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Abstract: The model of a multiverse is advanced, which endows subuniverses like ours with space
and time and imparts to their matter all information about the physical laws. It expands driven
by dark energy (DE), which is felt in our Universe (U) by mass input and expansion–acceleration.
This dark multiverse (DM) owes its origin to a creatio ex nihilo, described in previous work by a
tunneling process in quasi-classical approximation. Here, this origin is treated again in the context
of quantum gravity (QG) by solving a Wheeler de Witt (WdW) equation. Different than usual,
the minisuperspace employed is not spanned by the expansion parameter a but by the volume
2π2a3. This not only modifies the WdW-equation, but also probabilities and solution properties.
A “soft entry” can serve the same purpose as a tunneling process. Sections of solutions are identified,
which show qualitative features of a volume-quantisation, albeit without a stringent quantitative
definition. A timeless, spatially four-dimensional primordial state is also treated, modifying a state
proposed by Hartle and Hawking (HH). For the later classical evolution, elaborated in earlier papers,
a wave function is calculated and linked to the solutions for the quantum regime (QR). It is interpreted
to mean that the expansion of the DM proceeds in submicroscopic leaps. Further results are also
derived for the classical solutions.

Keywords: multiverse; dark energy; creation from nothing; soft entry; quantum gravity; Wheeler-de
Witt-equation; Bohm-like interpretation; volume-quantisation; space atoms; information storage
and transfer

1. Introduction

The multiverse conception is currently in a state which is comparable to that of black holes before
the proof of their existence. Because one does not know for sure if something like a multiverse exists,
and since all the more nothing is known about its properties, the occupation with multiverses has the
touch of the exotic. In addition, it is not foreseeable that one comes to solid conclusions about their
existence and characteristics as fast as with black holes. It is therefore not surprising that there are very
different concepts for them. It is certainly advantageous, if a concept sticks to proven equations: it
has often turned out that previously unknown phenomena are actually realized in nature, if they are
in harmony with approved physics. In addition, it would speak for a specific concept if detectable
influences on U would result from it. However, it cannot be ruled out that a concept, based on modified
basic equations, will finally prevail. If some day a particular concept comes out on top, the others
become more or less obsolete, which could of course also happen to the current concept. However,
that does not necessarily mean that the others were completely worthless because they could have
paved the way for the ultimate winner.

The present concept was initiated in Ref. [1], refined in Ref. [2] and is further developed in this
paper. The most important results of the earlier work are briefly summarized in Section 2. Section 3
deals with two scenarios for the origin of the DM, the first with a tunneling process as proposed by
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Vilenkin [3,4] and Linde [5] (VL), and the second with a modification of a timeless primordial state
proposed by Hartle and Hawking [6]. Both scenarios are dealt with by using two methods, 1. relatively
short with a quasi-classical, approximate treatment of the QR, and 2. much more detailed in the
context of QG by solving an unusual WdW-equation, which we consider appropriate and deduce in
the Appendix. Furthermore, an equation for the classical regime (CR) is derived, whose solution is
smoothly connected to that for the QR and interpreted in a special way. In doing so, we encounter a
solution that represents an alternative to the tunneling solution and can be called a “soft entry”. In
Section 4.1, we critically reflect on the basic idea of our DM-concept, the storage and transmission of
information about the laws of physics. In this context, we point to difficulties arising from loop theory
of QG (LQG) and suggest ways in which they may be overcome. The identification of solution sections
exhibiting properties of a spatial volume quantisation provides this subsection with a particular
significance. In Section 5, properties of the classic solution are elaborated, which were only hinted at or
not dealt with in Ref. [2]. At first, the conditions are calculated, which, allowing for primordial matter,
enable an (unstable) equilibrium between this and the DE at the beginning of the DM-expansion.

Then, the minimal the age of the DM is calculated, which is compatible with the maximum
curvature allowed by corresponding measurements in U. It is also clarified how it comes about that
the irreversible solution of the cosmological equations with a friction term in the equation for the
expansion acceleration, ä(t), solves as well the reversible equations for a scalar field driven expansion.
Finally, it is investigated how the DM-expansion behaves in comparison to the expansion of U.

For the readers’ convenience, all abbreviations are listed before Appendix A.

2. Summary of Previous Work on the DM-Concept

Essence and determination of the considered DM are that the latter provides space and time for
subuniverses with ours among them, i.e., the latter arise in an already prefabricated space. Thus,
it was not generated along with them but long before. Thus far, we assumed that it originated at a
finite time in the past by a creation from nothing, emerging continuously from nothingness through
quantum mechanical tunneling. For this, it must be a closed and expanding multiverse of positive
curvature, if topologically more complex situations (three-torus) are excluded, and its expansion must
start at zero velocity immediately after the tunneling. The maximum spatial curvature that would be
compatible with relevant measurements of negative result is so small that the space, in which U lives,
extends far beyond its particle horizon. As a consequence, large areas exist outside that are causally
not connected with the interior, are thus structurally quite different, and can be considered as parts of
a multiverse embracing U.

The ingredient forming the backbone of the DM or the space-time spanned by it, respectively,
is assumed to be dark energy (DE). It is no additional extra, but the medium which is generating
space and time. Subuniverses like ours are assumed to originate from fluctuations of independent
inflation fields. Since the DE of the DM also fills U, it can be considered as a fingerprint of the DM
on U. It causes not only a continuously accelerated expansion of the DM but is also responsible for
the accelerated expansion presently observed in U, if its mass density $Λ is properly adjusted. If, as in
inflation theories, its initial value is chosen close to the Planck density, then $Λ must decay by a factor
of about 10−120 so it can be identified with the DE observed in U. The decay factor 10−120 agrees
approximately with the factor, by which the presently observed mass density $0 of the cosmological
constant differs from the value predicted by elementary particle theory. This suggested the assumption
of a mechanism, by which, in the course of the increasing expansion of the DM, the effect of a huge
and unchangeable cosmological constant is continuously reduced down to its present much lower
efficiency. It turned out that this mechanism can be intimately linked to a proposed solution for another,
so far largely ignored conundrum of physics, namely the question of how it comes about that in each
point of space-time the physical laws are obeyed.

For this purpose, going far beyond what was set out above, we assumed that the space-time of
the DM is of a very special kind in that it is encoded with all the information about the physical laws,
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to which all material components occurring in the subuniverses must obey. This could be achieved in
a geometric way, as is the case with the laws of gravitation according to the general theory of relativity,
or with the laws of electrodynamics, using an additional spatial dimension as in the Kaluza–Klein
theory. Alternatively, the physical laws could as well be stored in subatomic structures of a granular
space-time in a similar way as the laws of biological growth are encoded in the DNA. According to our
former assumptions, the information about all physical laws, and the physical agents to whom they
relate, is transmitted through the creational tunneling process to the subsequent initial state of the DM.
This means that the primordial nothingness is understood as a state of pure information without space
and time.

