which originates from the gravitational binding energy BE of the newly-formed neutron star,
about GM2/R ' 3× 1053 erg. Just as for the moment of inertia, relatively EOS-independent bounds
for BE can be found from piecewise polytropes [37]

BE/M = −0.00921 + 0.6603β + 0.2651β2 + (−1.60± 4.00)β4, (18)

valid for β ≥ 0.12 as shown in Figure 6.

5 In addition, the first multi-messenger observation was Ray Davis’ observation of solar neutrinos from Homestake Mine,
South Dakota, in the 1970s.
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Figure 5. Moments of inertia computed from piecewise polytropes. Left: Points show
values of I/(MR2) as a function of compactness β assuming Mmax ≥ 2.01M� and
8.4 MeV fm−3 < p1 < 30 MeV fm−3. The solid curves show bounds from Equation (16). The dashed
curve is the causal upper limit [37], and colors indicate radius values. Right: The dimensionless
moment of inertia Ī = Ic4/(G2 M3) as a function of radius R for M = 1.3381M�. The dashed curves
show the bounds from Equation (17) and the dotted curves show the bounds from Equation (16).

Figure 6. Neutron star properties from piecewise polytropes. Colors indicate radius values.
(Left) Binding energy per unit mass BE/M as a function of compactness β. Solid curves
denote the bounds in Equation (18) and the dashed curve shows the causal maximum [37];
(Right) Dimensionless deformability Λ as a function of M. Dashed lines show the causal minimum
assuming Mmax = 2.01M� [38], and the solid line shows the minimum permitted by the unitary gas
constraint [38].

It is useful to generate bounds on binding energy formulated entirely in terms of M, even if
its uncertainties are larger than that of Equation (18) due to relatively small radius variations.
Utilizing piecewise polytropes, Ref. [37] found the bounds

BE/M ' (0.058± 0.006)M + (0.013± 0.001)M2. (19)

The gravitational wave signal from binary neutron star mergers differs from that of black holes
because of finite-size effects, revealed primarily through tidal deformabilities. These are described
by the tidal Love number k2 [39–41], the proportionality constant between an external tidal field and
the quadrupole deformation of a star. It is found by solving an additional first-order differential
equation [42] simultaneously integrated with Equation (2), and has values ranging between 0.05
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and 0.15 for neutron stars. For black holes, k2 = 0. It is more useful to define a dimensionless
deformability by

Λ =
2
3

k2β−5, (20)

where β is the compactness parameter. Λ is highly correlated with both M and R (right panel of
Figure 6), showing, as for moments of inertia and binding energies, a quasi-universal behavior that is
insensitive to the EOS. The piecewise polytrope results show that not only does Λ for a configuration
decrease with a high power of the mass, but, for a given mass, it also increases with the same high
power of the radius. The results of Ref. [42] suggested for M > 1M�, or β ≥ 0.1 that k2 is roughly
proportional to 1/β, so, from the definition of Λ, Equation (20), it is to be expected that Λ ∝ β−6.
Although this relation breaks down for both small and large masses, M < 1M� or M > 1.8M�, for the
expected mass ranges expected in compact mergers, Ref. [38] found

Λ = aβ−6 (21)

with the bounds a = 0.0086± 0.0011.

8. Applications to and Constraints from GW170817

The marvelous multi-messenger observation of the binary neutron star merger GW170817
provided unprecedented information on neutron star properties that can tightly constrain viable
EOSs. First, the gravitational wave data alone set limits on the total mass of the inspiralling stars
and their radii. Second, this information, coupled with the detections of a gamma-ray burst 1.7 s
after the merger, an optical/infrared afterglow thought to be due to significant mass ejection of very
neutron-rich matter resulting in the synthesis of high-opacity heavy elements (the r-process), and radio
jets at later times, allows an upper limit to Mmax to be estimated [43].

8.1. Inferences from Gravitational Waves

First, we consider what is learned from the gravitational wave data. Tidal deformation results in
excess dissipation of orbital energy, speeding up the final stages of the inspiral. Both neutron stars are
deformed, and the change in the waveform phase due to tides, to lowest order, is [40]

δΦt(t) = −
117
256

(1 + q)4

q2

(
π f (t)GM

c3

)5/3

Λ̃, (22)

where q = M2/M1 ≤ 1 is the binary mass ratio, M = (M1M2)
3/5(M1 + M2)

−1/5 is the so-called
chirp mass, and f (t) is the time-dependent gravitational wave frequency, which is twice the orbital
frequency. Λ̃ is a particular combination of the two stars’ deformabilities:

Λ̃ =
16
13

(12q + 1)Λ1 + (12 + q)q4Λ2

(1 + q)5 , (23)

where Λ1 and Λ2 refer to the two stars. GW170817 provided the accurate measurement [44]
M = 1.188± 0.001M�. With the additional GW170817 constraint 0.7 < q < 1, this implies that
2.73M� < M1 + M2 < 3.05M�.

