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Abstract: Standard models of “regular black holes” typically have asymptotically de Sitter regions at
their cores. Herein, we shall consider novel “hollow” regular black holes, those with asymptotically
Minkowski cores. The reason for doing so is twofold: First, these models greatly simplify the
physics in the deep core, and second, one can trade off rather messy cubic and quartic polynomial
equations for somewhat more elegant special functions such as exponentials and the increasingly
important Lambert W function. While these “hollow” regular black holes share many features with
the Bardeen/Hayward/Frolov regular black holes, there are also significant differences.
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1. Introduction

It is well established that all static spherically symmetric spacetimes have a line element which
can, without loss of generality, be represented in the following form [1,2]:

2
ds? = —e200) (1 - 2mr(r)> dat? + _ar
1

r 2 112
() +rodQ0)y;. 1)

Here, ®(r) and m(r) are a priori arbitrary functions of r. Historically, most of the prominent
models for regular black holes are of this form, and exhibit an asymptotically de Sitter core with finite
central energy density and an equal-but-opposite central pressure. (See, for instance, the common
Bardeen/Hayward/Frolov, etc. [3-9]) regular black holes, but also the well-known Mazur-Mottola
gravastars [10-18], and Dymnikova’s models [19-25].)

Presented herein is a new and rather different form of the metric tensor, which is still a regular
black hole in the sense of exhibiting everywhere finite curvature (as originally pioneered by Bardeen [3],
see discussion below) but now with an asymptotically Minkowski core (the energy density and
associated pressures asymptote to zero). We may make this physical difference mathematically explicit
by examining the required conditions on the two functions ®(r) and m(r) appearing in the metric (1):

e de Sitter core: We would require that lim, ,op(r) = po # 0; thatis, p(r) = O(1). For
static spherically symmetric spacetimes, we have p(r) = m/(r)/47r? [1,26-28], so this implies
m(r) = O(r®). For ®(r), it is sufficient to demand ®(r) = O(1). All of the standard
Bardeen/Hayward/Frolov/gravastar/Dymnikova models fall into this class.
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o(r). This in turn implies
O(1). It is these class of

e Minkowski core: We would require that lim,_,o o(r) = 0; that is, p(r)
m(r) = o(r®). For ®(r), it is once again sufficient to demand ®(r)
objects that we focus on in this article.

For simplicity/tractability, we therefore might as well immediately set ®(r) = 0, which will
preserve all of the key features of our desired physics. (®(r) = 0 spacetimes have a long and respected
history. Regarding this specific point, see specifically references [1] and [29-31], and more generally
references [19-25].)

The choice for m(r) is more subtle. Presented herein is a specific choice of mass function
m(r) = me /" which has the effect of “exponentially suppressing” the Misner-Sharp quasi-local
mass of the centralised object as one nears the coordinate location r = 0, guaranteeing that the object
has an asymptotically Minkowski core. The exponential function e~*/"
everywhere infinitely smooth (C*), though not always analytic (C¢).! That is to say, we analyse the
specific line element:

guarantees that everything is

—a/r 2
g2 = (1-2me T Vg4 @)
r (1 N Zmer—”/’)

Conducting a standard general relativistic analysis of the resulting spacetime, we shall
demonstrate that this metric does indeed correspond to a regular black hole in the sense pioneered by
Bardeen [3]. We find that in this toy model the resulting curvature tensors and curvature invariants
are significantly simpler than for Bardeen/Hayward /Frolov, at the cost of having many physically
interesting features (such as horizon radius, horizon area, and surface gravity) specified in terms
of the Lambert W function, defined by W(x)e"V*) = «x, this being one of the special functions of
mathematics [32-44], which is finding increasingly common applications in physics.

A rather different (extremal) version of this model spacetime, based on nonlinear electrodynamics,
has been previously discussed by Culetu [45], with follow-up on some aspects of the non-extremal
case in references [46—48]. See also references [49-51]. Part of the GRF essay [52] is based on a mass
function of the form m(r) = m e/
Schwarzschild and Kerr geometries, obtained by inserting factors of the form 1 — aexp(—b3/r3) into
the spacetime metric, has been discussed by Takeuchi [53]. Further afield, accretion onto regular
black holes has been studied in reference [54], and modified Smarr formulae have been discussed
in reference [55].

The overall framework these authors are working with differs significantly from our own.

