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Abstract: We study shadows of regular rotating black holes described by the axially symmetric
solutions asymptotically Kerr for a distant observer, obtained from regular spherical solutions of
the Kerr–Schild class specified by Tt

t = Tr
r (pr = −ε). All regular solutions obtained with the

Newman–Janis algorithm belong to this class. Their basic generic feature is the de Sitter vacuum
interior. Information about the interior content of a regular rotating de Sitter-Kerr black hole can be in
principle extracted from observation of its shadow. We present the general formulae for description
of shadows for this class of regular black holes, and numerical analysis for two particular regular
black hole solutions. We show that the shadow of a de Sitter-Kerr black hole is typically smaller than
that for the Kerr black hole, and the difference depends essentially on the interior density and on the
pace of its decreasing.

Keywords: shadows; regular black holes; de Sitter vacuum

1. Introduction

The shadow of a black hole represents a dark spot appearing over an image of a bright source
of radiation and seen by a distant observer as a direct dark image of a black hole, whose boundary
is determined by the photon gravitational capture cross-section confined by the innermost unstable
photon orbits ([1,2] and references therein). Recently, a black hole shadow has become the subject of
direct astronomical interest [3,4] due to the observational possibilities provided by the Event Horizon
Telescope Collaboration [5] verified by the first observation of the black hole shadow in M87 [6].

Possibilities of extraction of information on the black hole parameters from the observations of its
shadow have been considered in [7,8]. The question of degeneracy of extracted information related
to the position and motion of an observer with respect to the black hole has been addressed in [9,10].
The Kerr black hole sensitivity of the shape of its shadow to its angular momentum and orientation
with respect to an observer has been considered in [8,11,12].

Testing the nature of black holes by observation of their shadows was first proposed for
supermassive black holes violating the Kerr bound when a clear observational signature for
super-spinning black holes can be obtained [13], for supermassive black holes in the δ = 2
Tomimatsu–Sato spacetime [14], and in the framework of testing the no-hair theorem, using observables
in the electromagnetic spectrum dependent on the quadrupole moment of a black hole [15]. In [8]
this issue has been addressed for several non-Kerr black holes including the regular rotating black
holes related to the Bardeen [16] and Hayward [17] spherical black holes. Analysis gives the
results similar to the Kerr black hole and suggests that the detection of the Kerr-like black hole
can give some meaningful constraints on its nature [8]. Similar results have been obtained for testing
different gravity theories with black hole shadows [18], for calculations of images from general
relativistic transfer [19] and hydrodynamical simulations of black hole accretion [20] fulfilled for the
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Rezzola–Zhidenko parametrization in general metric theories [21] and for a dilaton black hole in the
Einstein–Maxwell-axion gravity [22] (for a recent review [23]).

The axially symmetric Kerr solution can be obtained from the spherical Schwarzschild solution
with using the complex coordinate translation discovered by Newman and Janis [24]. As shown by
Gürses and Gürsey [25], the Newman–Janis translation works for the metrics

ds2 = g(r)dt2 − dr2

g(r)
− r2dΩ2; g(r) = 1− 2M(r)

r
; M(r) = 4π

∫ r

0
ε̃(x)x2dx (1)

which belong to the algebraically special metrics of the Kerr–Schild class [26] described by the
algebraically degenerated solutions to the Einstein equations. 1

For the class of metrics (1) the source terms have the algebraic structure such that [28]

Tt
t = Tr

r (pr = −ε). (2)

Regular spherical solutions satisfying the weak energy condition (non-negativity of density as
measured by any local observer) have obligatory de Sitter center with p = −ε [28–31].

The regular spherical solutions specified by the condition (2) can be transformed by the
Gürses-Gürsey algorithm based on the complex Trautman–Newman translations (which include
the Newman–Janis translation) [25] into regular axially symmetric solutions which satisfy Equation (2)
in the co-rotating reference frame [32,33] and describe regular rotating objects, asymptotically Kerr for
a distant observer.

The basic generic feature of all regular rotating compact objects of this class is the interior de Sitter
vacuum disk [34]. The mass parameter M appearing in the Kerr limit M =M(r → ∞) is the finite
positive mass, generically related to the interior de Sitter vacuum and breaking of spacetime symmetry
from the de Sitter group [30].

All regular black hole solutions obtained by the Newman–Janis algorithm presented in the
literature belong to the Kerr–Schild class and describe the de Sitter-Kerr black holes (for a review [35]).

