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Abstract: We extend the recently developed hybrid quark–meson–nucleon model by augmenting
a six-point scalar interaction and investigate the consequences for neutron-star sequences in the
mass–radius diagram. One of the characteristic features of the model is that the chiral symmetry is
restored within the hadronic phase by lifting the mass splitting between chiral partner states, before
quark deconfinement takes place. At low temperature and finite baryon density, the model predicts a
first- or second-order chiral phase transition, or a crossover, depending on the expectation value of a
scalar field, and a first-order deconfinement phase transition. We discuss two sets of free parameters,
which result in compact-star mass–radius relations that are at tension with the combined constraints
for maximum-mass (2 M�) and the compactness (GW170817). We find that the most preferable
mass–radius relations result in isospin-symmetric phase diagram with rather low temperature for the
critical point of the chiral phase transition.
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1. Introduction

For the investigation of matter under extreme conditions and the structure of its phase diagram
the equation of state (EoS) is the key target. In the region of finite temperature and vanishing baryon
density ab initio calculations using Monte Carlo simulations of lattice QCD [1] provide a benchmark for
developing phenomenological approaches that can be tested, e.g., in heavy-ion collision experiments.
Up to now, however, the sign problem prevents the application of lattice QCD methods to the region at
low temperature and high baryon density where the possible existence of a first-order phase transition
with a critical endpoint has been conjectured. To elucidate the QCD phase structure in this domain
inaccessible to terrestrial experiments and present techniques of lattice QCD simulations, valuable
information comes from progress in observing the mass–radius (M-R) relationship of compact stars,
due to its one-to-one correspondence with the EoS of compact star matter [2] via the solution of the
Tolman–Oppenheimer–Volkoff (TOV) equations [3,4]. For the extraction of the compact star EoS
via Bayesian analysis techniques using mass and radius measurements as priors, see Refs. [5–7].
In particular, in the era of multi-messenger astronomy, it shall soon become possible to constrain the
sequence of stable compact star configurations in the mass–radius plane inasmuch that a benchmark
for the EoS of cold and dense matter can be deduced from it.

Among the modern observatories for measuring masses and radii of compact stars,
the gravitational wave interferometers of the LIGO-Virgo Collaboration (LVC) and the X-ray
observatory NICER on-board the International Space Station provide new powerful constraints besides
those from radio pulsar timing. In this work, we pay special attention to the state-of-the-art results

Universe 2019, 5, 180; doi:10.3390/universe5080180 www.mdpi.com/journal/universe

http://www.mdpi.com/journal/universe
http://www.mdpi.com
https://orcid.org/0000-0003-2815-0564
https://orcid.org/0000-0002-8399-5183
https://orcid.org/0000-0002-2629-1710
https://orcid.org/0000-0003-4612-3375
http://dx.doi.org/10.3390/universe5080180
http://www.mdpi.com/journal/universe
https://www.mdpi.com/2218-1997/5/8/180?type=check_update&version=2


Universe 2019, 5, 180 2 of 13

from the recent measurement of the high mass 2.17+0.11
−0.10 M� for PSR J0740+6620 by the NANOGrav

Collaboration [8] and the compactness derived from the tidal deformability measurement for the
binary compact star merger GW170817 [9] in its mass range (1.16–1.60 M� for the low-spin prior).

In the study of cold and dense QCD and its applications, commonly used are separate
effective models for the nuclear and quark matter phases (two-phase approaches) with a priori
assumed first-order phase transition, typically associated with simultaneous chiral and deconfinement
transitions. Within this setting, for a constant-speed-of sound model of high-density (quark) matter,
a systematic classification of hybrid compact star solutions has been given in [10], which gives a
possibility to identify a strong first-order transition in the EoS by the fact that the hybrid star branch
in the mass–radius diagram becomes disconnected from the branch of pure neutron stars. However,
already before this occurs, a strong phase transition manifests itself by the appearance of an almost
horizontal branch on which the hybrid star solutions lie, as opposed to the merely vertical branch of
pure neutron stars. In the literature, this strong phase transition has been discussed as due to quark
deconfinement [11–13]. This conclusion may however be premature since strong phase transitions with
a large latent heat occur also within hadronic matter, for instance due to chiral symmetry restoration
within the hadronic phase [14]. In the present work, we employ the hybrid quark–meson–nucleon
(QMN) model [14–16] to explore the implications of dynamical sequential phase transitions at high
baryon density on the phenomenology of neutron stars. To improve the description of nuclear matter
properties at the saturation density, we extend the previous hybrid QMN model by including a
six-point scalar interaction. Our main focus is on the role of the chiral symmetry restoration within the
hadronic branch of the EoS.