. Another very different type of exponential modification of

2. Metric Analysis

First, let us note that the metric is static and spherically symmetric. The areas of surfaces of
spherical symmetry of constant r-coordinate are trivial, given by the area function A(r) = 4772, which
we can clearly see is minimised at » = 0.

Note that this representation of the metric corresponds to the central mass being r-dependent
in the following manner: m(r) = me~"/". We immediately have a € R* in order to ensure the
mass is being exponentially “suppressed” as |r| — 0; in contrast, if 2 = 0, we simply have the
Schwarzschild solution, and, if 2 < 0, we have an altogether different scenario where asymptotic
behaviour for small  indicates massive exponential “growth”. For a > 0, the exponential expression
factor has the properties:

Alternatively, one could try, for instance, to represent m(r) by some rational polynomial in the r coordinate, m(r) =
m p(r)/q(r). This is closer in spirit to the Bardeen/Hayward /Frolov regular black holes — but then one has to worry about
potential poles and zeros in the mass function (), and locating the horizons, and evaluating the surface gravities, typically
involves intractable polynomials. The exponential suppression e~*/" side-steps these messy issues.
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lim e=*/" =0, lim e™%" = +co. 3)
r—0t r—0-

The metric is C* smooth but not C analytic at coordinate location r = 0. Looking at the
behaviour as ¥ — 07, we see that the region r < 0 can safely be omitted from the analysis; the severe
discontinuity at » = 0 implies that behaviour in the negative » domain is grossly unphysical. This does
not affect our coordinate patch, as r = 0 also marks a coordinate singularity. (Demonstration that this
is a coordinate singularity and not a curvature singularity is a corollary of analysis in Section 3.) We
may trivially avoid these “issues” by enforcing r € R, i.e., strictly remaining within “our” universe,
which is the primary region of interest. In view of the diagonal metric environment, we may now
examine horizon locations for the spacetime by setting gy = 0:

g1t =0 — r:—# — r:ZmeW(_ﬁ). 4)
W(=23)

We have a coordinate location for the horizon defined explicitly in terms of the Lambert W function,
defined by W(x)ew(x) = x [32-44]. Given that we have taken a > 0 and r > 0, we must enforce the
output of the Lambert W function to be negative. This presents two possibilities:

e  Taking the Wy (x) branch of the real-valued Lambert W function:

wo(—%) <0 — ac (o, Zﬂ )
Provided a lies in this interval, we have a well-defined coordinate location for a horizon when
taking the Wy(x) branch of the Lambert W function. Keeping in mind that fixing a in this
interval causes Wy (—»%) € [—1, 0), the possible coordinate locations of this horizon are given by
rH € [a,+00).
e  Taking the W_q (x) branch of the real-valued Lambert W function:

The W_;(x) branch only returns outputs for x € {— %, 0) , hence we have the same restriction

on a as before to ensure a defined coordinate location for the horizon—that a € (0, 27’"] The
range of the W_; (x) branch is entirely negative so all possible solutions will correspond to ¢ > 0.
However, the difference is that fixing a in this interval causes W_1 (—ﬁ) € [—1, —c0), hence the
possible coordinate locations for this horizon are given by ryy € (0, al.

In view of the possible horizon locations corresponding to the two possible branches, we see

that there is an outer horizon at coordinate location r = 2m eWO(*ﬁ), and an inner horizon at
r= 2m ewfl(_ﬂ). When a = 27’", we see that W_, (7%) = Wy (f%) = —1; the two horizons

merge and we in fact have an extremal black hole.

It follows that, in order to have ry > 0, we require a € (0, 27’”] . Then, subject to the choice of
branch for the Lambert W function, we find an inner horizon located in the region ri; € (0,a), and
an outer horizon in the region ry € (a,+o0). In both cases, the geometry is certainly modeling a
black hole region of some description; it remains to demonstrate that the spacetime is gravitationally
nonsingular in order to show this is a regular black hole in the sense pioneered by Bardeen [3].

As an aside, let us take a look at what happens to the geometry when a > 27’":

2m a 1 a
a>— == —— < == == 4% (——) is undefined. (6)
e 2m e 2m
Therefore, there are no horizons in this geometry. It follows that, when a > 22, there is no black
hole of any kind; this horizonless geometry is modeling something qualitatively different, closer in
spirit to a gravastar or an exotic compact object.
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In any of these situations, the geometry admits an almost-global coordinate patch with the
following domains: t € (—oo,+00), r € R", 0 € (0,7), and ¢ € (—m, 7). We now examine the
non-zero components of the curvature tensors, as well as the curvature invariants, to show that, for
ae (0, 27’”] , this metric does indeed model a regular black hole geometry.