Regular rotating de Sitter-Kerr black holes have at most two horizons, two ergospheres, and two
different kinds of interiors [34,35]. For the first type interior, a related spherical solution violates the
dominant energy condition, and the interior of a rotating solution reduces to the de Sitter vacuum
disk and satisfies the weak energy condition. For the second type interior, an original spherical
solution satisfies the dominant energy condition, and for a rotating solution there can exist the interior
two-dimensional S-surface of the de Sitter vacuum which contains the de Sitter disk as a bridge.
The weak energy condition is violated in the internal cavities between the S-surface and the disk,
which are thus filled with an anisotropic phantom fluid.

Some information on the interior content of a regular rotating black hole can be in principle
extracted from observation of its shadow, whose boundary is determined by the metric as the photons
gravitational capture cross-section, which gives the apparent image of the black hole on the background
of the image of the source of radiation.

The aim of this paper is to study dependence of the shadows of the de Sitter-Kerr black holes
on the physical parameters which determine the character of their interiors. In Section 2 we outline
the basic properties of the de Sitter-Kerr black holes. In Section 3 we present the general formulae
which describe the boundaries of their shadows including dependence on the interior density and the
relationship between the black hole spin and the asymmetry parameter characterizing the boundary of
its shadow. The comparative analysis for two regular black holes with quickly [28] and slowly [34]
decreasing density profiles is presented in Sections 4 and 5. Section 6 contains conclusions.

1 Generalization of the Newman–Janis algorithm to the more general case ds2 = f (r)dt2 − dr2

g(r) − r2dΩ2 has been considered
in [27].
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2. Basic Generic Properties of de Sitter-Kerr Black Holes

Spherically symmetric solutions specified by Equation (2) belong to the Kerr–Schild class
and are transformed by the Gürses-Gürsey algorithm (which includes the Newman–Janis complex
translation) [25] into the axially symmetric solutions which can be written in the form

gµν = ηµν +
2 f (r)

Σ
kµkν (3)

where
f (r) = rM(r), (4)

ηµν is the Minkowski metric and kµ is a null vector field, kµ = 1
∆ [r

2 + a2, ∆, 0, a], tangent to the principal

null congruence dt = E (r2+a2)
∆ dλ; dr = Edλ; dθ = 0; dφ = aE

∆ dλ, where λ is the affine parameter
along geodesics and

∆ = r2 + a2 − 2 f (r). (5)

In the Boyer–Lindquist coordinates the Gürses-Gürsey metric reads (in the units c = G = 1) [25]

ds2 =
2 f − Σ

Σ
dt2 +

Σ
∆

dr2 + Σdθ2 − 4a f sin2 θ

Σ
dtdφ +

(
r2 + a2 +

2 f a2 sin2 θ

Σ

)
sin2 θdφ2 (6)

where a is the angular momentum, the Lorentz signature is [- + + +], and Σ = r2 + a2 cos2 θ.
The Boyer–Lindquist coordinates r, θ, φ are related with the Cartesian coordinates x, y, z by the

formulae x2 + y2 = (r2 + a2) sin2 θ; z = r cos θ. The surfaces of constant r are the oblate confocal
ellipsoids of revolution [1]

r4 − (x2 + y2 + z2 − a2)r2 − a2z2 = 0 (7)

which degenerate, for r = 0, to the equatorial disk

x2 + y2 ≤ a2, z = 0, (8)

centered on the symmetry axis and bounded by the ring x2 + y2 = a2, z = 0.
The basic features of regular rotating objects are closely related to the generic properties of related

regular spherical solutions (1). Horizons are defined by ∆(r+, r−) = 0 where r+ is the event horizon
and r− ≤ r+ is the internal horizon. The function ∆(r) can be written as

∆(r) = r2 + a2 − 2 f (r) = a2 + r2g(r) (9)

and its behavior is determined by the behavior of a related spherical metric function g(r). The function
∆(r) evolves from ∆ = a2 as r → 0 to ∆→ ∞ as r → ∞, and takes the value ∆ = a2 at zero points of
the metric function g(r). For regular solutions specified by Equation (2) with the de Sitter vacuum in
the center, the maximal number of zero points of the metric function g(r) is two [29,30], and the axially
symmetric spacetime can have at most two horizons [34].