As stated above, we assume that $Λ keeps its large initial value during the whole evolution of
the DM. Without reduction it would cause an extremely accelerated expansion. The space added by this
must be equipped with all information listed above via transfer from already existing space. This will
take time that is not available, if the spatial expansion proceeds too fast. Therefore, we assumed
that this transfer impedes the spatial expansion, and that this can be cumulatively represented by a
friction term in the cosmological equations. Without it, the Friedman–Lemaître (FL) equation would be
ȧ2(t) = (8πG/3) $Λa2−c2 with the immediate consequence ä(t)=(8πG/3)$Λa. Introducing a linear
friction term, the latter equation becomes

ä(t) = − f ȧ(t) +
8πG

3
$Λa, (1)

where f > 0 is a constant. Multiplication with ȧ(t) and integration with respect to t yields

ȧ2(t) =
8πG

3
$(t) a2 − c2 with $ = $Λ + $ f $ f = −

3 f
4πG a2

∫ t

0
ȧ2(t′) dt′ . (2)

The integration constant was chosen such that, at t=0, the time immediately after the tunneling process,
the DM starts with ẋ(t)t=0 = 0 and $ = $Λ, where

$Λ =
$∗
x2

i
with $∗ =

3
8π

$P =
3 c2

8πG l2
P

(3)

(ai = a(0) and xi = ai/lP with lP =
√

h̄G/c3 = Planck length, $P = Planck density), and evolves
according to the usual FL-Equation (2). It is therefore possible to say that our model leads to solutions
of the standard theory which are only re-interpreted in an unusual way. In Ref. [2], it was shown that
even the cosmological equations for a scalar field Φ, driven by a potential V(Φ), are satisfied. As a
result, the interaction of the huge cosmological constant with energy density $Λc2 and the friction
force − f ȧ(t) of Equation (1) has exactly the same effect as a dark energy (exerting an anti-gravitational
force and providing mass in our universe), which is represented by a scalar field Φ with energy
density $c2 = ($Λ+$ f )c2, and is therefore also referred to as DE. Its origin is inseparably linked to
the emergence of space-time because, according to the above, the latter is generated by it. Because of
the associated information about properties like mass or charge, in principle, particles should also be
incorporated in the FL-equation at least in the form of a cumulative mass density. Since this would not
disclose anything new as compared to the results of Ref [1], as in Ref [2], this is relinquished here.

In the dimensionless quantities,

x =
a
lP

τ =
t

tP
ρ =

$

$Λ
(4)
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(tP =
√

h̄G/c5 = Planck time), Equations (1) and (2) become1

ẍ(τ) + 2σẋ(τ)− x/x2
i = 0 with σ =

f tP
2

(5)

and
ẋ2(τ) = ρ (x/xi)

2 − 1. (6)

The solution of the last equation for the initial conditions x = xi and ẋ(τ) = 0 at τ = 0 is

x(τ) =
eγτ+γ2 x2

i e−τ/(γx2
i )

1 + γ2 x2
i

xi with γ =
√

1/x2
i + σ2 − σ . (7)

Employing the Wick rotation τ = −iu for τ < 0, Equation (6) is converted into

ẋ2(u) = 1−ρ x2/x2
i . (8)

For ρ ≡ 1 and x = 1 plus ẋ(u) = 0 at u = 0, the solution x(u) = cos u, shown in Figure 1, is
obtained. Since γ and γ xi are both extremely small,

x(τ) = xi eγτ for all τ ≥ 0 (9)

is an excellent approximation. Equation (6) is satisfied by calculating from it the mass density

ρ(τ) =
(
1 + ẋ2(τ)

)
x2

i /x2 . (10)

Inserting in it solution (9), using Equation (4) and the last of Equations (3), and cutting out x2
i , we obtain

for the present state x = x0 by solving for γ

γ =

√
$0

$∗
− 1

x2
0
≈
√

$0

$∗
≈ 10−61, (11)

where $0 is the value of the DE-density measured at present in U, and τ0 & 175 τu0 (with τu0 = present
age of U) is the condition that allows the neglect of 1/x2

0 according to Ref. [2]. Because γ is so small,
ρ = x2

i /x2 holds according to Equation (10), and the volume v = V/(2π2l3
P) is given by v = x3

according to Equation (A10) of the Appendix. The total energy of M is therefore E = $c2V ∼ x2
i x,

so it grows with increasing expansion x(t). Consequently, the friction force − f ȧ(t) does not, as
usual, convert potential energy into heat; instead, it only slows down the energy increase of M and,
simultaneously, the decrease of (negative) gravitational energy.
Annotation: We consider the case xi 6= 1 only in Section 4.1, everywhere else we assume xi = 1.

1 For later purposes (Section 4.1), we consider here a slightly more general case. Unfortunately, when Ref. [2] was written
down for printing, in the derivation of Equation (26) there (Equation (7) here), two different types of calculation were
mixed up, which resulted in two sign errors. For correction, the following substitutions must be made there: eγ2 →
e−γ2 in Equation (22), and αγ1 + βγ2 → αγ1 − βγ2 in the unnumbered equation immediately thereafter. The resulting
Equation (26) is, however, correct.
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Figure 1. Approximate solutions for the QR, discussed from the bottom up. 1. dashed curve:
u = arccos x, 2. full curve: solution (13) continued by straight lines, 3. dotted curve: semicircle,
4. curve with gray filling: HH-like solution.

3. Two Scenarios for the Origin of the Dark Multiverse

In Refs. [1,2], it was assumed that the DM comes about by a creation from nothing, conveyed by a
quantum mechanical tunneling process as introduced into cosmology by Vilenkin [3,4] and Linde [5].
At about the same time, Hartle and Hawking presented a quite different proposal, according to which
the primordial condition of the universe is a timeless quantum state in four spatial dimensions on equal
footing, filling essentially a 4D-sphere. The VL-approach employs four spatial coordinates as well;
however, one of them comes out by a Wick rotation of the time, a mathematical tool, by which the
effectively time-dependent tunneling process is described in a particularly easy, albeit approximate
manner. In the HH-approach, on the other hand, the positively curved space is truly four-dimensional;
due to symmetry requirements (no boundary condition), no point is distinguished from the others,
which in any way could be interpreted as a starting point. Nevertheless, time is still implicitly contained
in that the wave function of the timeless state is linked to a three-dimensional probability density
and depends on the metric coefficients of a 3D-space, while matter fields involve a 3D-mass-density.
No simple approximation of the quantum behavior is possible as in the VL-approach, rather a true
quantum theory of the gravitational field must be invoked. For this purpose, the WdW-equation is
chosen, according to which the states of the multiverse are generally timeless.

In this paper, two separate approaches are undertaken, the first modifying the VL-approach,
and the second the HH-approach.

3.1. Quasiclassical Approximation of the Quantum Regime

1. Creation from nothing through tunneling. It is interesting to look into the question of whether a
tunneling solution of Equation (8) is also possible when x(u), as in the HH-approach, forms a
semicircle (page 86 of Ref. [7]) so that no point is distinguished. Accordingly, we demand the
validity of the equation

x(u) = −
√

1− u2 (12)

and determine ρ from Equation (8) in such a way that Equation (12) is satisfied. From the latter
follows ẋ2(u) = u2/(1− u2). Inserting this in Equation (8), eliminating u by use of Equation (12),
and resolving with respect to ρ yields

ρ(x) =
2x2 − 1

x4


= 0 for x = 1/

√
2,

< 0 for x < 1/
√

2,
→ −∞ for x → 0 .

(13)

This treatment of the QR is an approximation which is getting worse the deeper one gets into it.
In that sense, the negative values of the density ρ may perhaps not be taken seriously. However,
for x→0, a singularity appears that is just what should be avoided in a quantum treatment.
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There are two ways to get out of this situation with a viable solution.
1. the solution (13), yielding ρ(x)≥0 in the range 1/

√
2 ≤ x ≤ 1, is continued into the range

1/
√

2 ≥ x ≥ 0 by a straight line with the slope ẋ(u)=± 1 following from Equation (8) for ρ = 0.
2. The solution (13) is cut off at x = 1/

√
2.