3. Curvature Tensors and Curvature Invariants

Before proceeding, it is prudent to introduce a relevant piece of mathematical detail: for any
polynomial function p(r), we have e=%"/p(r) — 0 as |r| — 0. That is, the exponential expression
dominates the asymptotic behaviour for small r. Keeping this in mind, let us examine the mixed
non-zero curvature tensor components and the curvature invariants.

Ricci scalar:

2ma?e="

Ricci tensor non-zero components:

ma(a—2r)e /" 2mae "
R, =R, = ( 3 ) , R% — R¢¢ = — g (8)
Einstein tensor non-zero components:
2mae /" ma (a —2r)e=/"
Gh=Gr=-""F—  Gly=Glh=- ( 75) : )
Riemann tensor non-zero components:
o m (a® — dar + 2r%) e=/7
R tr = 75 s
ma—r)e "
R = R%y =R =R?y= %
2me /"
R¥gy = — (10)
Weyl tensor non-zero components:
1 tr 1 0¢ to to 6 r¢
*EC trI*EC 0p =C71p = CPyp=C"=C"%
m (a® — 6ar + 6r%) e~/
S - . an
The Ricci contraction R, R?:
2m?a® (a® — dar + 8r2) e=24/7
R,, R™ = ( 10 ) . (12)
The Kretschmann scalar R g R0
4m? (a* — 8a%r 4 24ar? — 24ar® 4 12r*) e=20/7
Rygeq ROPE0 — 27 0 ) (13)
The Weyl contraction Cpjey C*°%:
am? (a® — 6ar + 6r2)% e=20/7
Cabed Cade = ( ) . (14)

3r10
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As |r| = +o0, we have ¢e=*/" — 1, and all non-zero tensor components and invariants become
proportional to some Laurent polynomial function of r (i.e., all asymptote to O(r~")). For large
7, all non-zero components and invariants tend to zero, consistent with the fact that asymptotic
infinity models Minkowski space. As r — 07, all non-zero tensor components and invariants also
asymptotically head to zero (they become o(r)). This of course represents the fact that the core of the
black hole region is asymptotically Minkowski. Thus, we have a geometry that approaches Minkowski
both near the centre and at asymptotic infinity, with some maximised region of curvature located in
between. We may conclude that all non-zero tensor components and invariants are most certainly
globally finite, and, as such, the geometry possesses no curvature singularities as predicted—we are
indeed dealing with a regular black hole spacetime in the sense pioneered by Bardeen.

4. Surface Gravity, Hawking Temperature, and Horizon Area

Let us calculate the surface gravity at the two horizons when a € (0, 27”’) The Killing vector
which is null at the event horizon is § = dy; that is, {# = (1,0,0,0)". This yields the norm:

2mer
C”é‘y—gyué"‘rjv—gu——<1— . ) (15)
Then, we have the following relation for the surface gravity « (see for instance [26-28]):
Vo (=8"8u) = 25y (16)
That is:
v, (1 _ sz ) — 2. (17)

Alternatively, we can apply the formalism of reference [2].
Now, perform a case-by-case analysis for each horizon:

o  Quter horizon: The outer horizon is located at radial coordinate r = 2m ewo(fﬁ) 5 we
therefore have:

a

1 2me "
Kouter = Ear (1_ >
! r—om oo (=)

= KSchwarzschild {_W [1 +Wo <_%)} } . (18)

The Hawking temperature for our regular black hole is [26-28]:

hx 2mWy (— 5% a
Touter = 2;7;: = TSchwarzschild {_Oa(Zm) [1 + WO (_%)} } . (19)

For the area of the outer horizon, we have:

0 \\ 2 2
Aouter = 470 (Zm eWO(*ﬁ)) - A (20)

2
[Wo(—257)]
As a sanity check, let us check the behaviour of o,y when a = 0 (corresponding to the
Schwarzschild solution).
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We have:
i . 2m Wy (— % .
Llll_% Kouter =  KSchwarzschild ;1_% {11(2"1) [1 W, (7%)} } ,
. 2m Wy (— %
= KSchwarzschild lim { ( 2”1) } ,
a—0 a

. CWo(— i
= KSchwarzschild lim e 0( 2m )
a—0

= KSchwarzschild- (21)

This is the expected result.

e  Inner horizon: The inner horizon is located at = 2m e"W-1(~ ﬁ); and through similar analysis we
have the following:

2m W_q1(—-%
Kinner =  KSchwarzschild {—111(2111) {1 + W—l (_%)} } ’ (22)
2mW_q1(—-%
Tinner = TSchwarzschild {111(2111) {1 + W—l (*%)} } ’ (23)
4 2
Aipner = ™ : (24)

Wi (—4)])°

e  Extremal horizon: Extremality arises when the two horizons merge; this occurs when a = 2m/e, at
coordinate location » = 2m /e = a, where WO(—%) =-1=W_ (—%) Consequently, %,ytremar = 0,
while Toytremar = 0, and Aextremar = 4ra®.