The eigenvalues of the stress–energy tensor in the co-rotating frame where each of ellipsoidal
layers rotates with the angular velocity ω(r) = uφ/ut = a/(r2 + a2), are related to the function
f (r) = rM(r) as [25,32]

κΣ2ε(r, θ) = 2( f ′r− f ); κΣ2 p⊥(r, θ) = 2( f ′r− f )− f ′′Σ. (10)

This gives

ε(r, θ) =
r4

Σ2 ε̃(r); pr(r, θ) = −ε; (p⊥ + ε) = 2
(

r4

Σ2 −
r2

Σ

)
ε̃(r)− r3

2Σ
ε̃′(r) (11)
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where the prime denotes the derivative with respect to r and tilde refers to a related spherical solution.
In the equatorial plane r2

Σ → 1 as z → 0, and Equation (11) reduces to (p⊥ + ε) = −rε̃′(r)/2.
For spherical solutions regularity requires rε̃′(r) → 0 as r → 0 [30], and Equation (11) yields the
equation of state p⊥ = pr = −ε on the disk (8), which represents the rotating de Sitter vacuum [33,34].

Equation (11) can be written as [34]

p⊥ + ε =
r|ε̃′|
2Σ2 S(r, z); S(r, z) = r4 − z2P(r); P(r) =

2a2

r|ε̃′| (ε̃− p̃⊥). (12)

It implies a possibility of generic violation of the weak energy condition which requires
Tµνwµwν ≥ 0 for any time-like vector wµ and is valid if and only if ε ≥ 0 and pk + ε ≥ 0. The first
of these two conditions is satisfied according to Equation (11). For the considered class of solutions
satisfaction of the weak energy condition requires thus p⊥ + ε ≥ 0.

If a related spherical solution violates the dominant energy condition (ε̃ ≥ p̃k), then ε̃ < p̃⊥
leads to P(r) ≤ 0 and the weak energy condition is preserved for a rotating solution. In this case,
the function S(r, z) in Equation (12) vanishes only at approaching the disk r = 0. The interior region
looks as shown in Figure 1 Left [34], where we also plotted two horizons, the event horizon r = r+
and the internal horizon r = r−, and the ergosphere defined by gtt = 0 in Equation (6) which results in
r2 + a2 cos2 θ − 2 f (r) = 0.

The weak energy condition can be in principle violated beyond the vacuum surface S(r, z) = 0 on
which p⊥ + ε = 0. It is possible in the case when P(r) ≥ 0 in Equation (12), which in turn is possible
only if a related spherical solution satisfies the dominant energy condition. Then there can exist the
S-surface, defined by p⊥ + ε = 0, which contains the de Sitter disk as a bridge. The weak energy
condition is violated in the internal cavities between the S-surface and the disk, which are filled thus
with an anisotropic phantom fluid, pr = −ε; p⊥ = w⊥ε with w⊥ < −1. This is the second type of
interior shown in Figure 1 Right [34], where rv is the regularity parameter for the case admitting this
type of interior (more details in Section 4).

x

y

z

-rp =

-
r

r=

+
r

r=

a

erg
osphere

^
+ rp = 0

^
+ r >p 0

x

y

z

Ö + 2
r a avÖ r av

a

^
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Figure 1. Left: Horizons, ergosphere, and the interior de Sitter vacuum disk for a de Sitter-Kerr black
hole with the first type of interior. Right: Vacuum S-surface p⊥ + ε = 0 for the de Sitter-Kerr black
hole with the second type of interior. In Figure 1 energy density is denoted by ρ (ε = ρ in the units
c = G = 1).

3. Shadows of Regular de Sitter-Kerr Black Holes

3.1. Integrals of Motion Defining the Boundary of Shadow

The basic parameters related to the integrals of motion on the photon geodesics are defined by [1]

ξ = Lz/E; η = Q/E2 (13)
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where the integrals of motion E and Lz are related to the Killing vectors Kt and Kφ in the axially
symmetric geometry (6).

The integral of motion Q is related to the quadratic integral of motion K given by [1]

K = Q + (Lz − aE)2 (14)

and related to the conformal Killing tensor Kαβ existing in a spacetime of D-type of Petrov
classification ([1] and references therein).