This paper is organized as follows. In Section 2, we introduce the hybrid quark–meson–nucleon
model. In Section 3, we discuss the obtained numerical results on the equation of state under
neutron-star conditions. In Section 4, we discuss the obtained neutron-star relations. In Section 5, we
present possible realizations of the low-temperature phase diagram. Finally, Section 6 is devoted to
summary and conclusions.

2. Hybrid Quark–Meson–Nucleon Model

In this section, we briefly introduce the hybrid QMN model for the QCD transitions at finite
temperature, density, and arbitrary isospin asymmetry for the application to the physics of neutron
stars [14–16].

The hybrid QMN model is composed of the baryonic parity doublet [17–19] and mesons as in
the Walecka model, as well as quark degrees of freedom as in the standard quark–meson model.
The spontaneous chiral symmetry breaking yields the mass splitting between the two baryonic parity
partners, while it generates an entire mass of a quark. In this work, we consider a system with N f = 2;
hence, relevant for this study are the lowest nucleons and their chiral partners, as well as the up
and down quarks. The hadronic degrees of freedom are coupled to the chiral fields (σ, π), isosinglet
vector field (ωµ), and isovector vector field (ρµ). The quarks are coupled solely to the chiral fields.
The important concept of statistical confinement is realized in the hybrid QMN model by considering
a medium-dependent modification of the particle distribution functions.

In the mean-field approximation, the thermodynamic potential of the hybrid QMN model
reads [14]

Ω = ∑
x

Ωx + Vσ + Vω + Vb + Vρ. (1)

where the summation goes over the positive-parity nucleons, i.e., proton (p+) and neutron (n+),
their negative-parity counterparts, denoted as p− and n−, and up (u) and down (d) quarks.
The positive-parity nucleons are identified as the positively charged and neutral N(938) states.
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The negative-parity states are identified as N(1535) [20]. The kinetic part of the thermodynamic
potential in Equation (1), Ωx, reads

Ωx = γx

∫ d3 p

(2π)3 T [ln (1− nx) + ln (1− n̄x)] . (2)

The spin degeneracy of the nucleons is γ± = 2 for both positive- and negative-parity states, while
the color-spin degeneracy factor for quarks is γq = 2× 3 = 6. The functions nx are the modified
Fermi–Dirac distribution functions for the nucleons

n± = θ
(

α2b2 − p2
)

f±,

n̄± = θ
(

α2b2 − p2
)

f̄±,
(3)

and for the quarks, accordingly

nq = θ
(

p2 − b2
)

fq,

n̄q = θ
(

p2 − b2
)

f̄q,
(4)

where b is the expectation value of the b-field, and α is a dimensionless model parameter [15,16].
The hybrid QMN model employs confinement/deconfinement mechanism in a statistical sense.

The approach used in this model is to introduce IR and UV momentum cutoffs to suppress quarks
at low momenta and hadrons at high momenta. This notion has been widely used in effective
theories and Dyson–Schwinger approaches [21,22]. In the current approach, the cutoff is replaced
with a medium-dependent quantity, which is expected from asymptotic freedom. Such an intrinsic
modification of the cutoff is determined self-consistently when the cutoff is regarded as a vacuum
expectation value of a scalar field (see Equation (10d)). The role of the αb0 parameter can be understood
twofold. First, its lower values trigger the chiral phase transition at lower densities. Second, the chiral
phase transition is stronger and the equation of state becomes stiffer for lower values of the parameter.
This can be seen in the equation of state and corresponding speed of sound squared as functions of
net-baryon-number density (see Section 3).

