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Abstract: This work explores the possibility of resorting to neutrino phenomenology to detect
evidence of new physics, caused by the residual signals of the supposed quantum structure of
spacetime. In particular, this work investigates the effects on neutrino oscillations and mass hierarchy
detection, predicted by models that violate Lorentz invariance, preserving the spacetime isotropy
and homogeneity. Neutrino physics is the ideal environment where conducting the search for new
“exotic” physics, since the oscillation phenomenon is not included in the original formulation of the
minimal Standard Model (SM) of particles. The confirmed observation of the neutrino oscillation
phenomenon is, therefore, the first example of physics beyond the SM and can indicate the necessity
to resort to new theoretical models. In this work, the hypothesis that the supposed Lorentz Invariance
Violation (LIV) perturbations can influence the oscillation pattern is investigated. LIV theories are
indeed constructed assuming modified kinematics, caused by the interaction of massive particles
with the spacetime background. This means that the dispersion relations are modified, so it appears
natural to search for effects caused by LIV in physical phenomena governed by masses, as in the
case of neutrino oscillations. In addition, the neutrino oscillation phenomenon is interesting since
there are three different mass eigenstates and in a LIV scenario, which preserves isotropy, at least two
different species of particle must interact.

Keywords: lorentz invariance violation; neutrino oscillations; mass hierarchy; finsler geometry;
quantum gravity

1. Introduction

Recent observations made by experiments with natural (solar) neutrino sources [1–7],
atmospheric [8], artificial neutrinos short baseline [9–14] and long-baseline reactor neutrinos [15–19]
confirm the existence of the flavor oscillation phenomenon. The oscillation evidence has been further
reinforced by the appearance experiments, like the CNGS beam [20], T2K [21] and Noνa [22], which
collect neutrino signals with changed flavor respect to the produced beam. Even the discussed and in
contradiction results collected by the appearance experiments LSND [23,24] and MiniBOONE [25,26]
seem to confirm the oscillation phenomenon existence. It is well known that this new physics cannot
be explained by the minimal particle physics Standard Model (SM), where only 3 left-handed massless
neutrino flavors are included. This new physics effect is usually described by supposing the existence
of tiny neutrino masses that can cause the oscillations. This produces a model (3νSM extension of the
Standard Model of particle physics, that includes the 3 neutrino masses) where the oscillations are
governed by a 3× 3 matrix, determined by 6 parameters, 3 angles θ12, θ23 and θ13, a phase δ that takes
into account CP violation in weak interaction and 2 mass squared differences, which depend on the
neutrino mass hierarchy. Neutrinos appear therefore the ideal candidates to search for new “exotic”
physical effects. In this work, only the search for new physics caused by Lorentz Invariance Violation
(LIV) is considered in both oscillation and mass hierarchy detection. The plan of this work is organized
so that first the most known LIV theoretical models are introduced, then the implications on neutrino
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oscillations and mass hierarchy are investigated, and lastly, some experimental results and sensitivities
are listed.

2. LIV Models

In the past, many attempts to extend the SM of particle physics have been conducted. Some
extensions introduce an additional symmetry between bosons and fermions, i.e., supersymmetry.
Other models look for an extension of the standard gauge group SU(3)× SU(2)×U(1) into a more
general symmetry group, which reduces to the classical one via a spontaneous breaking mechanism
that produces the standard physics scenario. All these theories are based on Lorentz Invariance (LI).
This symmetry is nowadays at the root of our understanding of nature.

Even if there is no definitive evidence to sustain departures from LI, there are consistent points
indicating that Lorentz Invariance Violation (LIV) can be a consequence of quantum gravity. Therefore
there are logical motivations to conduct systematic tests of this fundamental symmetry validity.
Neutrino physics seems to be the ideal environment where to conduct this physical research, since
three different mass eigenstates are involved in the oscillation process. To detect possible LIV effects in
an isotropic scenario, it is indeed necessary that at least two different particle species interact.

The prevalent means used to search for LIV effects consists in formulating Effective Field Theories
(EFT) extensions of the SM of particle physics, in order to obtain phenomenological predictions that
can be experimentally tested. The principal EFTs beyond the SM are Very Special Relativity (VSR)
and the Standard Model Extension (SME). These models share the common feature of being based on
highly reasonable assumptions deemed appropriate to test LI in every possible sector.