The behavior of Λ̃ as a function ofM is very similar to that of Λ as a function of M and is shown
in Figure 7. This figure shows that Λ̃ decreases with a large power ofM, approximately 5 to 6, and that
EOSs with larger radii, as parameterized by R1.4, generally have larger values of Λ̃ for a givenM
value. There is only a weak dependence on q. For the case of GW170817,M = 1.188M�, it is found
that [38]

Λ̃ ' (0.00375± 0.00025)[GM/(R1.4c2)]−6. (24)
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Thus, a precision measurement ofM coupled with even a poor estimate of Λ̃ has the potential of
constraining the neutron star radius rather well.

One can understand the general behavior of Λ̃ using Equation (21), in which case
Equation (23) becomes

Λ̃ =
16a
13

(
R̄c2

GM

)6 q8/5

(1 + q)31/5

[(
R1

R̄

)6
(1 + 12q)q2 +

(
R2

R̄

)6
(12 + q)

]
. (25)

R̄ is a reference radius. A notable result from piecewise polytropes is that stellar radii do not
vary appreciably, for a given EOS, in the mass range 1.1M� − 1.6M� (the average variation is about
1% [38]). With the approximation R1 = R2 = R̄, one obtains

Λ̃ ' 16a
13

(
R̄c2

GM

)6 q8/5

(1 + q)26/5

(
12− 11q + 12q2

)
, (26)

which is remarkably insensitive to q. For example, ∂Λ̃/∂q = 0 when q = 1 or q = 0.434,
and Λ̃(q = 0.8)/Λ̃(q = 1) = 1.013. Although Equation (26) is based on a number of assumptions,
it is substantially the same as Equation (24). It predicts, using q = 1 and R̄ = R1.4, the constant to be
26/5a = 0.00374± 0.000479, which has the same mean value although nearly double the uncertainty.

Figure 7. The binary deformability Λ̃ as a function of chirp mass M from piecewise polytropes
subject to causality and a Mmax > 2M�. Vertical dotted lines indicateM = 1.188M� for GW170817,
colors indicate values of R1.4 and component masses are restricted such that they exceed 1M�.
The dashed line shows the causal minimum and the solid line shows the minimum from the unitary gas
constraint [38].

The piecewise polytrope result R1 ' R2 is important because it now follows that

Λ1 = αq6Λ2, (27)

where α ∼ 1, which is useful in the analysis of gravitational wave data in which very broad priors
of Λ1 and Λ2 are normally assumed. Zhao and Lattimer [38] used piecewise polytropes, without
the assumption that R1 = R2, to find, in the case thatM = 1.188M� and q = 0.7 that α = 1+0.65

−0.10
bounds the results. Furthermore, the range of α rapidly decreases with 1− q; for q = 0.85, α = 1+0.25

−0.05
(of course, α ≡ 1 for q = 1). In comparison, if no correlation is assumed, α is virtually unconstrained.
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The use of Equation (27) effectively reduces the dimensionality of a Markov Chain Monte Carlo
gravitational-wave analysis by 1, with a substantial increase in computational speed.

The gravitational waves from the recently observed merger of two neutron stars, GW170817,
were initially analyzed by the LVC collaboration [44]. The signal was fitted to the Taylor F2
post-Newtonian aligned-spin model [45–50] which has 13 parameters. Seven of those parameters are
extrinsic, including the sky location, the source’s distance, polarization angle and inclination, and the
coalescence phase and time. The remaining six parameters are intrinsic, including the masses M1 and
M2, dimensionless tidal deformabilities Λ1 and Λ2, and the component’s aligned spins χ1 and χ2.

The most accurate result is the measurement ofM. If spin and deformation effects are small,
to lowest order in a post-Newtonian expansion, the orbital behavior only depends on the frequency
dependence of the inspiral waveform such that

M =
c3

Gπ f (t)

(
5 ḟ (t)
96 f (t)

)3/5

. (28)

Here, ḟ is the time derivative of the frequency f (t). The GW170817 analysis by the LVC
consortium [44] found a relatively precise measurement M = 1.188 ± 0.001M�.6 However,
only a vague restriction of the mass ratio, q >∼ 0.65, is obtained since this parameter only weakly
affects waveform models. Incidentally, the additional measurement of the wave amplitude h(t) allows
an estimate of the source distance

D =
5c

48π2
ḟ (t)

h(t) f (t)3 ' 40± 10 Mpc. (29)

LVC also determined, to 90% confidence, that Λ̃ < 800, but established no lower bound.7