The functions fx and f̄x are the standard Fermi–Dirac distributions,

fx =
1

1 + eβ(Ex−µx)
,

f̄x =
1

1 + eβ(Ex+µx)
,

(5)

with β being the inverse temperature, the dispersion relation Ex =
√

p2 + m2
x. The effective chemical

potentials for p± and n± are defined as1

µp± = µB − gωω− 1
2

gρρ + µQ,

µn± = µB − gωω +
1
2

gρρ.
(6)

1 In the mean-field approximation, the non-vanishing expectation value of the ω field is the time-like component; hence,
we simply denote it by ω0 ≡ ω. Similarly, we denote the non-vanishing component of the ρ field, time-like and neutral,
by ρ03 ≡ ρ.
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The effective chemical potentials for up and down quarks are given by

µu =
1
3

µB +
2
3

µQ,

µd =
1
3

µB −
1
3

µQ.
(7)

In Equations (6) and (7), µB and µQ are the baryon and charge chemical potentials, respectively.
The constants gω and gρ couple the nucleons to the ω and ρ fields, respectively. The strength of gω is
fixed by the nuclear saturation properties, while the value of gρ can be fixed by fitting the value of
symmetry energy [23]. The properties are shown in Table 1.

Table 1. Properties of the nuclear ground state at µB = 923 MeV and the symmetry energy used in
this work.

ρ0 [fm−3] E/A − m+ [MeV] K [MeV] Esym [MeV]

0.16 −16 240 31

The effective masses of the parity doublers mp± = mn± ≡ m± are given by

m± =
1
2

[√
(g1 + g2)

2 σ2 + 4m2
0 ∓ (g1 − g2) σ

]
, (8)

and for quarks, mu = md ≡ mq,
mq = gqσ. (9)

The parameters g1, g2, and gq are Yukawa-coupling constants, m0 is the chirally invariant mass of
the baryons and is treated as an external parameter (for more details, see [14,16]). The values of those
couplings can be determined by fixing the fermion masses in the vacuum (see Table 2). The quark
mass is assumed to be m+ = 3mq in the vacuum. When the chiral symmetry is restored, the masses of
the baryonic parity partners become degenerate with a common finite mass m± (σ = 0) = m0, which
reflects the parity doubling structure of the low-lying baryons. This is in contrast to the quarks, which
become massless as the chiral symmetry gets restored.

Table 2. Physical vacuum inputs used in this work.

m+ [MeV] m− [MeV] mπ [MeV] fπ [MeV] mω [MeV] mρ [MeV]

939 1500 140 93 783 775

The potentials in Equation (1) are as in the SU(2) linear sigma model,

Vσ = −λ2

2

(
σ2 + π2

)
+

λ4

4

(
σ2 + π2

)2
− λ6

6

(
σ2 + π2

)3
− εσ, (10a)

Vω = −1
2

m2
ωωµωµ, (10b)

Vb = −1
2

κ2
bb2 +

1
4

λbb4, (10c)

Vρ = −1
2

m2
ρρµρµ, (10d)

where λ2 = λ4 f 2
π − λ6 f 4

π −m2
π , and ε = m2

π fπ . mπ , mω, and mρ are the π, ω, and ρ meson masses,
respectively, The pion decay constant is denoted as fπ . Their values are shown in Table 2. The constants
κb and λb are fixed following Ref. [15]. The parameters λ4 and λ6 are fixed by the properties of the
nuclear ground state (see Table 1). We note that the introduction of the six-point scalar interaction
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term in Equation (10a) is essential in order to reproduce the experimental value of the compressibility
K = 240± 20 MeV [24].

Following the previous studies of the parity-doublet-based models [14–16,25], as well as recent
lattice QCD results [26,27], we choose rather large values, m0 = 700, 800 MeV. We note that the
additional mass, m0, is not associated with spontaneous chiral symmetry breaking. Thus, it has to
originate through another mechanism. Although it is unknown how m0 is expressed in terms of the
QCD condensates, the constraint m0 ≤ 800 MeV is transmuted into the nucleon mass such that at most
15% of the entire mass is generated by the spontaneous chiral symmetry breaking. This is best seen
in the chiral limit, where no dimensionful parameters are present in the QCD Lagrangian, but the
appearance of the QCD scale breaks the scale invariance. Thus, one expects that both give rise to the
emergence of dynamical hadronic scales at low energies [28–30]. Thus, the chirally invariant mass, m0,
can be identified with the gluon condensate 〈GµνGµν〉.