Both possibilities are shown in Figure 1. The truncated HH-like solution, supplemented by two
straight lines, has a peak which constitutes a distinguished point and must therefore be regarded
as a tunneling solution of the VL-type. It represents an alternative to the solution (45) of Ref. [2],
x(u) = cos u or u = arccos x, but does not comply with the HH-concept.

2. HH-like primordial state. In the case of the solution cut off at x = 1/
√

2 with ρ = 0, the situation
changes. If the two end points are connected by a horizontal straight line and the resulting corners
rounded, one arrives at a solution, whose boundary, although not having a constant curvature,
does not contain any point which could be interpreted as a temporal beginning. Although
this solution results from the effort to construct a VL-like tunneling solution, it makes sense to
accept it as a solution compatible with the HH-intention, so that the fourth spatial coordinate
(which resulted from time by a Wick Rotation) is on equal footing to the others. It is obvious
that the treatment of this model with the WdW-equation in the context of QG is much more
appropriate because of its time independence.

3.2. Employing Quantum Gravity with Use of a Wheeler-De Witt Equation

In this section, the solution of the WdW-equation [8,9], applied to a properly chosen
minisuperspace, is used to investigate the tunneling process considered in Ref. [2] (and ending up in a
modification of the latter), and a modified HH-concept. Despite the 50 years that have passed since the
introduction of this equation, and despite the many papers and book contributions in which it was
treated, it is still not as straightforward as in ordinary quantum mechanics to find the right solution for
a given concept and to interpret it appropriately (see e.g., [10], quoted in pages 206–207 of Ref. [11],
or page 135 of Ref. [12]). This is partly because there are two types of probability interpretation, either
by transition probabilities or by the square of the wave function. In addition, problems arise with
respect to the Hermiteness of operators, setting proper boundary conditions, and the role of time.
Considerable effort was made to find analytic solutions to the WdW-equation (see e.g., [13]) and study
such conditions with them.

The ambition of this paper goes in a different direction. We want to use the square of the
wave function for calculating probabilities. However, regarding its normalization and the associated
probability interpretation, we try a way that deviates from the usual. In doing so, we find it useful to
base the WdW-equation on a different minisuperspace for the following reason: in several places, the
three-dimensionality of space enters the relevant WdW-equation in a decisive way. This can be seen in
its derivation, which is therefore carried out in the Appendix A with reference to the critical points.
Furthermore, densities contained in it like $ relate to three dimensions. Finally, the three-dimensionality
is also reflected in solutions. On the one hand, the wave function for the CR depends on a3, if it is
calculated in the usual way (see item 3 in Section 3.2.1). On the other hand, its square, the probability
density, decreases over time instead of increasing as expected. All of this has prompted us to choose
V = 2π2a3 instead of a as the variable spanning the minisuperspace. This leads not only to more
plausible probability densities, but also to a modified WdW-equation.
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3.2.1. Creation from Nothing

1. Solution in the QR. In finding the right solution for a creation from nothing, we restrict ourselves
to the option ρ ≡ 12, for which we must solve Equation (A9) (with vi = 1),

ψ′′(v) +
(π

2

)2 (
1− v−2/3)ψ = 0 . (14)

According to pages 203–206 of Ref. [11], a solution is considered the best, for which ψ2(x) is largest
at x = 0 and decreases fast with increasing x because it roughly corresponds to the tunneling
through the potential barrier given by the factor ∼x4−x2 near ψ in Equation (A8). We take
the position that probability statements make sense only within an already existing multiverse,
while conclusions based on such statements about the start of the tunneling are external, that is,
they come from nowhere and must be regarded as meaningless. In the selection of a solution
for an equivalent process, being suggested as a viable alternative on page 204 of Ref. [11] with
reference to Ref. [10], we rely entirely on the probability interpretation of ψ2 and choose ψ(v) so
that with increasing v its square permanently increases. The solution shown in Figure 2 has this
property; in the place where it is linked with the wave function for the CR, it satisfies the further
constraint ψ′(v) = 0, which is explained further down. In the next paragraph, another argument
is developed which supports our selection. Although derived with the goal of a tunneling process,
this solution has nothing in common with the latter and therefore should be named differently,
e.g., “soft entry”. Equation (14) has, of course, also a genuine tunneling solution, which can be
treated in exactly the same way as our “soft entry” solution.

2. Interpretation. Contributions to the literature on QG such as [14–16] give the impression that too
little information is available for the assignment and interpretation of the WdW-equation.
In Ref. [16], the interesting suggestion is made to use the de Broglie–Bohm interpretation for
this purpose. According to this, from the representation Ψ(~x, t) = eiS(~x,t)/h̄ of the wave function,
particle trajectories satisfying ~̇x(t) =∇S are derived. Unfortunately, this is not possible in our case
because the solutions of Equation (14) are real whence S ≡ 0. Therefore, we develop an alternative,
which, like the de Broglie–Bohm approach, leaves quantum mechanics completely unchanged
and concerns only its interpretation. Under application to the solutions of Equation (14),
it consists essentially in reversing the step pV→(h̄/i)∂/∂V that leads from the classical to the
quantum-mechanical description. Specifically, for the spatial density Ψ p̂VΨ of the quantum
mechanical momentum, we make the ansatz

i Ψ p̂VΨ =
pV
V

or h̄ ΨΨ′(V) =
c2 V̇(t)

12πG V2 (15)

(pV = ∂L/∂V̇ is obtained from Equations (A2)–(A4)) by which it is identified with the classical
momentum. The multiplication of the left side by i constitutes the return to classical values
and can be interpreted as reverse Wick rotation. With Equations (4), lP/tP = c, lP =

√
h̄G/c3,

ψ = ψ/l3/2
p and V = 2π2l3

P v going over to dimensionless quantities, and resolving with respect
to v̇(τ), the last equation becomes

v̇(τ) = 12π v2 ψ ψ′(v) = 6π v2 dψ2/dv . (16)

This means that the DM moves to larger values of ψ2 until it terminates the entry process,
if everywhere ψ′(v) ≥ 0. The velocity v̇(τ) and ψ2(v), up to a normalization factor the probability

2 Note that by this assumption or $ ≡ $Λ resp. the term $ f in Equation (2) drops out, i.e., the friction term plays a role only in
the CR.
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density of our “soft entry” solution, are depicted in Figure 2. From that, it becomes particularly
clear that our solution is suitable for describing a creation from nothing. Regarding the dynamics,
one could even say, at least for this solution that in the QR the role of time is taken over by the
probability density dP/dv ∼ ψ2(v).

0.0 0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

-v

—ψ2(v)

—v̇(τ)/35

Figure 2. QR-solution of the WdW-equation Equation (14) to the square, and velocity v̇(τ) from
Equation (16) (divided by 35 for combinability with ψ2) for the VL-type “soft entry”.