5. Stress-Energy Tensor and Energy Conditions

Consider the Einstein field equations for this spacetime, defining the stress-energy-momentum
tensor by G¥, = 87t T#,,. From Equation (9), we have:

-0 0 0 0
0 p 0 0
TH — I 25
: 0 0 p,. O @5)
0 0 0 po
Specifically, for the principal pressures:
_ 2mae /"
p= PH 8t
ma(a—2r)e /"
pL = - ( 87'[7"5) (26)

Let us examine where the energy density is maximised for this spacetime (this is of specific
interest due to the exponential suppression of the mass—we wish to see how the suppression affects
the distribution of energy densities in through the geometry):

ai) _ 2mae /"

3 = Brrb (a—4r). (27)
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We see that p is maximised at coordinate location r = £. Let us now analyse the various energy
conditions [56-67] and see whether they are violated in our spacetime.

5.1. Null Energy Condition

In order to satisfy the null energy condition, we require that both p +p| > Oandp+p, >0
globally in our spacetime. Let us first consider p + p| and note that it is identically zero. (This result
is common to all ®(r) = 0 spacetimes, see [1,29-31].) Now, noting that for all ®(r) = 0 spacetimes
p+pL = 5 p' (see reference [31]), we have:

—a/r
r , mae "
=-p=—+—(a—4r). 28
prpi=5p0 =" 5 (a4 (28)
This changes sign when r = 7. We therefore have the somewhat non-typical situation where the
radial NEC is satisfied by the geometry whilst the transverse NEC is violated in the deep core. Violation

of the NEC implies that all of the classical energy conditions must be violated in the deep core [56].

5.2. Strong Energy Condition
In order to satisfy the strong energy condition (SEC), one of the conditions we require is that

p+p|+2pL > 0 globally in our spacetime. Evaluating:

ma (a —2r)e=/"
47rrd

p+p +2pL=2p = — (29)

This is negative for the region r < 7, and we may conclude that the SEC is violated in the deep
core—this is consistent with expectations [56].

6. Comparison with Existing Regular Black Hole Models

The primary mathematical benefit of this new model is the relative tractability of the curvature
tensors and invariants analysis. Let us briefly compare some of the corresponding results for the
Bardeen, Hayward, and Frolov regular black holes. The Bardeen regular black hole is defined by the
line element [3]:

2mr? dr?

ds? = — | 1— - | d?+ + r? dO3. (30)
273
[72 + (2m£2) 3} 1_ 2mr? ;
[72+(2mZ2)%} :
For the Hayward model, we have [4]:
2mr? dr?
2 _ 2 2 12
ds® = (1 B omi? ZmEZ) dat + —(1 o ) +r°dQy, (31)
r34+2mi?
and, for the static case of the Frolov regular black hole, we have [7,8]:
2mr? dr?

ds? = — (1 — ———— ) di? 2403, 32
s < r3+2m€2+€3>d + +r (32)

(1 _ 2mr? )

B3+2me2+03
where, in all three cases, ¢ is some length scale, typically identified with the Planck length [9]. Now,
consider a direct comparison of the resulting Einstein tensors:

e  Bardeen: The Einstein tensor has non-zero components:
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wIN
[ E

_ 2)3
Gty — G, — ——ommr)” {r6+3r4 (2m2)" + 3% (2mi2)
2
3

(r2 + (2mi?) ) H

+ (2m12)2 }

3m (2m12) (372 —2 (2m12)§)

Gl = G? o= . (33)
N
(r2 + (2m12)§) ’
Asr — 0, we have G%, — —(3/¢%)5%,.
e  Hayward: The Einstein tensor has non-zero components:
12m>( 24m2 0% (me* —r®
Gtt = G=- - 27 GQG = G¢¢ == ” ( 3 ) (34)
(2me2 +13) (2me2 +13)
Asr — 0, we have G% — —(3/4%) 5%,
e  Frolov: The Einstein tensor has non-zero components:
2
G = G, = 6me= (2m+£) .
(r3 +2ml2 + ¢3)
6me? (2r3 [2m + €] — (2(2m + (2)?
(r3 +2me2 + (3)
Asr — 0, we have G%, — —(6m/[(*>(2m + ()]) 6%,
e  Exponential suppression: As displayed in Equation (9), we have:
2mae=" ma (a —2r)e=/"
Gly=Gr=-"F—, Gl =GP =— ( = ) : (36)

Asr — 0, we have G%, — 0.