The physical inputs and the model parameters used in this work are summarized in Tables 1–3.
In-medium profiles of the mean fields are obtained by extremizing the thermodynamic potential in
Equation (1). The gap equations are obtained as follows

∂Ω
∂σ

= −λ2σ + λ4σ3 − λ6σ5 − ε + ∑
x=p± ,n± ,u,d

sx
∂mx

∂σ
= 0, (11a)

∂Ω
∂ω

= −m2
ωω + gω ∑

x=p± ,n±
ρx = 0, (11b)

∂Ω
∂b

= −κ2
bb + λbb3 + α ∑

x=p± ,n±
ω̂x − ∑

x=u,d
ω̂x = 0, (11c)

∂Ω
∂ρ

= −m2
ρρ +

1
2

gρ ∑
x=p±

ρx −
1
2

gρ ∑
x=n±

ρx = 0, (11d)

where the scalar and baryon densities are

sx = γx

∫ d3 p
(2π)3

mx

Ex
(nx + n̄x) , (12)

and

ρx = γx

∫ d3 p
(2π)3 (nx − n̄x) , (13)

respectively. The boundary terms in the gap Equation (11c) are given as

ω̂± = γ±
(αb)2

2π2 T
[
ln (1− f±) + ln

(
1− f̄±

)]
p2=(αb)2 , (14)

and

ω̂q = γq
b2

2π2 T
[
ln
(
1− fq

)
+ ln

(
1− f̄q

)]
p2=b2 , (15)

for the nucleons and quarks, respectively. Note that the terms in Equations (14) and (15) come into the
gap Equation (11c) with opposite signs. This reflects the fact that nucleons and quarks favor different
values of the bag field.
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Table 3. Sets of the model parameters used in this work. The values of λ4, λ6 and gω are fixed by
the nuclear ground state properties, and gρ by the symmetry energy (see the text). The remaining
parameters, gq, κb, and λb, do not depend on the choice of m0, and their values are taken from Ref. [16].

m0 [MeV] λ4 λ6 f 2
π gω gρ g1 g2 gq κb [MeV] λb

700 33.74 13.20 5.60 8.10 13.75 7.72 3.36 155 0.074
800 21.50 8.25 7.27 7.92 12.91 6.88

In the grand canonical ensemble, the thermodynamic pressure is obtained from the
thermodynamic potential as P = −Ω + Ω0, where Ω0 is the value of the thermodynamic potential in
the vacuum. The net-baryon number density for a species x is defined as

ρx
B = −∂Ωx

∂µB
, (16)

where Ωx is the kinetic term in Equation (2) for the species x. The total net-baryon number density reads

ρB = ρ
n+
B + ρ

n−
B + ρ

p+
B + ρ

p−
B + ρu

B + ρd
B. (17)

In the next section, we discuss the obtained equations of state in the hybrid QMN model and
their impact on the chiral phase transition, under the neutron-star conditions of β equilibrium and
charge neutrality.

3. Equation of State under Neutron-Star Conditions

The neutron-star conditions require additional constraints to be imposed on the EoS under
investigation. To this end, electrons and muons are included as gases of free relativistic particles.
The first constraint is the β-equilibrium. This condition is an equilibrium among protons, neutrons,
and charged leptons. It assumes that the energy of the system is minimized, the system is electrically
neutral, and the total net-baryon number is conserved. β-equilibrium condition can be expressed in
terms of chemical potentials,

µn+ = µp+ + µe/µ, (18)

where µn+ , µp+ , µe, and µµ are the neutron, proton, electron, and muon chemical potentials, respectively.
The electric-charge neutrality constraint dictates that the overall charge density in a neutron star has to
be zero,

ρ
p+
Q + ρ

p−
Q +

2
3

ρu
Q −

1
3

ρd
Q − ρe

Q − ρ
µ
Q = 0, (19)

where ρx
Q is the charge density of a species x.