3. Wave function of the the CR. We want to connect the wave function of the QR with that of the CR and
have to determine the latter. For this, it is advantageous to use the interpretation of the classical
solution based on Equations (5) and (6) with a friction term because then the minisuperspace
contains only the one variable v. Furthermore, we can use the fact that we already know the
classical solution (9), which satisfies the equation

ẋ2(τ)− γ2 x2 = 0 . (17)

We first consider the quantisation of the latter in the minisuperspace spanned by a or x resp. This
can be done in the same way as in the derivation of Equation (A7). With x = a/lP, Equation (17)
becomes ȧ2(t)−(γc/lP)

2 a2 = 0. The equation corresponding to Equation (A2) is obtained
by setting Φ̇(t) = 0, Ua = 0 and UΦ = 3γ2c4/(8πG l2

P). With this, one can go directly to
Equation (A6) and from there to dimensionless quantities, ending up at the WdW-equation

ψ′′(x) +
(

3πγ

2

)2
x4 ψ = 0 . (18)

Its general solution is

ψc(x) =
√

u
[
a Γ(5/6) J− 1

6
(u3/3) + b Γ(7/6) J 1

6
(u3/3)

]
with u =

(
3 π γ

2

)1/3
x, (19)

where J± 1
6
(u3/3) are Bessel functions, and a and b are integration constants. As mentioned in

the introduction to Section 3.2, the solution depends on the volume v = x3. Furthermore, for
u� 1, the envelope of the Bessel functions is u−3/2 whence, due to the factor

√
u in front of ψc,

the envelope of ψ2
c (x) decays with u as 1/u2. This solution would actually lead the DM-expansion

to ever smaller probabilities, so absolutely not what one would reasonably expect.
The situation turns for the better, if we employ the minisuperspace spanned by v.
The corresponding WdW-equation can be easily deduced from Equation (18) by replacing in it
dx2 by (dv2/9x4) according to Equation (A10). The resulting equation is

ψ′′(v) +
(πγ

2

)2
ψ = 0 (20)

and has the solution
ψc(v) = sin[ω(v−δ)] with ω =

πγ

2
, (21)
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where δ is an integration constant. This solution must be continuously and with continuous
derivative be connected to the solution for the QR, that of Equation (14). For the latter as well
as for Equation (20), it holds that together with ψ(v) also Cψ(v) is a solution, where C is a freely
selectable constant. This allows us to freely set the value of one of the two solutions at the
junction and to continuously join the other. Due to the extremely small value of γ, the derivative
ψ′c(v) = ω cos[ω(v−δ) of the solution (21) for the CR is essentially equal to zero for all v. It
follows that the derivative of the solution for the QR must be virtually zero at the junction. For
the sake of simplicity, we therefore demand that the derivative of both solutions is exactly zero at
the junction. With the boundary condition ψ′(vi) = 0 for the QR-solution at the border to the
CR, it follows from Equation (16) that there also v̇(τ) = 0 and thus ẋ(τ) = 0 must apply. Thus,
QG requires the same boundary condition as the quasi-classical approximation.
Figure 3 shows the solutions thus obtained. The joining point is vi = 2.103 or xi = v1/3

i = 1.28 and
not xi = 1 as in Section 3.1. This is due to the requirement ψ′(vi) = 0 and the fact that Equation (14)
does not allow a solution with ψ(0) = 0 and ψ′(1) = 0. The classical solution (21) is entered twice
in the figure, once over ω(v−δ) (horizontal straight line), and once over (4/ω)ω(v−δ) (dashed
curve).

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

-v

6ψ

QR CR

Figure 3. The full curve is a joint representation of the “soft entry” solution ψ(v) for the QR (gray
filling) and ψc(v) for the CR. The dashed curve shows ψc(v) once again, but highly compressed in the
horizontal direction in order to visualize the oscillations.

4. Normalization of ψ(v) and corresponding probabilities. The freely selectable factor C in the solutions
C ψ(x) of Equations (14) and (20) allows a particularly simple fulfillment of the normalization
condition (A11), for which only

C =

(
2π2

∫
r

ψ2dv
)−1/2

must be chosen. The normalized solution is then Cψ(v). This does not only apply to the solution
for the QR, but also to combined solutions for the QR and the CR. For comparing states that
have been traversed up to a certain time τ (corresponding volume v(τ)), it appears reasonable
to extend the normalization range from v = 0 up to v(τ). Over time, the upper boundary
v(τ) becomes larger and larger, with the result that the probability density of fixed and duly
normalized intermediate states becomes ever smaller. Therefore, it is obviously useless to compare
intermediate states of different normalization. In other words, it only makes sense to compare
states with the same normalization, which amounts to determining the ratio of their probabilities.
However, this is just as well obtained from a wave function without normalization, which is
valid for the entire range. (This is the reason why our figures are not based on normalized wave
functions.)
For interpreting the dynamics of the system described by the wave function (21), the probability
density ψ2

c (v) can not be used as in the case of the “soft entry” solution. The reason is that it has
many local maxima, and the system would remain with one of them, once it has reached it. This
problem can be solved by considering the set of ψc values between two successive zeros as a single
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quantum state of the classical system. This range has the size ∆v following from γπ∆v/2 = π or
∆v = 2/γ and corresponds to the x-range ∆x = (∆v)1/3 or

∆a = 2.71 · 1020 lp = 3.14 · 10−15 m = 5.94 · 10−5 rB, (22)

where rB = 5.29 · 10−11 m = Bohr radius. Regarding the dynamics, we assume that the system
jumps from one state to the next in leaps of the length ∆a = 2.71 · 1020 lp. In this interpretation,
up to an uninteresting factor, the probability density of the various system states is given by the
average of the local density ψ2

c over a half period, that is, by〈
dP
dv

〉
∼
〈

ψ2
c (v)

〉
=
〈

sin2 [γπ(v−δ)/2
]〉

=
1
2

.

With our solution, the probability of the different states does not decrease as with the solution (19)
based on the usual minisuperspace. However, it does not increase as desired either. This can,
however, be improved by taking advantage of the fact that the classical dynamic is an evolution
in time, and by relating the probability density not to volume but to time (using dP/dτ instead of
dP/dv). Setting 〈

dP
dτ

〉
=

〈
dP
dv

〉
v̇(τ) ∼ v̇(τ)/2

for v̇(τ) we employ the classical solution: from v=x3 and use of Equation (9), we get v̇(τ) =

3x2 ẋ(τ) = 3γx3 = 3γv and finally 〈
dP
dτ

〉
∼ 3γ

2
v, (23)

where v does the jumps of height ∆v = 2/γ described above. Plotted above v, <dP/dτ> thus
follows a staircase-like curve of the slope 3γ/2. Once again, the incremental probability of the
individual quantum states can be considered as a substitute for time.

3.2.2. Modified HH-Approach

1. Depictive model. In this section, we investigate an alternative to the HH-approach which differs
comparatively more from the latter than the approach in Section 3.1. We now assume that the
timeless primordial state is a 4D-sphere of radius R ≈ lP in a 4D-space (coordinates x, y, z, u)
of constant positive curvature, uniformly filled with DE of the 3D-density $ = $Λ. It can be
represented by the surface

x2 + y2 + z2 + u2 + v2 = R2 (24)

of a 5D-sphere in a Euclidean 5D-space. Assuming that the 3D-subspace spanned by x, y, z is
homogeneous and isotropic, its metric belongs to the class of metrics with line element

ds2 = −a2
(

χ2 + sin2χ dΩ
)

with dΩ = dϑ2 + sin2 ϑ dϕ2 and sin χ =
r
R

, (25)

where r =
√

x2 + y2 + z2 and −π ≤ χ ≤ π. For both 0 ≤ χ ≤ π and −π ≤ χ ≤ 0, a 3D-space
of the same metric is transversed, so one can say that, for given a, two identical homogeneous,
isotropic and closed 3D-spaces of Volume 3V(a) = 2π2a3 exist. Due to the factor a2, not present in
the representation (24) of the surface of the initial 5D-sphere, the metric of its homogeneous and
isotropic 3D-sub-spaces is a subclass of the metrics of Equation (24). We must therefore find out
which restrictions result for the expansion parameter a. According to Equation (24), x = y = z = 0
for u2 + v2 = R2, from which it follows that 3V = 2π2a3 = 0 and a = 0. A maximum value ā of a
follows from the fact that the total volume 2