The initial LVC analysis employed conservative assumptions and did not utilize information
obtained from electromagnetic observations (which constrain the source location and distance).
Furthermore, correlations between Λ1 and Λ2 were not considered. This is tantamount to the
assumption that the two stars did not necessarily have the same EOS. However, only under somewhat
contrived circumstances is it likely that the EOSs describing the two stars would differ appreciably.
For example, one star could be a black hole, which, however, the measured chirp mass makes
exceedingly unlikely as there is no known formation mechanism to produce a stellar black hole
of less mass than Mmax, or one star could be a hybrid star and the other a conventional star [51].
This would generally require the transition mass to be in between the masses of the two stars; otherwise,
both would be hybrid or both would be conventional, and both would have correlated Λs according to
Λ1 ' q6Λ2. For a close q, this would be especially unlikely. However, even if only one star is a hybrid
star, the EOS of the hybrid star below the hybrid transition density would still be identical to that of the
hadronic star, and its EOS at higher densities has to be constrained to satisfy the 2M� maximum mass
constraint. The masses and deformabilities of the two stars would still retain significant correlations.
Another possibility is that the stars occupied separate branches in the M− R diagram because one
branch (the hadronic branch) is metastable above the phase transition density. Then, the hybrid branch
does not have to satisfy the 2M� constraint. However, this would require that, for some reason,
the lower mass star would be the one to have transitioned to the quark branch while the more massive
star did not, opposite to conventional wisdom. More discussion of twin stars, and earlier references,
can be found in Refs. [52,53].

6 This value takes into account cosmological redshift corrections.
7 This result actually corresponds to the upper 80% confidence bound, as it was defined to be the level above which 10% of

the probability remains.
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By utilizing the additional information described above, De et al. [54] were able to improve the
GW170817 analysis, resulting in tighter constraints onM and Λ̃ (including the discovery of a lower
bound to Λ̃). Three parameters were eliminated by using the electromagnetic source’s distance and
two-dimensional sky position. Additionally, the prior ranges chosen for the spin parameters χ1 and
χ2 were taken to be smaller than in the LVC analysis, as motivated by observed double neutron star
systems. Finally, Ref. [54] correlated the tidal deformabilites using Equation (27).

As seen in Figure 8, the 80% uncertainty region for Λ̃, 105 < Λ̃ < 485 is considerably improved
compared to Λ̃ < 800 found by Ref. [44].8 Later, LVC reanalyzed GW170817 with the EOS correlations
as suggested by Ref. [54], together with improved waveform models, and concluded the 90%
confidence interval was reduced to 190 < Λ̃ < 630. This compares to 85 < Λ̃ < 640 for Ref. [54].

Figure 8 shows the important result that about 36.2% of the Λ̃ posteriors violate the unitary gas
conjecture. It is noteworthy that the EOS correlations introduced by Ref. [55] were determined from
EOSs that implicitly satisfy the unitary gas conjecture. If the analysis of Ref. [54] were to also include the
unitary gas conjecture, the new 90% confidence interval would change to 240 < Λ̃ < 720, putting the
two results into clearer agreement.

Figure 8. Neutron star parameters inferred for GW170817 [54], assuming that Λ1 = Λ2q6.
Contours refer to 68%, 80%, 90% and 95% confidence levels. Left panel: The binary chirp mass
M and mass ratio q. Right panel: M and the binary deformability Λ̃. The blue dashed line shows the
predicted minimum value from the unitary gas constraint [37]. Attached side panels show the integrated
probability distributions overM or Λ̃; dashed lines show where integrated probabilities reach 2.5%,
5%, 10%, 16%, 50%, 84%, 90%, 95% and 97.5%, respectively.

The uncertainties in Λ̃ and q are correlated. Asymmetric mass ratios are predicted to advance
the waveform phase δΦ, while a finite deformability retards the phase (Equation (22) and Figure 8).
In addition, positive spins are predicted to advance the waveform phase, so fits to the waveform
suffer from a triple degeneracy. Fortunately, it is apparent from Equation (23) that Λ̃ itself is relatively
insensitive to q, so that Λ̃ is a good proxy for the radii. Assuming q ∼ 1 and inverting Equation (24),
one finds

R1.4 ' 21/5 GM
c2

(
Λ̃
a

)1/6

' (10.6± 0.2)
(

Λ̃
500

)1/6 M
M�

km. (30)

For GW170817, one finds R1.4 ' (12.5± 0.2)
(
Λ̃/500

)1/6 km. For the initial LVC result, Λ̄ < 800,
one finds R1.4 < 13.9 km. Because the EOS uncertainties in Equation (30) are represented as absolute

8 Ref. [44] used the notation “90% upper bound”, above which 10% of the posteriors lay, to refer to the equivalent upper 80%
bound shown in Figure 8 since 10% of the posteriors lie above it and 10% lie below the lower 80% bound.
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bounds, we can use the upper limit without introducing additional uncertainty. The correlated-EOS
LVC 90% upper bound from Ref. [55] is R1.4 < 13.3 km, while the De et al. [54] result is R1.4 < 13.6 km.
The implications for the masses and radii for the two neutron stars in GW170817 are summarized in
Figure 9. The left (right) panel of this figure shows the inferred deformabilites (radii) of the stars as
a function their masses.