In Figure 1, we show the calculated zero-temperature equations of state in the mean-field
approximation with m0 = 700 MeV (Figure 1, left) and m0 = 800 MeV (Figure 1, right), for different
values of the α parameter, namely αb0 = 350 MeV (red, solid line), αb0 = 370 MeV (purple, dashed
line), αb0 = 400 MeV (blue, dotted line) and αb0 = 450 MeV (black, dash-dotted line). The value b0

denotes the vacuum expectation value of the b-field. The coexistence phases of the chirally broken
and restored phases are shown between circles. We stress that the chiral and deconfinement phase
transitions are sequential in the current model setup (see [16]). The latter happen at higher densities
and are not shown in the figure.
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Figure 1. Thermodynamic pressure P as a function of the net-baryon number density ρB, in units of
the saturation density, ρ0 = 0.16 fm−3 for m0 = 700 MeV (left) and m0 = 800 MeV (right). The regions
between circles correspond to the coexistence of chirally broken and restored phases in the first-order
phase transition. For αb0 = 450 MeV, the transition is a crossover. The deconfinement transitions are
triggered at higher densities and are not shown here.

In all cases, the behavior at low densities is similar. In general, for low values of αb0 (except
αb0 = 450 MeV), the chiral transition is of first order, determined as a jump in the σ-field expectation
value. The parity-doublet nucleons become degenerate with mass m± = m0. The chiral phase
transition becomes weaker for higher values of the α parameter. For αb0 = 450 MeV, the transition
turns into a smooth crossover, defined as a peak in ∂σ/∂µB. This behavior agrees with the case of
isospin-symmetric matter, where higher value of α causes the first-order chiral phase transition to
weaken and eventually go through a critical point, and turn into a crossover transition [16]. The values
of the net-baryon density range for the coexistence phase of the chirally broken and restored phases
are shown in Table 4.

Table 4. Net-baryon density range of the coexistence phase of the chirally broken and restored phases
in terms of saturation density units, ρ0, for different values of m0 and αb0 parameters. For the case of
αb0 = 450 MeV, the transitions are smooth crossovers for both values of m0.

αb0 [MeV]

m0 [MeV] 350 370 400 450

700 1.82–2.60 2.12–2.76 2.60–3.07 3.56

800 1.94–2.97 2.29–3.15 2.86–3.66 4.13

In Figure 2, we show the speed of sound squared, c2
s = dP/dε, in units of the speed of light

squared, as a function of the net-baryon number density. The coexistence phases are shown in
between circles. As seen in the figure, the causality bound is preserved for all of the parameterizations.
The apparent stiffening of the EoSs is a result of the modification of the Fermi–Dirac distributions
(cf. Equation (3)) introduced in the hybrid QMN model. We note that it is in general possible to sustain
the 2 M� constraint and fulfill the conformal bound, i.e., c2

s ≤ 1/3. This can be obtained, e.g., in a class
of constant-speed-of-sound equations of state [31].
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Figure 2. Speed of sound squared as a function of the energy density for m0 = 700 MeV (left) and
m0 = 800 MeV (right). The regions between circles correspond to the coexistence of chirally broken
and restored phases in the first-order phase transition. For αb0 = 450 MeV, the transition is a crossover.
The deconfinement transitions are triggered at higher densities and are not shown here.

4. TOV Solutions for Compact-Star Sequences

We use the equations of state introduced in the previous section (see Figure 1) to solve the
general-relativistic TOV equations [3,4] for spherically symmetric objects,

dP(r)
dr

= −
(ε(r) + P(r))

(
M(r) + 4πr3P(r)

)
r (r− 2M(r))

, (20a)

dM(r)
dr

= 4πr2ε(r), (20b)

with the boundary conditions P(r = R) = 0 and M = M(r = R), where R and M are the radius and
the mass of a neutron star, respectively. Once the initial conditions are specified based on a given
equation of state, namely the central pressure Pc and the central energy density εc, the internal profile
of a neutron star can be calculated.