∫ ā
0

3V(a) da = 4π2
∫ ā

0 a3 da = π2 ā4 of 3D-sub-spaces,
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belonging to the range 0 ≤ a ≤ ā of permissible a values, may not be larger than the surface
4S = (8/3)π2R4 of the initially given sphere in the Euclidean 5D-space, and is given by

ā = (8/3)1/4R ≈ 1.28 R . (26)

The surface of the Euclidean 5D-sphere is invariant under rotations x, y, z, u, v→ x′, y′, z′, u′, v′,
each of which leads to another set of homogeneous and isotropic 3D-sub-spaces, which for given
a ≤ ā all have the same metric and shape. All in all, we get a number3 of similar 3D-sub-spaces,
which, based on their abundance, are equally probable. We assume that each of them can serve as
a timeless primordial state of the DM. (An important difference to the HH-model is that the latter
has only one coordinate which can turn from space-like to time-like; furthermore, the initial state
is represented only by the lower part of the 4D-sphere, while the upper part is reserved for the
evolution in time, see pages 80–83 of Ref. [7].)

2. Treatment in the framework of quantum gravity. For the above model, which is partly based on
classical ideas, a suitable solution of the WdW-equation for the QR is to be found. Because we
again want to have a continuous connection between the solutions for the QR and the CR,
once again we impose the boundary conditions ψ(vi) = ψc(vi) and ψ′(vi) = ψ′c(vi). In order to
implement our concept from above as accurately as possible, we look for a solution in the QR
whose probability density dP/dv ∼ ψ2(v) is as constant as possible. This condition can only
roughly be satisfied (see Figure 4). Furthermore, it appears reasonable to require for this timeless
state that its total momentum disappears, i.e.,∫

QR
ψ(v) p̂V ψ(v) dv =

h̄
i

∫
QR

ψ(v)ψ′(v) dv =
h̄
i
(
ψ2(vi)− ψ2(0)

)
= 0 . (27)

Therefore, ψ2(vi)=ψ2(0) must apply what can be easily satisfied. (Note that zero is the only value
for which the total momentum is not imaginary.) In Figure 4, a solution satisfying the above
requirements is entered together with the properly adapted classical solution ψc(v), Equation (21).

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

-v

6ψ

QR CR

Figure 4. Joint representation of the HH-like QR-solution ψ(v) and the CR-solution ψc(v), the latter
being shown a second time in dashed style and with strong horizontal compression.

Both in the HH-concept, used as a model, and in the present concept, the transition from the
time-independent primordial state in four spatial dimensions to a time-dependent evolution in
three spatial dimensions represents a critical point. (In the original version of the HH-concept [6],
it appears somewhat non-transparent [17] by being accomplished via transition probabilities. In a
later contribution—see pages 85–86 of Ref. [7]—the transition is explicitly performed by linking
the purely spatial solution for the QR with the time-dependent solution for the CR, the same as
done by us in this and in Section 3.2.1.)

3 Due to space-related quantum effects, this number could be quite small.
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A look at the averaged probability density in the CR does not reveal why the DM should make
this transition. In our case, it could slightly be favored by the fact that each of the four spatial
coordinates and, in addition, coordinates resulting from them by a rotation (if allowed by LQG)
are eligible for the transition to a time coordinate. However, another means can help: because a
transition from space to time is concerned, it offers itself to relate the probability density in the CR
to the time interval dτ as in Section 3.2.1. According to Equation (23), due to the prefactor γ, dP/dτ

starts with an extremely small value which is smaller than dP/dx by many orders of magnitude.
However, since it is a probability assessment of the same state, it must be considered as equivalent.
In this way, the transition from space to time is associated with a corresponding change in relating
the probability densities. Thus, the transition from purely spatial to time-dependent states finally
leads to an evolution with increasing probabilities.

4. Critical Comments on the Quantum Results

4.1. Notes on the Storage and Transmission of Information

In Ref. [2], different possibilities have been indicated regarding how the information about the
physical laws and their physical implementation could be stored in the DM. A storage in structured
arrangements of space grains as examined in the LQG would seem most attractive. Unfortunately, due
to the size of the smallest volume allowed by the LQG, i.e., the volume

VLQG =

√
(8πγ̃)3/(6

√
3) l3

P = 39.1 l3
P for γ̃ = 1 (28)

of the space atoms according to page 30 or Ref. [18], this does not seem possible. In addition,
the limits for the storage and transmission of information, determined by Bekenstein [19,20] and
Bremermann [21], would also be infringed, provided that they were valid in the QR. Our “soft entry”
process may serve as an example. The volume of the initial state after the entry is v ≈ 2 (see Figure 3)
or

V≈2π2 l3
P = 39.5 l3

P . (29)

This corresponds fairly closely to the smallest volume (28) of the LQG, and, in that, according to the
latter, substructures are not possible in which huge amounts of information could be stored. The mass
of the DE contained in this volume is approximately 2π2l3

P$Λ = 2.36 mP where mP = 2.18 · 10−8 kg is
the Planck mass. According to Bremermann, the upper limit for the information transmission speed is
≈1.36 · 1050 bits/(kg s). With an initial mass ≈2.4 mP of the DM (reached after the “soft entry”) and a
entry duration of ≈tP, the maximum transferable information is

I = 1.36 · 1050 2.36 mP tP
kg s

bits = 0.38 bits,

which is far too little.
Despite the limitations of the LQG, let us at this point tentatively have a look at the possibility

that, still undetected, much finer substructures below the LQG structures exist. (This is of course a
rather speculative assumption.) After all, at least the WdW-Equation (A9),

ψ′′(v) +
(π

2

)2(
v−2/3

i − v−2/3)ψ = 0 (30)

allows such solutions. (In order to stay within the scope of valid physics, one would have to assume
that the information concerned is not bound to matter. Otherwise, Bronstein’s black hole argument
would be violated, according to which anything smaller than lP is “hidden inside its own mini black
hole”, see pages 7–8 of Ref. [18]). A corresponding solution for the HH-like case with $ ≡ $∗ and, once
again,

∫
QR ψ p̂vψ dv = 0 is shown in Figure 5. (The discontinuous transition from short to extremely
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long waves is due to the fact that, in the transition from the QR to the CR, ρ′(x) jumps from zero to
−2x2

i /x3, see Equation (10); it could be remedied by prescribing a continuous transition of ρ′(x).) Like
the solution for the CR, it contains many zeros of ψ(v), if vi � 1. As for the CR-solution, we interpret
the regions between neighboring zeros as single states. Except for those with small v, the distance
between adjacent zeros is pretty much ∆v = 2 v1/3

i or ∆V = 4xi π2 l3
P, which can be derived from

Equation (30): for v� vi, the latter reduces to

ψ′′(v) = −(π v−1/3
i /2)2 ψ, (31)

whence

ψ(v) = sin[(πv−1/3
i /2)(v−δ)] (32)

and ∆v = 2 v1/3
i or

∆V = 4xiπ
2 l3

P = 39.5 xi l3
P (33)

exactly. For xi = vi = 1, these are quanta of almost the same size as provided by the LQG according to
Equation (28) with γ̃ = 1. (A spectrum of quanta can not be deduced here.) Equations (28) and (33)
yield even the same volume quanta exactly, i.e., ∆V = VLQG, if xi is chosen according to

xi =
4 γ̃3/2

33/4
√

π
= 0.99 γ̃3/2 . (34)

Based on Equations (3) and (10), the same applies if ẋ(τ) = 0 for x = xi, while ρi and $i are chosen
according to

ρi = 1 and $i = $∗/x2
i . (35)

After Ref. [18], γ̃ is a quantity ofO(1), from which it follows that $i = O($∗). The latter is a conclusion
that does not emerge from our investigation.

