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Abstract: To define time in the homogeneous anisotropic Bianchi-IX model of the universe,
we propose a classical equation of motion of the proper time of the universe as an additional gauge
condition. This equation is the law of conservation of energy. As a result, a new parameter, called a
“mass” of the universe, appears. This parameter is added to the anisotropy energy and regarded as an
observed quantity. The “mass” of the universe is decisive when it comes to the dynamics of its origin.
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1. Introduction

The ordinary approach to the quantization of covariant theories is based on the expansion of the
phase space by adding Lagrange multipliers, the corresponding canonical momenta, and ghosts [1–4].
In the case of a relativistic particle, the covariant functional integral includes one additional
integration over proper time [5]. This integral reduces to representing the Green functions for the
Dirac and Klein–Gordon equations proposed by Fock [6] and Schwinger [7]. In [8], a “shortened”
version of covariant quantum theory was formulated with minimal expansion of the phase space,
including parameters of finite transformations of the covariance group. These parameters include
the proper time. However, integration over these parameters deprives the functional integral of
dynamic meaning. This means that the gauge conditions, which are assumed, in particular, in [5],
are not sufficient for defining the time parameter. In [9], an additional expansion of the phase space
was proposed by including infinitesimal shifts of new variables (and corresponding momenta) there.
This means that the law of conservation of the universe’s energy is an additional condition for time
defining. An additional condition for the action of general relativity is also added in papers [10,11] to
introduce a special type of scalar field. In our case, the modification plays the role of a gauge condition
that violates the covariance. The consequences of this modification of the classical general relativity
are considered in this work for the homogeneous anisotropic model of the Bianchi-IX universe [12].
A complete set of generalized coordinates of a modified theory, in addition to proper time, will include
its energy, which is a generator of infinitesimal shifts. This value is an integral of motion and is
included in the set of model parameters.

2. Modification of a Homogeneous Anisotropic Model of the Universe

We take the Lagrange function of the original model in the form (hereinafter, we assume the speed
of light c = 1)

L =
1

2g

[(
aȧ2

N
− aN

)
−
(

a3 β̇2
+ + β̇2

−
N

− aNV(β+, β−)

)]
+ Λa3 · N, (1)
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where g = 2G/3π and

V(β−, β+) =
1
3

e−8β+ − 4
3

e−2β+ + cosh 2
√

3β− + 1 +
2
3

e4β+

(
cosh 4

√
3β− − 1

)
. (2)

Here, N(τ) is an arbitrary function of the parameter τ (lapse function) [12]. We will carry out both
stages of the modification immediately. At the first stage, we introduce our proper time s, according to

N = ṡ (3)

Given the fact that N is an arbitrary function, introducing a new function s does not contradict anything.
The modification occurs when we assume that s is a dynamical variable. In fact, it occurs by introducing
the proper time as a dynamical variable in relativistic mechanics [6]. We find the Euler–Lagrange
equation for s, and subsequently add it to the initial action, multiplying by the corresponding Lagrange
multiplier. Obviously, this step does not change the dynamical aspect of classical theory. The procedure
mentioned above is equivalent to the addition of variation in the initial Lagrangian, generated by an
infinitesimal shift in the proper time

δs = −ε, (4)

to this Lagrangian. This fact is sufficient for (according to [8,9]) removing additional integration
over the proper time in the quantum theory. Here, we consider the consequences of the proposed
modification, which appears in the classical theory. As a result, two new dynamic variables s, ε appear,
and the modified Lagrange function has the form

L̃ =
1

2g

[
aȧ2

ṡ

(
1 +

ε̇

ṡ

)
− a (ṡ− ε̇)

]
− 1

2g

[
a3 β̇2

+ + β̇2
−

ṡ

(
1 +

ε̇

ṡ

)
− a · (ṡ− ε̇)V

]
+ (ṡ− ε̇)Λa3. (5)

We turn to the canonical form of the modified theory. Find the canonical momenta

pa =
1
g

aȧ
ṡ

(
1 +

ε̇

ṡ

)
, (6)

p± = − a3

g
β̇±
ṡ

(
1 +

ε̇

ṡ

)
, (7)

ps = −
1

2g

[
aȧ2

ṡ2

(
1 + 2

ε̇

ṡ

)
+ a
]
+

1
2g

[
a3 β̇2

+ + β̇2
−

ṡ2

(
1 + 2

ε̇

ṡ

)
+ aV

]
+ Λa3, (8)