In general, there is one-to-one correspondence between an EoS and the mass–radius relation
calculated with it. In Figure 3 (left), we show the relationship of mass vs. central net-baryon number
density, for the calculated sequences of compact stars, together with the state-of-the-art constraints on
the maximum mass for the pulsar PSR J0348-0432 [32] and PSR J0740+6620 [8]. We point out that the
chiral phase transition leads to a softening of the EoS so that it is accompanied by a rapid flattening
of the sequence. Notably, the chiral transition for all values of αb0 occurs in the high-mass part of the
sequence, but below the 2 M� constraint, at around 1.8 M�.

In Figure 3 (left), the three curves for αb0 = 350, 370, 400 MeV consist of three phases: the chirally
broken phase in the low-mass part of the sequence, the chirally restored phase in the high-mass part,
and the coexistence phase between filled circles. Similar to the equation of state, increasing the value
of α softens the chiral transition, which eventually becomes a smooth crossover for αb0 = 450 MeV
and consists only of branches with chiral symmetry being broken and restored, separated by a circle.
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Figure 3. Sequences of mass for compact stars vs. their central net-baryon density (left) and vs. radius
(right) as solutions of the TOV equations for m0 = 700 MeV (top) and m0 = 800 MeV (bottom).
The regions between the circles show the coexistence of the chirally broken and chirally restored
phases. The gray band shows the 2.17+0.11

−0.10 M� constraint [8]. The blue band is the 2.01± 0.04 M�
constraint [32]. The green and purple bands in the right panel show 90% credibility regions obtained
from the GW170817 event [9] for the low- and high-mass posteriors.

In Figure 3, we show mass vs. central net-baryon density relations obtained for different values
of the chirally invariant mass m0. What is evident is that increasing the value of m0 strengthens the
chiral phase transition. This is seen twofold, as a shrinking of the coexistence phases and as more
abrupt flattening of chirally restored branches. For a larger m0, the transition becomes strong enough
to produce disconnected branches (see, e.g., the red, solid line in the bottom right panel of Figure 3).
These, in turn, cause the maximal mass of the sequences to decrease with increasing value of m0.
Eventually, the equations of state become not stiff enough to reach the 2 M� constraint. We note that
such small maximal masses are result of the additional six-point interaction term considered in the
thermodynamic potential of the hybrid QMN model (see Equation (10)). For m0 = 700 MeV (Figure 3,
top), the most favorable parameterizations are αb0 = 350− 370 MeV, while for m0 = 800 MeV (Figure 3,
bottom) none of the EoSs is stiff enough. In Table 5, we show the values of the maximal masses of
neutron star and corresponding radii obtained in each parameterization. In Figure 4, we show the
radial profiles of energy density (Figure 4, top) and pressure (Figure 4, bottom), for a 2.01 M� neutron
star, calculated for m0 = 700 MeV and αb0 = 370 MeV. The chiral phase transition happens at roughly
7.4 km from the center of the star and is reflected in a jump in energy density.
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Table 5. Maximal neutron-star masses in units of M� and corresponding radius in km (separated by
comma) for different values of m0 and αb0 parameters.

αb0 [MeV]

m0 [MeV] 350 370 400 450

700 2.10, 12.11 2.05, 11.91 2.01, 11.81 1.96, 11.92
800 1.95, 11.64 1.88, 11.29 1.83, 11.22 1.79, 11.25
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Figure 4. Profiles of the energy density (top) and pressure (bottom) for a neutron star with M =

2.01 M� for m0 = 700 MeV and αb0 = 370 MeV. The red regions show the phase, where the chiral
symmetry is broken, in the blue regions chiral symmetry is restored. The phases are separated with the
dashed lines.

The end points of the mass–radius relation correspond to the onset of quark d.o.f. in each
parameterization. This leads to the conclusion that the hadronic matter is not stiff enough to fulfill
the two-solar-mass constraint. In general, a possible resolution to this problem could be another
phase transition. This is the case in the hybrid QMN model, which features sequential chiral and
deconfinement phase transitions. However, in the current model setup, the equation of state in the
deconfined phase is not stiff enough to sustain the gravitational collapse and the branches become
immediately unstable. This is because quarks are not coupled with the vector field leading to a
repulsive force. On the other hand, it is known that repulsive interactions tend to stiffen the equation
of state. Hence, an additional repulsive force in the quark sector could possibly make the branch
stiff enough in order to reach the 2 M� constraint, and an additional family of stable hybrid compact
stars would appear, with the possibility for the high-mass twin scenario advocated by other effective
models [33–35].