The photon geodesics satisfy the equations

Σ2 ṙ2

E2 = R(r) = r4 + (a2 − ξ2 − η)r2 + [η + (ξ − a)2]2M(r)r− a2η; Σ2 θ̇2

E2 = η + a2 cos2 θ − ξ2 cot2 θ;

Σ
φ̇

E
=

ξ2

sin2 θ
+

a
∆
[2M(r)r− aξ]; Σ

ṫ
E
= −a2 sin2 θ +

1
∆
[(r2 + a2)2 − 2aM(r)rξ] (15)

where dot denotes the derivative with respect to the affine parameter along a geodesic.
The innermost unstable photon orbits r = const which define the boundary of the shadow are

defined by two equations

R(r) = 0; ∂R/∂r = 4r3 + 2(a2 − ξ2 − η)r + 2(M+M′r)(η + (ξ − a)2 = 0. (16)

From these equations we find the relation between the parameters η and ξ on the orbits

η =
3r4 + r2(a2 − ξ2) + 2M′r2(ξ − a)2

r2 − a2 − 2M′r2 (17)

and obtain the equation for ξ

Aξ2 + Bξ + C = 0 (18)

where
A = a2(r−M− r)−M′r); B = −2aM(r2 − a2) + 2aM′r(r2 + a2); (19)

C = (r2 + a2)[M(3r2 − a2)− r(r2 + a2)]−M′r(r2 + a2)2. (20)

The determinant of Equation (18) reduces to the form

B2 − 4AC = 4a2r2∆2. (21)

The resulting general formulae for the integrals of motion ξ and η on the orbits read

ξ =
M(r2 − a2)− r∆−M′r(r2 + a2)

a(r−M−M′r)
; (22)

η =
r3

a2(r−M−M′r)
[4a2M− r(r− 3M)2 − 2M′r(r2 − 3Mr + 2a2)− (M′)2r3]. (23)

ForM = M = const they coincide with those for the Kerr metric presented in [1] .

3.2. Information About a Black Hole from Its Shadow

The celestial coordinates (x, y) related with the integrals of motion for the innermost orbits [1],
correspond to the impact parameters for the boundary of the gravitational capture cross-section as seen
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by an observer at infinity, since photons infalling with these impact parameters get to the innermost
unstable photon orbits [1,2]

x = ρ⊥ = r2 sin2 θi

(
dφ

dt

)
∞
=

ξ

sin θi
; y = ρ|| = r2

(
dθ

dt

)
∞
= ±

√
η + a2 cos2 θi − ξ2 cot2 θi. (24)

Here θi is the angular coordinate of an observer; x is the apparent distance of the black hole image
from the symmetry axis perpendicular to it; y the apparent distance of the black hole image from its
projection on the equatorial plane, perpendicular to it. Introduction of the impact parameters is shown
in Figure 2 Left, where ρ =

√
ρ2
⊥ + ρ2

||.

To determine the asymmetry of the shadow we construct the fitting circle with the radius R and
the center at x = xC, using the coordinates of the upper point of the shadow contour (xt, yt) and of its
left and right endpoints in the equatorial plane , xL and xR. The asymmetry parameter D is introduced
as the distance between the right endpoints of the circle and of the shadow contour [7] as shown in
Figure 2 Right, where R = xC − xL, R2 = (xC − xt)2 + y2

t and D = 2R− (xR − xL). Eliminating xC,
we obtain the radius of the fitting circle

R =
y2

t + (xt − xL)
2

2(xt − xL)
(25)

and the distortion parameter

δ =
D
R

= 2
[

1− (xR − xL)(xt − xL)

y2
t + (xt − xL)2

]
. (26)

Figure 2. Left: Impact parameters ρ⊥ and ρ|| corresponding to the celestial coordinates x, y. Right:
Asymmetry parameter D.

Equations (22) and (23) defining the contour of the shadow, can be written in the simpler form
with using the integral K given by (14) in terms of ξ and η, which reads

K = η2 + (ξ − a)2. (27)

This transforms Equations (22) and (23) to the system of two equations

ξ − a =
1
a

[
r2 − 4r

∆
∆′

]
; K =

16r2∆
(∆′)2 . (28)
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In the celestial coordinates

K = y2 + (x− as)2; s = sin θi (29)

and Equation (28) yield

x =
(−1)

as(r− f ′)

[
r3 − (4 f − f ′r)r + a2r + a2 f ′

]
;

y2 =
1

a2s2(r− f ′)2

[
4a2s2r2(r2 − 2 f + a2)−

(
r3 − (4 f − f ′r)r + a2(1 + s2)r + a2(1− s2) f ′

)2]
. (30)