Pε =
1

2g

(
aȧ2

ṡ2 + a
)
− 1

2g

(
a3 β̇2

+ + β̇2
−

ṡ2 + aV

)
−Λa3. (9)

It is easy to verify that the modified Hamiltonian is also equal to zero, as it should be for the
reparameterization-invariant theory. Moreover, Equation (8) gives the Hamiltonian constraint

H̃ = ps − 2

√
Pε −

a
2g

+
aV
2g

+ Λa3

√
gp2

a
2a
−

g(p2
+ + p2

−)

2a3

+Pε − 2
(

a
2g
− aV

2g

)
+ Λa3 = 0. (10)

We write the modified action in canonical form as follows

Ĩ =
∫ 1

0
dτ
(

pa ȧ + p+ β̇+ + p− β̇− + ps ṡ− εṖε − ÑH̃
)

. (11)
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Now, we consider an infinitesimal shift ε as a canonical momentum.
As follows from Equation (11), the additional integral over ε in quantum theory gives a

functional δ-function

∏
τ

δ
(

Ṗε

)
, (12)

from which we obtain Pε as the constant of motion.

3. “Mass” of the Universe

The appearance of the integral of motion Pε and its meaning will be explained by the example of
a relativistic particle. Initially, we take the case of a massless particle with the Lagrange function

Lm =
1
2

ẋµ ẋµ

N
. (13)

Bearing in mind (3), we add the Lagrangian variation generated by the infinitesimal shift in the proper
time (4)

L̃m =
1
2

ẋµ ẋµ

N

(
1 +

ε̇

N

)
. (14)

After this modification, the Hamiltonian constraint takes the form

H̃m =
√

2Pε

√
pµ pµ − Pε. (15)

The constraint is the square root of the Hamiltonian constraint of a relativistic particle with mass m,
if we put

Pε = 2m2. (16)

Thus, as a result of this modification, the particle “gained” mass. We will also define “mass” of the
universe by the Formula (16).

If we assume the canonical gauge condition ṡ = Ñ, the modified action (11) takes the form

Ĩ =
∫ 1

0
dτ
(

pa ȧ + p+ β̇+ + p− β̇− − Ñh̃
)

, (17)

where

h̃ = −2

√
2m2 − a

2g
+

aV
2g

+ Λa3

√
gp2

a
2a
−

g(p2
+ + p2

−)

2a3 + 2m2 − a
g
+

aV
g

+ Λa3 = 0. (18)

If we put, as is commonly believed, the “mass” of the universe equal to zero, then it is easy to see
that, as a result, we obtain the square root of the Hamiltonian constraint of the original theory. Here,
we assume that this mass is nonzero and see what this leads to in classical theory. Put, as usual, in this
case, Ñ = 1. Then, one of the equations of motion will be

1
2g

a
(

ȧ2 + 1
)
= 2m2 + Λa3 +

1
2g

[
a3
(

β̇2
+ + β̇2

−

)
+ aV

]
, (19)

In the absence of anisotropy for the simplest homogeneous model of the universe, Equation (19) takes
the form

1
2g

a
(

ȧ2 + 1
)
= 2m2 + Λa3. (20)

Its solution at Λ = 0 has the form

arcsin
√

a
2m
√

g
−
√

a
2m
√

g

√
1− a

4gm2 =
s

4gm2 . (21)
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and the general solution has such an asymptotic behavior near a = 0. We see, therefore, that the
evolution of the universe near its origin is determined by its “mass”. At all stages of the evolution of the
universe, its “mass” is present as an additive to the energy of matter. The solutions of the Equation (21)
for different Λ are represented on the graph. The red dashed line on the Figure 1 corresponds to the
solution in the case Λ = 0.

Figure 1. The graph of the solutions determined.

4. Conclusions

The modification to the dynamics of the universe suggested in this article is not arbitrary. It is one
of the possible options for a solution to the problem of time in covariant quantum theory. However,
consequently, it causes the advent of an additional parameter, called a “mass” of the universe in
classical theory. This quantity is not connected to the energy of a common matter (in this case, it is
anisotropic energy) but added to it for the balance of energy in the closed universe. This additive is
determinative near the origin of the universe, allowing it to alleviate the singularity problem. Therefore,
it is observable in principle. At the next stages of the universe evolution, the proper mass exists in the
form of the “dark” contribution to its dynamics. If we assume the “mass” of the universe equal to zero,
the modified theory will reduce to the source theory, with necessary extraction of the square root of
the Hamiltonian constraint.
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