This relative simplicity comes at the cost of representing important physical features (such as
horizon radius, horizon area, and surface gravity) in terms of the Lambert W function. For example,
we may compare the horizon locations:

Bardeen: ry € {é + O3 /m?/3),2m + 0(54/3/,”1/3)};
Hayward/Frolov: ry € {{+ O(€?/m),2m + O(¢>/m)};
Exponential suppression: ry € {2m ewfl(fﬁ),Zm Wo(=) }

While this may seem somewhat unwieldy, the authors argue that the Lambert W function is now
such a crucial tool in many quite standard GR analyses [36,37] that theoreticians would do well to
become more comfortable in dealing with its subtleties.

Physically, the crucial comparison is that the canonical regular black hole solutions (Bardeen,
Hayward, Frolov, etc.) have an asymptotically de Sitter core, whilst the model presented herein has an
asymptotically Minkowski core. Whether there are scenarios where this has significant ramifications
on black hole evolution or evaporation is a subject for further research.
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7. Generalised Models

Now, consider a generalized model of the form

_ght /1 2

g5 = — (1= 2mep(=at/r) po dar +2d03; ancRY. (37
r (1 . 2mexp(—a”/r”)>

T

This corresponds to the central mass being r-dependent in the following manner:
m(r) = mexp(—a"/r"). We may immediately enforce 2 € R™ and r € R". We examine horizon
locations by setting g;+ = 0. Thence:

a" " " na"
rH = 2mexp i = rg=02m)"exp | ——-). (38)

That is:

TH = 2m exp (39)

For general values of 7, this defines a coordinate location of the horizon explicitly in terms of the
real-valued branches of the Lambert W function. While we could repeat the entire analysis for general
values of 1, we feel there is little extra insight to be gained—all such models will have asymptotically
Minkowski cores.

8. Discussion

The model spacetime presented above represents a regular black hole geometry in the sense of
finite curvature, as pioneered by Bardeen, when the parameter a € (0, 27’”} , and accordingly violates
the SEC. The model satisfies the radial NEC, (there is no wormhole throat), but violates the tangential
NEC in the deep core when r < {. The energy density p is maximised at 7 = §, and the exponential
expression present in the metric implies that the regular black hole has an asymptotically Minkowski
core as ¥ — 0. The curvature of the geometry is asymptotically flat at infinity, at the core, and has some
maximal peak in between. We can calculate surface gravity at each horizon, and consequently the
Hawking temperature. The curvature tensors and invariants are significantly simpler than for canonical
regular black hole solutions (Bardeen/Hayward /Frolov etc.), at the cost of having some important
physical features (such as horizon radius, horizon area, and surface gravity) defined explicitly in terms
of the Lambert W function. We may extend the analysis beyond n = 1 to arbitrary (real) values of n
whilst still preserving all desired physics. The authors contend that this regular black hole model is
mathematically interesting due to its tractability, and physically interesting due to the non-standard
asymptotically Minkowski core.

Regarding stability of this Minkowski-core spacetime, we would point out that (partially)
proving perturbative stability of Schwarzschild spacetime took at least 40 years [68], and proving
non-perturbative stability of Minkowski spacetime took close to 80 years [69,70]; while rigorous
results regarding the non-perturbative stability of Schwarzschild spacetime are still at best very partial
and incomplete—so a full stability analysis of this Minkowski-core spacetime is not at this stage
really feasible.

In contrast, some crude estimates for the parameter “a” are quite feasible. On the one hand,
since LIGO provides good evidence for the existence of stellar mass black holes, we must demand
a < (a few kilometers). On the other hand, to avoid having these Minkowski-core geometries descend
unobservably into the quantum spacetime foam, we should have a > (a few Planck lengths). While
we do not have direct observational evidence of the existence of primordial black holes (PBHs), if they
were to exist, we would require a S 2mppy.
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