We note that the obtained mass–radius relations stay in good agreement with the low-mass
constraints derived from the recent neutron-star merger GW170817 for the low- and high-mass
posteriors [9]. In Figure 3 (right), they are shown as green and purple regions, respectively.

5. Isospin-Symmetric Phase Diagram

The observational neutron-star data provide useful constraints on the structure of strongly
interacting matter. Furthermore, they may constrain the phase diagram of isospin-symmetric
QCD matter, which is of major relevance for the heavy-ion physics. In Figure 5, we show
the low-temperature part of the isospin-symmetric phase diagram obtained in the model in the
(T, ρB)-plane for m0 = 700 MeV (Figure 5, left) and m0 = 800 MeV (Figure 5, right). The liquid–gas
phase transition (green, dashed-doubly-dotted line) is common for both values of m0 by construction
of the hybrid QMN model [15,16]. Its critical point shows up at around T = 16 MeV, above which
it turns into crossover. A similar phase structure is developed for the chiral phase transition for
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low values of αb0. For m0 = 700 MeV, the critical points appear around T = 19, 9 MeV for
αb0 = 350, 370 MeV, respectively. On the other hand, for αb0 = 400, 450 MeV, the chiral transition
proceeds as a smooth crossover at all temperatures. For m0 = 800 MeV, the critical points are
developed at T = 36, 26, 15, 1 MeV for αb0 = 350, 370, 400, 450 MeV, respectively. Higher values of
the temperatures for the critical points are essentially a result of much stronger chiral phase transition
at zero temperature. We note that the most favorable parameterizations, i.e., for smaller values of m0,
yield rather low temperature for the critical point of the chiral phase transition.
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Figure 5. The Low-temperature part of phase diagram in the (T, ρB)-plane for isospin-symmetric matter
obtained in the hybrid QMN model for m0 = 700 MeV (left) and m0 = 800 MeV (right). The curves
indicate phase boundaries and the colored areas correspond to the density jump associated with the
first-order phase transition. The green dashed-doubly-dotted curve corresponds to the liquid–gas
phase transition common for all αb0. The circles indicate critical points on the transition lines above
which the first-order transition turns into a crossover. For m0 = 700 MeV, no critical point is shown
for the cases with αb0 = 400 MeV and αb0 = 450 MeV, where the chiral phase transition is a smooth
crossover at all temperatures.

6. Conclusions

In this work, we investigated the hybrid QMN model for the equation of state of dense matter
under neutron-star conditions and the phenomenology of compact stars. In particular, we focused
on the implications of including six-point scalar interaction and studied the consequences of the
realization of the chiral symmetry restoration within the hadronic phase.

We found that the apparent softening of the EoS results in mass–radius relations with maximal
mass at tension with the 2 M� constraint within the hadronic branch, especially if the new
PSR J0740+6620 with 2.17 M� [8] is considered. We have shown that parameterizations of the
model which yield large maximal mass (i.e., for smaller value of m0) suggest rather low value of
the temperature for the critical end point of the first-order chiral phase transition in the phase diagram,
which may also be absent. In view of this, if would interesting to establish a constraint on the chirally
invariant mass m0. Since the hybrid QMN model features sequential chiral and deconfinement phase
transitions, one possible resolution to this could be the onset of quark d.o.f. Such a scenario would be
even further supported in view of the recent formulation of the three-flavor parity doubling [36,37]
and further lattice QCD studies [27], where it was found that, to a large extent, the phenomenon
occurs also in the hyperon channels. In general, the inclusion of heavier flavors is known to soften
the equation of state and additional repulsive forces are needed to comply with the 2 M� constraint.
Additional stiffness from the quark side would play a role, which is not included in the current study.
Work in this direction is in progress and the results will be reported elsewhere.
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