Introducing the variables
u = r2; φ =

√
∆ (31)

we transform the system (28) to

xs− a =
1
a

(
dφ

du

)−1 [
u

dφ

du
− φ

]
; y2 + (x− as)2 =

(
dφ

du

)−2
. (32)

From the first equation we find

x =
1
s

(
dφ

du

)−1 (1
a

[
u

dφ

du
− φ

]
+ a

dφ

du

)
. (33)

Differentiating equations of the system (32) with respect to u we obtain

dx
du

=
φ

as
d2φ

du2

(
dφ

du

)−2
; y

dy
du

+ (x− as)
dx
du

= −d2φ

du2

(
dφ

du

)−3
(34)

which gives the equation for the derivative dy/dx (for y and x related by the curve for the boundary
of the shadow)

y
dy
dx

+ (x− as) = − as
φ

(
dφ

du

)−1
. (35)

Taking into account Equations (31) and (33) we obtain the derivative dy/dx on the shadow
boundary dependently on the functions defining the unstable orbits forming the boundary

y
dy
dx

=
1

as(r− f ′)

[
r3 − (4 f − f ′r)r + a2(1− s2)(r + f ′)

]
. (36)

The upper point of the shadow contour r = rt is defined by dy/dx = 0 which gives

r3
t − (4 ft − f ′t rt)rt + a2(1− s2)(rt + f ′t ) = 0, (37)

and Equation (30) yields

xt = −as · rt + f ′t
rt − f ′t

; y2
t =

2rt

(rt − f ′t )

[
r2

t + a2(1− s2)

]
. (38)

As a result, the upper point of the shadow contour is determined by the system of Equations (37)
and (38).

For an observer coordinate θi = π/2 (s = 1) this system reduces to the simple form

rt − 3µt + µ′trt = 0; xt = −
2aµt

rt − 2µt
; y2

t =
r3

t
rt − 2µt

. (39)
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Here and in what follows, distances are normalized to the mass parameter M and f = rµ(r),
where µ is the mass functionM(r) normalized to M. For the Kerr black hole µ(r) = 1 and we obtain
rt = 3; xt = −2a ; y2

t = 27 in agreement with the known results (see, e.g., [1]).
The left and right points of the shadow contour correspond to y2 = 0, and Equation (30) gives the

equation for the innermost orbit in the equatorial plane

r
(

r[1 + µ′]− 3µ

)2

+ 4a2
(

r[1 + µ′]− 3µ

)
− 4a2(r− 2µ) = 0. (40)

Multiplying by [1 + µ′], we obtain

r[1 + µ′]

(
r[1 + µ′]− 3µ

)2

+ 4a2[1 + µ′]

(
r[1 + µ′]− 3µ

)
− 4a2

(
r[1 + µ′]− 2µ[1 + µ′]

)
= 0. (41)

Introducing the new variable

w =
r[1 + µ′]− 2µ

µ
(42)

we obtain the cubic equation

w3 − 3
(

1− 4µ′

3
a2

µ2

)
w + 2

(
1− 2[1 + µ′]

a2

µ2

)
= 0. (43)

For the equation in the canonical form w3 + bw2 + cw + d = 0 with the coefficients

b = 0; c = −3
(

1− 4µ′

3
a2

µ2

)
; d = 2

(
1− 2[1 + µ′]

a2

µ2

)
, (44)

solutions are determined by the quantities

q =
b2 − 3c

9
= 1− 4µ′

3
a2

µ2 ; p =
2b3 − 9bc + 27c

54
= 1− 2[1 + µ′]

a2

µ2 ;

S = q3 − p2 =

(
1− 4µ′

3
a2

µ2

)3

−
(

1− 2[1 + µ′]
a2

µ2

)2

. (45)

Types of solutions depend on the signs of q and S. For the constant mass the solutions should
coincide with those for the Kerr black hole, for which q = 1 > 0 and S = 4a2(1− a2) ≥ 0. We can
expect that the shape of a shadow for a regular black hole would not differ essentially from that for the
Kerr black hole and assume that q > 0 and S ≥ 0. Then Equation (43) has 3 real roots defined by

wk = −2
√

q cos
(

1
3

arccos
[

p
q3/2

]
+

2πk
3

)
− b

3
, k = 0, 1, 2. (46)