Concerning our information problem, there are still other options to be considered. As already
suggested in Ref. [2], information might also be stored in hidden higher dimensions, which would be
an issue for string theory. Another possibility would be that both string and loop theory are involved.
In the Discussion, Section 6, the urgency of the information problem is emphasized once again.

Another way of solving this problem, perhaps even the best one, would be to allow a much larger
volume of the initial state. Even with an initial volume of the order ∆v = 1/γ = 1061 (magnitude of
the volume jumps of the classical solution), one would still be far in the range of quantum physics,
albeit outside the range where QG is absolutely required. However, nothing seems to speak against
using it there. This case of a much larger initial volume is addressed more closely in Section 4.3.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

-v

6ψ2

CR

QR
/

Figure 5. QR-solution of Equation (30) with
∫

QR ψ p̂vψ dv=0 and substructures obtained by choosing

vi � 1. For the reason of presentability, only a small value, vi = 10−4.5, was used. The short horizontal
line at the top right is the beginning of ψ2

c (v).
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4.2. Notes on the Primordial States

According to Figures 3 and 4, the width of the QR, resulting from solutions of Equation (14),
is ∆v ≈ 2, essentially the same as found above for the volume quanta. This means that, in its primordial
state, the DM consists of nothing more than a single space atom. If so, then the question arises as to
whether it makes any sense to distinguish between solutions of different shape, e.g., a tunneling and a
“soft entry” solution. This could at best serve to characterize space atoms of different shapes, but then
should be done in a different way than usual. Furthermore, the question arises of whether the initial
state for the classical evolution would not have to be composed of many space atoms. This possibility
is discussed in the next subsection.

4.3. Primordial State with Large Volume

Figure 6 shows what the probability density of our “soft entry” process looks like when the QR
is much further extended. As already indicated above, the size ∆v = 1/γ = 1061 of the volume
jumps performed by the classical solution appears to be a reasonable choice for the volume of the QR.
The latter is then made up of about 1060 space atoms, which could be enough to accommodate the
amount of information required by our DE model. For not having to choose a much smaller initial
density $Λ = $∗/x2

i (see Equation (3)) because of x2
i = v2/3

i � 1, we give up the condition ẋ(τ) = 0
for x = xi leading to the latter, and must replace the consequential boundary condition ψ′(vi) = 0.
This means that we can use Equation (14) and must only continue the “soft entry” solution underlying
Figure 3 to larger values of v. For Figure 6, the position of the upper QR-boundary was chosen so
that Equation (27) is satisfied. The transition from QR to CR would be best accomplished by passing
over ρ(x) with continuous derivative ρ′(x) to the decreasing density of the CR, and then looking for a
common solution for the transition region, a lengthy procedure not accomplished here.

10 20 30 40 50

0.2

0.4

0.6

0.8

1.0

soft
entry

-v

6ψ2

CR

QR
/

Figure 6. Square of our “soft entry” solution, extending from v = 0 to the dashed line, and at constant
ρ = 1 continued over a larger v-interval. The upper boundary value ≈ 50, selected for visualization,
should in reality be much larger.

As can be seen from Figure 6, our “soft entry” solution fits very well with our interpretation of
the ψ2-values between adjacent zeroes as quantum states. Obviously, the quantum states with small
v-values are somewhat higher and wider than the others. This can be explained by the fact that they
are subjected to a particularly strong spatial curvature. With the correspondingly continued HH-like
state of Figure 4, the fit is not nearly as good. However, the extended “soft entry” state of Figure 6 can
also be reinterpreted as HH-like. (For this purpose, Equation (27) was taken into account). For our
purposes, this interpretation appears even more appropriate because it is difficult to imagine how
large amounts of information will be accommodated, if the volume quanta, which are supposed to
store them, arise one after the other.

The rather large volume of the HH-like primordial state thus obtained may even settle a never
resolved discrepancy between the VL- and the HH-approach. According to Ref. [17], the VL-approach
favors a universe (multiverse in our case) with an initial state of the smallest possible size, whereas
the HH-approach favors one of the largest imaginable size. As a sort of compromise, our DM-model
favors an HH-like primordial state of medium size between the smallest and largest possible.
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5. Properties of the CR-Solution

5.1. Initial Equilibrium between DE and Matter

In Ref. [2], it was suggested that the initial state of the expansion phase could be an – albeit unstable
– equilibrium between DE and matter. Because of the importance of this, the related calculation is made
up here. For the sake of simplicity, it is limited to case ai = lP. The additional matter term ρm = ρmi /xn

converts Equation (6) for xi = 1 into

ẋ2(τ) = (ρ + ρmi /xn) x2 − 1 . (36)

With ẋ(τ) = 0 for xi = x(0) = 1, from this, we get

ρi + ρmi = 1 . (37)

With ρ̇(τ)/ẋ(τ) = ρ′(x), the time derivative of Equation (36) results in

ẍ(τ) =
(

ρ′(x)− nρmi

xn+1

) x2

2
+
(

ρ(x) +
ρmi

xn

)
x .

In the case of the friction-involving interpretation, for ρmi → 0 and ρ(x)→ 1, this equation must reduce
to Equation (5), i.e., x2 ρ′(x)/2 + x ρ → −2σẋ + x. In consequence, in the last equation, x2 ρ′φ(x)/2
must be replaced by −2σẋ. With the equilibrium conditions ẍ(τ) = ẋ(τ) = 0 for x = xi = 1, we get
from the last equation

ρi + (2− n)ρmi/2 = 0 . (38)

Resolving Equations (37) and (38) with respect to ρi and ρmi yields the results shown in Table 1.

Table 1. Equilibrium values of ρi and ρmi.

Generally n = 3 n = 4

ρmi 2/n 2/3 1/2
ρi (n−2)/n 1/3 1/2

Because in Ref. [1] the influence of an initial (unstable) equilibrium on the solutions x(τ) has
already been dealt with in detail, and because it is unlikely that, in the present case, significant
changes will occur (due to the extremely slow temporal change of x(τ), the situation is already very
equilibrium-like), and also for reasons of clarity, a correspondingly extended treatment is waved here.

5.2. Minimum Age of the Dark Multiverse

In Ref. [2], the age of the DM was evaluated on the simplifying assumption that its size exceeds
that of U by a factor ζ = 100 or more. This is far beyond the lower limit of ζ ≈ 8.4, posed by
measurements of the spatial curvature. Therefore, in the following, the age limit is determined.
For this purpose, the factor γ in the solution (9) for x(τ) must be taken from the full Equation (36)
of Ref. [2], $/$0 = γ2 $Λ/$0 + 0.522/(ζ2X2), where X = a/a0 with a0 = Rζ = presents a value of a
and R = 2.22 · 1026 m = metric radius of the observable boundary of U. Putting $ = $0 and X = 1,
we obtain from this equation

γ =
√
(1− 0.522/ζ2)$0/$Λ . (39)

Inserting this, x = RζX/lp, τ = tH0T /tP with T = t/tH0, and tH0 = 4.41 · 1017 s = present Hubble
time, in Equation (9) and resolving the latter with respect to T yields its present value

T0(ζ) =
170.4 + 1.21 ln ζ√

1− 0.522/ζ2
. (40)
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In Figure 7, the function T0(ζ) is shown together with the aforementioned lower limit ζ ≈ 8.4.