Figure 9. Similar to Figure 8 but for Λ(M) (left panel) and M(R) (right panel, using Equation (21) to
estimate radii from M and Λ.). Attached side panels show the integrated probability distributions over
Λ, M or R. The red (blue) dashed curves show bounds from causality (the unitary gas conjecture) [37].
The regions with M > (<)1.365M� refer to the more (less) massive star.

8.2. Inferences from Multi-Messenger Observations

The remnant formed in the immediate aftermath of the GW170817 merger is believed to have been
differentially rotating and containing sufficient angular momentum to be near its mass-shedding limit.
Such an object can be hydrodynamically unstable, metastable, or absolutely stable against gravitational
collapse depending on its mass and the EOS. The maximum mass thought to be supportable by
differential rotation is about MDR >∼ 1.5Mmax, while uniform rotation can support less, a maximum
of MUR = ξMmax, where Mmax is the maximum mass of a non-rotating neutron star and ξ ∼ 1.2 [56].
Because of binding energies, which depend on both M and the EOS (Equations (18) or (19)), we consider
the baryon mass MB as opposed to the gravitational mass M for this discussion. We then define
MB,UR/MB,max = ξb. It has been found that the factors ξ and ξb depend relatively weakly on the
EOS [57]. The aftermath of the merger depends mostly on the relative values of the total inspiralling
baryon mass MBT = MB1 + MB2, compared to MB,DR and MB,UR, modulo the ejected mass.

If MBT > MB,DR, a prompt collapse to a black hole results, with almost no likelihood for the
formation of a gamma-ray burst, mass ejection or radio jets. If MBT < MB,UR, on the other hand,
the remnant will be indefinitely stable, as the loss of angular momentum from a uniformly-rotating star
is thought to occur on much long timescales. Although a gamma-ray burst, radio jets and ejected mass
are all likely in this case, the ejected mass may be “poisoned” by neutrinos emitted from the remnant
over long timescales which convert neutrons to protons, rendering synthesis of very heavy elements
problematical. The afterglow in this case would tend to be due to “blue” radiation flowing from
low-atomic weight, low-opacity material, as opposed to “red” radiation flowing from high-opacity
matter consisting of very heavy elements, which is what was observed. In addition, a long-lived
remnant will emit vast amounts of dipole radiation from spin-down and magnetic fields, which
would enhance the lumninosity radiated by the ejecta. This was apparently not seen in the afterglow
from GW170817. We thus infer MB,UR < MBT < MB,DR [43], again, modulo the ejected mass. It is
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convenient to use Equation (18) for the binding energy since it depends only on M. This situation now
allows the estimation of an upper limit for Mmax by comparing the inspiralling baryon mass

Mb,init =M
(1 + q)6/5

q3/5 + 0.052
M2

M�
(1 + q2)(1 + q)2/5

q6/5 + 0.012
M3

M2
�

(1 + q3)(1 + q)3/5

q9/5 , (31)

with the maximum baryon mass that can be supported by uniform rotation

Mb,UR = ξb Mb,max = xib

[
Mmax + 0.052

M2
max

M�
+ 0.012

M3
max

M2
�

]
. (32)

Taking account the total ejected baryon mass ∆ >∼ 0.05M�, we have a cubic equation for Mmax

Mb,UR > Mb,init − ∆. (33)

We use a lower bound for ∆ and use the lower bounds on the coefficients from Equation (19) in
Equations (31) and (32) to preserve the inequality. With the additional lower bound ξb ≤ 1.15 inferred
from relativistic calculations [56,57] of uniformly maximally-rotating stars using causal EOSs that
satisfy Mmax > 2M�, we obtain, approximately, 2 < Mmax/M� < 2.18+ 0.52(1− q)2. The dependence
on q is weak, and for q > 0.6 (Figure 8), Mmax < 2.25M�. However, note that the most likely value
of q is unity, for which Mmax < 2.18M�. This upper limit to Mmax can be used to further restrict the
dense matter EOS and to further refine the numerous correlations described in this article.

9. Conclusions

The constraints on masses and radii from theory and observations have been reviewed.
Inferences from X-ray observations imply radii in substantial agreement with theoretical inferences
from neutron matter theory and from nuclear experiments, but suffer from systematic effects that
preclude firm constraints on dense matter. The spectacular observation of GW170817, on the other
hand, while also producing radius constraints in line with previous results, has different and seemingly
smaller systematic uncertainties. Furthermore, additional observations of neutron star mergers offer
the possibility to dramatically enhance these constraints as well as set unprecedented bounds on the
neutron star maximum mass.
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