Taking into account (42) we obtain the transcendental equation for r

wk = −2

√
1−

4µ′k
3

a2

µ2
k

cos
(

1
3

arccos
[

1− 2(1 + µ′k)/µ2
k

(1− 4µ′ka2/3µ2
k)

3/2

]
+

2πk
3

)
, k = 0, 1, 2, (47)

which gives the orbit radii forming the boundary of the shadow in the equatorial plane for an arbitrary
regular axially symmetric metric

rk =
2µk

1 + µ′k

[
1−

√
1−

4µ′k
3

a2

µ2
k

cos
(

1
3

arccos
[

1− 2(1 + µ′k)a2/µ2
k

(1− 4µ′ka2/3µ2
k)

3/2

]
+

2πk
3

)]
, k = 0, 1, 2. (48)
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In the case of the Kerr metric µk = 1, µ′k = 0, and Equation (48) yields

r1 = 2
[

1 + cos
2
3

arccos a
]
= r(−)ph ; r2 = 2

[
1 + cos

2
3

arccos(−a)
]
= r(+)

ph (49)

in agreement with [1]. It follows that k = 1 applies to the retrograde orbit while k = 2 to the
direct orbit. We can conclude that in general case the solutions specified by k = 1 and k = 2 in
Equation (48) represent the radii of the retrograde and direct orbits, respectively, for an arbitrary axially
symmetric metric.

The shadow contour is calculated numerically for different values of the observer coordinate θi.
The spin of a black hole is determined from the relation between its spin and the distortion parameter
for the boundary of its shadow.

In the equatorial plane the relation between the celestial coordinate x and the orbit radius r can be
found by considering the innermost equatorial photon orbits which are specified by

ξ = x; K2 = (x− a)2, (50)

are described by the functionR(r) in Equation (15) which reduces to

R(r) = r
[

r3 − (x2 − a2)r + 2µ(x− a)2
]

, (51)

and obey the system of equations in Equation (16),R(r) = 0; dR(r)/dr = 0 in the form

r3 − (x2 − a2)r + 2µ(x− a)2 = 0; 3r2 − (x2 − a2) + 2µ′(x− a)2 = 0. (52)

This gives
r
3
=

(x + a)r− 2µ(x− a)
(x + a)− 2µ′(x− a)

=
x(r− 2µ) + a(r + 2µ)

x(1− 2µ′) + a(1 + 2µ′)
. (53)

Ultimately we obtain for the celestial coordinate x

x = a · 3µ + (1− µ′)r
3µ− (1 + µ′)r

. (54)

For the Kerr geometry Equations (54) and (48) yield xk = 6 cos(arccos(a/3) + 2π/3) ± a in
agreement with the results presented in [1].

For each value of k in Equation (48) we can now obtain rk and xk and determine the boundary of
the shadow in the equatorial plane.

Equation (54) with account of µ′ ≥ 0 for the considered class of metrics, gives the basic constraint

x
a
=

3µ + (1− µ′)r
3µ− (1 + µ′)r

<
3µ + r
3µ− r

; µ′ =
3
8

x2
g ε̃(r)r2; xg =

rg

rΛ
, (55)

which suggests that (i) the shadow of a regular black should have to be smaller than that for the Kerr
black hole, and (ii) the difference depends essentially on the density profile of a regular black hole.

Comparison of a black hole shadow with using de Sitter-Kerr metric for fitting its boundary,
with the Kerr shadow can provide information about interior structure of a black hole.

4. Shadows for Two Particular Regular Black Holes

Black hole regularized by vacuum polarization effects— In the first particular solution with the
de Sitter interior [28] the basic idea is that since all fields are involved in a gravitational collapse this
does not allow one to calculate it carefully, but at the same time this implies that all of them contribute
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to the gravitational field via the Einstein equations, so that we can evaluate the vacuum polarization in
a resulting spherical gravitational field.

In the simple semiclassical model this gives the density profile and the mass function [28,30,36]

ε̃(r) = εΛ exp
(
− r3

r2
Λrg

)
; εΛ = ε̃(r = 0) =

3
8πGr2

Λ
; M(r) = M

(
1− exp

(
− r3

r2
Λrg

))
. (56)

Normalizing ε̃ to εΛ, distances and the mass function to M, we get the dimensionless energy
density ε and the dimensionless mass function

ε̃ = exp
(
−

r3x2
g

8

)
; µ(r) = 1− exp

(
−

r3x2
g

8

)
; xg =

rg

rΛ
. (57)

∆-function in the dimensionless form ∆ = r2 + a2 − 2µ(r)r defines the event horizon by the root of the
equation ∆ = 0 dependently on the couple of parameters (a, xg). This range of parameters is used for
numerical investigation of the shadow.