0 20 40 60 80 100 120 140

174

175

176

177

-ζ

6T0

Figure 7. Age T0 of the DM as a function of ζ. Due to inadmissible curvature values, the shaded area
ζ < 8.4 must be excluded. The dashed curve represents the approximation 170.4 + 1.21 ln ζ.

5.3. Irreversibility of the Friction-Involving Interpretation

By including the friction term − f ȧ(t) in Equation (1), for particularized reasons (time savings for
the transmission of information), an irreversible element was deliberately introduced into the basic
cosmological equations derived from general relativity. It is surprising that the irreversible solutions
thus obtained are also solutions of the usual equations involving a scalar field Φ. It is worthwhile to
investigate how this comes about. For this, we first consider the equations with a scalar field Φ,

ȧ2(t) =
8πG

3
$ a2 − c2 with $ =

h̄2Φ̇2(t)
2µc4 +

V(Φ)

c2 , (41)

Φ̈(t) + 3H Φ̇(t) +
µc2

h̄2 V′(Φ) = 0 with H =
ȧ(t)

a
. (42)

All of them are invariant with respect to time reversal because dt appears in them only quadratically.
(3H Φ̇(t) ∼ ȧ Φ̇ is invariant because ȧ and Φ̇ change their sign simultaneously with t.)

Let us now turn to the irreversible interpretation involving friction. In this, the FL-Equation (2)
is only seemingly reversible, since $ f → −$ f for t → −t. What was shown in Ref. [2] is that the
solutions of this equation coincide with the solutions of the system of Equations (41) and (42) only
as time is moving forward; for t → −t, this is no longer true. (This does not immediately become
apparent from Ref. [2] because the solutions of the system (41) and (42) were only calculated forward in
time. For example, Equation (60) from there, ϕ̇(τ) =

√
−x $′(x)/(3 $Λ), used to calculate the solution,

would have to be replaced by ϕ̇(τ) = −
√
−x $′(x)/(3 $Λ) for t→ −t.) The resolution of the seeming

contradiction is therefore that the fulfillment of both the reversible and the irreversible equations by
our solution applies only to advancing time.

5.4. Behavior of the DE in Our Universe

It was shown in Ref. [1] that the rest mass density of the DE, measured in M and U, matches for
t = t ∗+ϑ, where ϑ is the proper time in U, and t∗ is the time of the origin of U as judged from M.
Our model assumes that in M the DE is at rest with respect to the coordinates t, χ, etc. This does not
mean that it is at rest as well in U. It is shown below that it does so at least approximately.

In the following, we consider two states of U.
State 1: U contains only the DE of the DM, and, omitting the angular contributions, the square of the
line element is

ds2
M = c2dt2 − a2(t) dχ2 . (43)

State 2: is the real present state of U with

ds2
U = c2dϑ2 − a2

U(ϑ) dη2, (44)
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where the subscript U denotes the affiliation to U, η is the radial, and ϑ the time-coordinate. We assume
that the origins of the radial coordinates χ and η coincide, and search for a transformation t =

t(η, ϑ), χ = χ(η, ϑ) that converts ds2
M into a form commensurable with ds2

U . In order to keep an
unchanged rest mass density, we set

t = t∗ + ϑ χ = χ(η, ϑ) . (45)

With this (specifically dt = dϑ), from Equation (43), we get

ds2
M =

(
c2−a2(t) χ2

ϑ

)
dϑ2 − 2a2(t)χηχϑ dη dϑ− a2(t) χ2

η dη2,

where χη and χϑ are the partial derivatives of χ(η, ϑ) with respect to η and ϑ resp. To determine
how the position χ = const is judged in U, following from dχ = χηdη + χϑdϑ = 0, we insert in this
dη = −χϑ dϑ/χη whence 2a2(t)χηχϑ dη dϑ = −2a2(t)χ2

ϑ dϑ2, and obtain

ds2
M =

(
c2+a2(t) χ2

ϑ

)
dϑ2 − a2χ2

η dη2 . (46)

According to Equations (43) and (46), the differential contribution of an element dχ to the distance
d = a(t) χ of the position χ under consideration, expressed in terms of the radial coordinate η of state 2,
is a dχ = aχηdη. This is true because dt = 0 for length measurements, and dt = dϑ = 0 according to
Equation (45). With this, from Equations (44) and (46), we get aχηdη = aUdη or

χ = (aU/a) η and d(t) = a(t) χ = aU(ϑ) η = dU(ϑ), (47)

where d(t) or dU(ϑ) is the distance from the origin of the DE-element at χ in situation 1 or 2 resp.
According to this, the expansion velocity of the DE in U is

ḋU(ϑ) = ḋ(t) = ȧ(t)χ =
γ

tP
a χ =

γ

tP
dU , (48)

where ȧ(t) = lP ẋ(τ)dτ/dt = lPγ x/tP = γ a/tP was used. The expansion velocity of the cosmic
substrate in U is

ḋUcs(ϑ) = ȧU(ϑ) η =
ȧU(ϑ)

aU
du =

dU
tH

, (49)

where ȧU(ϑ)/ȧU = H(ϑ) = 1/tH was used, with H and tH being the Hubble parameter and the
Hubble time resp. Inserting for tH the present value tH0 = 4.41·1017s, with use of Equations (11), (48)
and (49), and tP = 5.39 · 10−44 s, the ratio of the two expansion velocities becomes

ḋU(ϑ)

ḋUcs(ϑ)
=

γ tH0

tP
= 0.83. (50)

In view of uncertainties regarding the Hubble parameter and the huge numbers involved, it spoils
nothing to say that the two velocities are essentially the same. Even a slightly larger expansion velocity
of the DE cannot be excluded. In this case, the following scenario could come into effect: Since the
observed expansion-acceleration of the material components of U is attributed to the DE, according to
the principle actio = reactio, this should conversely delay the DE-expansion. The mass density of the
DE could then even be slightly below the usual value because some of the acceleration caused by it
would emanate from its kinetic energy. However, if the numerical values obtained above are correct,
just the opposite will happen: a decelerating effect on the matter must be compensated by a slightly
higher mass density of the DE.
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6. Discussion

The concept of a timeless, spatially four-dimensional HH-like state developed in Sections 3.1
and 3.2.2 as a primordial state represents one of the most important supplements to our model of the
DM. In contrast to the tunneling or the “soft entry” concept, the information about the physical laws
and the tools needed for their implementation are bound to matter from the very beginning. This can
certainly be regarded as an advantage over the other two concepts, in which the tunneling or entry is
preceded by a further state of pure information without integration into matter, a state that cannot be
described within the framework of valid physical laws. According to Hawking, the HH-state could
never have been created due to its timelessness because its creation would require a temporal before.
The same argument would apply as well to our HH-like state. However, we cannot agree with this
interpretation. It is certainly true that in many, perhaps most cases, cause and effect follow each other in
time, which is usually associated with the use of these words. However, there are counterexamples in
mathematics and logics, where, instead of cause and effect, the word pair precondition and consequence
is used. In this case, the first implicates the second and not vice versa, with time being irrelevant. This
is exactly what is also conceivable for the HH- or our HH-like state.