Table 1. The event horizons for different values of the parameters a and xg.

a\xg ∞ 4.0 3.5 3.0 2.8 2.6 2.4 2.2 2.0 1.8

0.0 2.0 2.0 2.0 1.9998 1.9992 1.9976 1.9933 1.9820 1.9513 1.8387

0.1 1.995 1.995 1.995 1.9947 1.9941 1.9925 1.988 1.9762 1.9441 1.8215

0.2 1.9798 1.9798 1.9798 1.9795 1.9788 1.9768 1.9717 1.9583 1.9216 1.7415

0.3 1.9539 1.9539 1.9539 1.9535 1.9525 1.95 1.9436 1.9269 1.88 –

0.4 1.9165 1.9165 1.9165 1.9157 1.9144 1.9108 1.9017 1.8786 1.8065 –

0.5 1.866 1.866 1.8659 1.8646 1.8622 1.8563 1.8421 1.8041 – –

0.6 1.8 1.8 1.7997 1.7967 1.792 1.781 1.7535 1.6489 – –

0.7 1.7141 1.714 1.7131 1.705 1.6935 1.6654 – – – –

0.8 1.6 1.5993 1.5946 1.5635 1.5005 – – – – –

0.9 1.4359 1.4258 1.369 – – – – – – –

1.0 1.0 – – – – – – – – –

Figure 3. Left: Relation between spin and distortion parameter for an observer with θi = π/2. Right:
Relation between spin and distortion parameter for the Kerr black hole.
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The parameter a is taken within the range from 0 to 1. For each a we find the critical value of xg

beyond which the equation ∆(r) = 0 does not have positive roots. The results are shown in Table 1 and
in Figure 3 Left, where we also show the case of the Kerr black hole for comparison (Figure 3 Right).

As we can see, in the case of the quickly decreasing polarization profile Equation (57) the curves
in Figure 3 Left do not depend on the parameter xg and actually coincide with the curve for the Kerr
black hole (the curve 4 in Figure 3 Right).

Black hole with the regularized Newtonian profile— The phenomenologically regularized
Newtonian profile is defined as [37]

ε̃ =
B2

(r2 + r2
v)

2 ; rv =
π

8
B2

M
. (58)

For this density profile B2/r4
v = εΛ provides the cut-off on self-interaction by the density εΛ

at r = 0. The cut-off length scale rv = 2(4xg/3)1/3rΛ gives εΛ = 3M/(4πr2
Λrg) which corresponds

to 8πGεΛ = 3/r2
Λ = Λ related to the de Sitter core, in accordance with the Zel’dovich idea [38] to

associate cosmological constant with the energy density of self-interaction. The interior density εΛ is
related with the total mass M by the formula M = 4πεΛr2

Λrg/3 = 4πεΛr3
dess/3 where the length scale

rdess = (r2
Λrg)1/3 = x1/3

g rΛ is characteristic for de Sitter-Schwarzschild geometry matching directly [39]
or continuously [28,29] the Schwarzschild exterior to the de Sitter interior.

For estimates we adopt the GUT scale EGUT = 1015 GeV which gives rΛ = 2.4 × 10−25 cm.
Normalizing on M gives the dimensionless mass function and the cut-off parameter

µ(r) =
2
π

[
arctan

r
rv
− rrv

r2 + r2
v

]
; rv = 2

(
4

3π

)1/3

x−2/3
g . (59)

Numerical results are shown in Table 2 and in Figure 4.

Table 2. The event horizons for different values of the parameters a, rv and xg.

a\rv 0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

a\xg ∞ 163.934 58.140 31.746 20.619 14.749 11.211 8.897 7.283 6.105

0.0 2.0 1.9342 1.8636 1.7873 1.7038 1.6111 1.5056 1.3806 1.2193 0.9038

0.1 1.995 1.9288 1.8578 1.7809 1.6967 1.6029 1.4958 1.3681 1.2001 –

0.2 1.9798 1.9125 1.8402 1.7615 1.6749 1.5778 1.4654 1.328 1.1327 –

0.3 1.9539 1.8847 1.8099 1.728 1.637 1.5333 1.4101 1.2496 – –

0.4 1.9165 1.8442 1.7654 1.6783 1.5797 1.4642 1.3182 1.0775 – –

0.5 1.866 1.7891 1.7042 1.6085 1.4967 1.3569 1.139 – – –

0.6 1.8 1.7161 1.6213 1.5104 1.3712 1.1504 – – – –

0.7 1.7141 1.6187 1.5061 1.3621 1.1071 – – – – –

0.8 1.6 1.4825 1.3261 – – – – – – –

0.9 1.4359 1.2506 – – – – – – – –

1.0 1.0 – – – – – – – – –
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Figure 4. Left: Relation between the spin a and the distortion parameter for θi = π/2. Right: Relation
between the spin a and the distortion parameter for θi = π/6.

In the next Section we present the comparative analysis for these two particular regular black
holes which differ by the pace of the density decreasing.

5. Comparison of Shadows for Black Holes with Quickly and Slowly Decreasing Densities

Shadows of two regular black holes, [28,34], in comparison with the Kerr black hole are shown
in Figures 5 and 6 for two values of the black hole spin, a = 0.7 and a = 0.3. They differ by the pace
of decreasing of the density profile. In the first case the density (56) is quickly decreasing, and the
shadow of the regular black hole practically coincides with that for the Kerr black hole. In the second
case the density (58) decreases slowly, and we see the marked difference between the regular black
hole shadow and the Kerr black hole shadow.

Figure 5. Left: Shadow of the black hole with the polarization profile (56) and of the Kerr black hole
(dashed line) for a = 0.7. Right: Shadow of the black hole with the regularized Newtonian profile (58)
and of the Kerr black hole (dashed line) for a = 0.7.
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Figure 6. Left: Shadow of the black hole with the polarization profile (56) and of the Kerr black hole
(dashed line) for a = 0.3. Right: Shadow of the black hole with the regularized Newtonian profile (58)
and of the Kerr black hole (dashed line) for a = 0.3.

Relation between the regularization parameter xg and the distortion parameter δ is shown in
Figures 7 and 8 for two values of the black hole spin, a = 0.7 and a = 0.3. The vertical dashed lines
refer to the Kerr black hole.

Figure 7. The case of the spin a = 0.7. Left: Relation between xg and δ for the black hole with the
polarization profile (56). Right: Relation between xg and δ for the black hole with the regularized
Newtonian profile (58).
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Figure 8. The case of the spin a = 0.3. Left: Relation between xg and δ for the black hole with the
polarization profile (56). Right: Relation between xg and δ for the black hole with the Newtonian
regularized profile (58).

For the black hole with the quickly decreasing polarization profile (56) the distortion parameter
starts to coincide with that for the Kerr black hole already for small values of xg (small masses), so that
for astrophysical black holes it evidently coincides with that for the Kerr black hole. For the black hole
with the slowly decreasing regularized Newtonian profile (58) difference of the distortion parameter
from that for the Kerr black hole is more noticeable.

6. Conclusions

We present the basic general formulae which describe shadows of regular rotating black holes
obtained from regular spherical solutions with using the Newman–Janis algorithm. Regular black
hole solutions are specified by Tt

t = Tr
r (pr = −ρ), belong to the Kerr–Schild class, and have the de

Sitter vacuum disk in their deep interiors. In the case where a related spherical solution satisfies the
dominant energy condition, the de Sitter disk is embedded inside a closed de Sitter vacuum S-surface.
The weak energy condition is violated in the internal cavities between S-surface and the de Sitter disk,
which are filled with an anisotropic phantom fluid.

The information on the interior content of a regular rotating black hole of this class can be in
principle extracted from observation of its shadow.

We show that for regular de Sitter-Kerr black holes the boundary of the shadow and the distortion
parameter characterizing its asymmetry depend essentially on the interior density. Their shadows are
typically smaller than that for the Kerr black hole with the same mass and spin, and the difference
depends on the form of the density profile.

Numerical analysis for two particular black holes of this class reveals that the difference between
the Kerr black hole shadow and a regular black hole shadow depends essentially on the pace of density
decreasing. The shadow of a regular black hole with quickly decreasing density can coincide with the
shadow of the Kerr black hole. For a regular black hole with slowly decreasing density the difference
between its shadow and the Kerr shadow can be substantial.

We can hope that the comprehensive analysis of the observed black hole shadow with using
different metrics for fitting its boundary, would give a certain information on the nature of the black
hole interior.
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