Because of its timelessness, like the HH-model, our HH-like model can only be treated within the
framework of a QG-theory. Our unusual choice of a minisuperspace, using the volume as basis of the
WdW-equation, was due to the fact that the usual procedure yields very implausible probabilities in
the CR. Our approach leads not only to more plausible probabilities, but also to the identification of
single states, which can be interpreted as spatial volume quanta.

With regard to the most important feature of our DM model, the storage and transmission of
information about the physical laws, the investigations in Section 4.1 have shown how difficult it
is to integrate deeper details beyond the friction term into common physics. On the other hand,
it seems to be an urgent demand to open up new ways in this respect because the problem is palpable:
elementary particles such as the electron have no receiving device and no brain, with which they could
receive commands and implement them into action, and the properties with which they are described
(e.g., rest mass, charge and spin) are not sufficient to act and react as required by physical laws. In this
respect, at present, questions and speculations are instead the order of the day. As seen in Section 4.1,
QG without loop theory would allow substructures below the LQG-structures. Would this be possible,
or are the limits posed by LQG too restrictive? What role does the DE play in this game? At least the
HH-like primordial state with large volume, treated in Section 4.3, seems to provide a useful approach.

Regarding newly identified properties of the solution for the CR, we point out the behavior of the
DE in U, examined in Section 5.4. It is understood that DE causes the acceleration of galaxy expansion,
and there must be a counteraction to this action. We suggested that the latter might consist in slowing
down a somewhat higher expansion velocity of the DE, but this could not be conclusively demonstrated
in consideration of very narrow numerical relationships and possible inaccuracies. Thus, after all, that
too has to be ranked as a speculation. On the other hand, another, potentially disturbing problem
with the friction term introduced into the equation for the DM-expansion-acceleration ä(t) could be
adequately solved.

As indicated at the beginning of the Introduction, it is currently a huge problem to prove beyond
doubt that there is a multiverse at all and, even more so, to verify the validity of assumptions that
enter into a multiverse concept. In our case, one possibility would be to examine more closely the
footprint of the multiverse in our universe, specifically the time dependence of the DE density $(t) c2

given by Equations (9) and (10). It would be even more difficult, but also more interesting, to unveil
their decomposition into the two opposing components $Λ(t)c2 and $ f (t)c2 given by Equation (2).
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Abbreviations

The following abbreviations are used in this manuscript:

M multiverse
U our universe
DE dark energy
DM dark multiverse
QR quantum regime
CR classical regime
VL Vilenkin–Linde
HH Hartle–Hawking
QG quantum gravity
LQG loop quantum gravity
WdW Wheeler–de Witt
FL Friedmann–Lemaître

Appendix A

Inserting

$Φ =
h̄2Φ̇2(t)

2µc4 +
Uφ(Φ)

c2 (A1)

in Equation (2) and multiplying the latter with 3c2/(8πGa2) yields

H :=
3c2

8πGa2 ȧ2(t)− h̄2Φ̇2(t)
2µc2 + Ua(a)−UΦ(Φ) = 0 with Ua =

3c4

8πGa2 . (A2)

The case of constant density $Φ ≡ $Λ, examined closer in the main body, is included by setting Φ̇(t)→ 0
and UΦ/c2→ $Λ. Having the same dimension as $Φc2, H can be interpreted as an energy density.
Integrating it at given a over the total volume V of the DM yields the quantity

H = HV with V = 2π2 a3 . (A3)

Note that, by way of the multiplication by V ∼ a3, the three-dimensionality of space enters decisively
into the derivation. This is also expressed by the fact that $Φ andH are 3D-densities. Interpreting H as
the Hamiltonian of the system,

L = U (H− 2U) with U = Ua(a)−UΦ(Φ) (A4)

is the corresponding Lagrangian. The associated momenta are

pa =
∂L
∂ȧ

=
3πc2a ȧ

2G
pΦ =

∂L
∂Φ̇

= −2π2h̄2a3Φ̇
µc2 . (A5)

(Since ṗa(t)=∂L/∂a and ṗΦ(t)=∂L/∂Φ result in Equations (41) and (42), our above interpretations of
H and L are justified.) Resolving the last two equations with respect to ȧ and φ̇ resp. and inserting the
results into Equation (A3) with (A2) yields

H =
G

3πc2a
p2

a −
µc2

4π2h̄2a3
p2

Φ + 2π2a3(Ua(a)−UΦ(Φ)
)
= 0 .

Now, employing the quantisation rules pa→ (h̄/i)∂/∂a and pΦ→ (h̄/i)∂/∂Φ, after multiplication
with 3πc2a/(Gh̄2), we obtain the equation

ĤΨ =

(
− ∂2

∂a2 +
3µc4

4πGh̄2a2

∂2

∂Φ2 +
9π2c6

4G2h̄2 a2 − 6π3c2a4

Gh̄2 Uφ

)
Ψ = 0, (A6)
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where Ψ(a, Φ) is the wave function of the DM in the so-called minisuperspace spanned by the variables
a and Φ. Inserting a=xlp with lp=

√
h̄G/c3, Ψ = ψ/l3/2

p with dimensionless ψ, UΦ(Φ) = $Λc2uϕ(ϕ),
ϕ = (h̄/c2)

√
8πG/(3µ)Φ, and Equation (3) yields(

− ∂2

∂x2 +
2
x2

∂2

∂φ2 +
9π2

4

[
x2 − x4uφ(φ)

x2
i

])
ψ = 0 . (A7)

In the case $Φ ≡ $Λ or ρ ≡ 1, the substitutions Φ̇(t)→ 0 and UΦ/c2→ $Λ translate into ∂2/∂φ2→ 0
and uφ(φ)→ 1 by what Equation (A7) reduces to the particularly simple and for xi = 1 frequently
studied case

ψ′′(x) +
(

3π

2

)2 (
x4/x2

i − x2
)

ψ = 0 . (A8)

For the reasons depicted in Section 3.2, we do not employ this equation. Instead, we apply the equation
which is obtained, if, in the above derivation, from Equation (A5) onward, a is eliminated by using
V = 2π2a3, pV = ∂L/∂V in place of pa, and a dimensionless volume v = V/(2π2l3

P). (The initial
volume is Vi = 2π2a3

i = 2π2l3
Px3

i , and the corresponding dimensionless volume is vi = Vi/(2π2 l3
P) =

x3
i .) The result of this procedure is

ψ′′(v) +
(π

2

)2(
v−2/3

i − v−2/3)ψ = 0 . (A9)

It can be read directly from Equation (A8) by eliminating x through use of

v = x3 and dv = 3x2dx (A10)

and by replacing ψ′′(x) with 9x4ψ′′(v). Note that Equation (A9) does not result from Equation (A8)
simply through transformation and therefore has different solutions.

We are only dealing with real solutions Ψ in this paper, and for them the (also real) Hamiltonian
Ĥ is obviously Hermitian, no matter how the scalar product (Ψ, Ĥψ) is defined. Ψ2 is the 3D-density
of the probability P, i.e., Ψ2 = dP/dV so that its volume integral over the full range R of possible V
values yields 1, i.e., we have

dP
dV

= Ψ2
∫

R
dP =

∫
R

Ψ2 dV = 2π2
∫

r
ψ2 dv = 1 . (A11)
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