2.1. Very Special Relativity

The first EFT approach to LIV considered was introduced by Coleman and Glashow [27,28].
They developed an isotropic perturbative framework to deal with LIV departures from classical
quantum field theories, modifying the Lagrangian so that the maximum attainable velocity of every
massive particle differs from the speed of light c. The perturbations are conceived so that the gauge
symmetry SU(3)× SU(2)×U(1) is preserved. Moreover, this kind of corrections are rotationally and
translationally invariants, but in a preferred fixed inertial reference frame.

Considering scalar fields, as the first example, the most general Lagrangian that preserves U(1)
symmetry has the form:

L = ∂µψ Z ∂µψ− ψ M2 ψ, (1)

with Z and M2 being hermitian positive definite matrices. It is always possible to transform the
fields so that Z = I and M becomes diagonal, obtaining in this way a n decoupled field theory. This
Lagrangian is perturbed with the addition of the LIV term:

∂µψ ε ∂µψ (2)

with ε a hermitian matrix. This perturbation operator presence lets the single-particle eigenstates to
evolve from those of the M2 matrix, in the infrared limit, to those of ε in the ultraviolet limit. This
means that the maximum attainable velocity of a material particle changes continuously from a low
energy limit to a high energy one.

The most general case Lagrangian can be constructed starting from the representations of the
Lorentz group SO(1, 3). Summarizing all the theory field operators in one vector Φ, the Lorentz
invariance implies:

U†(Λ)Φ(x)U(Λ) = D(Λ)Φ(Λ−1x), (3)

where Λ ∈ SO(1, 3) and D(Λ) is a representation of the Lorentz group.
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The Lie algebra so(1, 3) can be decomposed in a sum of
−→
J + and

−→
J − operators, so that the

eigenvalues of the couple (
−→
J +,
−→
J −) are:

• (0, 0) for scalars,
• (1/2, 0) or (0, 1/2) for left or right Weyl spinors,
• (1/2, 1/2) for four-vectors,
• (1, 1) for traceless symmetric tensors,
• a direct sum of (1, 0) and (0, 1) for antisymmetric tensors.

In case of rotations, the Lorentz group representation operator assumes the explicit form:

D(R(−→e θ)) = exp (i (
−→
J + +

−→
J −) · −→e θ), (4)

where θ is the rotation angle around the vector −→e . A boost operator explicit form is:

D(B(−→e η)) = exp ((
−→
J + −

−→
J −) · −→e η), (5)

where η represents the boost rapidity in −→e direction.
Rotationally invariant theories require, therefore, that the

−→
J ± operators eigenvalues must satisfy

the equation j+ = j− = j. It follows that the LIV perturbation Lagrangian can be written as:

L′ =
j

∑
m=−j

(−1)m Φ−m, m. (6)

In a rotational invariant model the possibilities for renormalizable operators are limited to: j = 0
for scalars, j = 1/2 for CPT-odd vectors and j = 1 for CPT-even tensors. A non-trivial CPT-even model
requires therefore j = 1, so for scalar fields the LIV renormalizable perturbation operator must be
constructed with two fields and two derivatives:

∑
a, b

∂µφa εab ∂µφb, (7)

with εab a real symmetric matrix.
For spinor fields, the most general Lorentz invariant Lagrangian can be written in the usual way

as function of ψ Dirac spinors:
ψ(iγµ∂µ −m)ψ. (8)

This term can be rewritten as function of ψ spinors as:

i
2

ψ γµ∂µ(ε+ PR + ε− PL)ψ, (9)

with PR and PL the chirality projectors, defined as

ψL = PL ψ =
1
2
(I− γ5)ψ , ψR = PR ψ =

1
2
(I+ γ5)ψ (10)

and ε+ and ε− are positive LIV coefficients.
The kinematical effects of this model emerge in modifying the material particle propagators. In a

Lorentz invariant theory the particle propagator has the general form:

D(p2) =
i

(p2 −m2) A(p2)
, (11)
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where the function A is normalized via the relation A(m2) = 1. Adding a LIV perturbation term,
proportional to a small coefficient ε, one obtains:

D(p2) =
i

(p2 −m2) A(p2) + ε p2 B(p2)
, (12)

with B a generic function, normalized so that B(m2) = 1.
Neglecting the perturbation terms, proportional to the mass, since they are smaller than the

perturbative contribution proportional to the squared momentum, at first order, the dispersion relation
becomes:

E2 = p2(1 + ε) + m2. (13)

The main physical effect consists, therefore, in modifying particle kinematics. It is important to
underline that the LIV effects are caused by the fact that the kinematics modification does not have
a universal character, but are species depending. Every particle species has a properly maximum
attainable velocity (MAV) different from the universal light speed. From the MAV non-universal
character emerges the Lorentz violation in the case of two or more different particle species interactions.

2.2. Standard Model Extension

The most complete and coherent EFT framework to study the LIV phenomenology is referred
to as Standard Model Extension (SME) [29,30]. This theory explores the LIV scenarios by amending
the particle SM, supplementing all the possible LIV operators, that preserve the gauge symmetry
SU(3)× SU(2)×U(1). The SME formulation is conceived even in order to preserve microcausality,
positive energy and four-momentum conservation law. Moreover, the quantization methods are
conserved, in order to guarantee the existence of relativistic Dirac and non-relativistic Schrödinger
equations, in the correct energy regime limit. Therefore the SME modifications consist of perturbation
operators, generated by the coupling of matter Lagrangian standard fields with background tensors.
These tensors’ non-zero void expectation value and their constant non-dynamical nature break the LI
under active transformations of the observed system, i.e., particles transformations. It is important
to underline that this model introduces a difference between active or frame and passive or particle
transformations, not present in Special Relativity (SR) [31–33]. Passive transformations refer to the
transformations that affect the observed particle, instead, the active ones are those that affect the
observer. Active transformations refer to Lorentz transformations of the entire physical system,
i.e., particles as well as the background fields. The presence of couplings with a fixed background
induces a Lorentz violation only for passive transformations, that modify the interacting fields, but
leave the background tensors invariant. This means that particle transformations modify the system
or experiment under consideration, leaving the rest unchanged. In this sense, SME preserves the
covariance of physics formulation under active transformations that is observer rotations or boosts.

For simplicity, here it is considered that only the SME modified QED sector. The pure gauge
(photon) sector action S must be quadratic in the gauge field Aµ and it can be written as sum of terms
S(d), given by the integral of a Lagrangian density:

S = ∑
d

S(d) = ∑
d

∫
d4x κµ1µ2...µd Aµ1 ∂µ2 ...∂µd−1 Aµd , (14)

where d represents the tensor operator mass dimension and the coefficients κµi ... are the LIV background
tensors, with mass dimension d− 4. All the operators with even d dimension are CPT-even, while
the other ones (with d odd) are CPT-odd. The minimal SME (mSME) consists of the SME subset that
deals only with power counting renormalizable and super-renormalizable operators (mass dimensions
3 and 4). In order to preserve the lepton number, all the LIV Lagrangian terms coefficients must be
diagonal in flavor space indices. The lepton number conservation assumption can be justified by the
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conjecture that any quantum gravity theory have to reduce to “classical physics” (SR and GR) in the
infrared regime. The QED LIV Lagrangian can be finally written as:

LQED
LIV =

i
2

ψ γµ←→D µ ψ−m ψ ψ− 1
4

FµνFµν −
1
2

Hµν ψ σµν ψ +
i
2

cµν ψ γµ←→D ν ψ+

+
i
2

dµν ψ γ5 γµ←→D ν ψ− aµ ψ γµ ψ− bµ ψ γ5 γµ ψ− 1
4

kµναβ FµνFαβ+

+
i
2

eµ ψ
←→
D µ ψ− 1

2
ψ γ5
←→
D µ ψ +

i
2

gλµν ψ σλµ←→D ν ψ.

(15)

The aµ proportional term represents a non-physical contribution to the Lagrangian, in fact, it can
be reabsorbed in the phase factor of the fermion field, by shifting the phase itself.

New physical effects are introduced by the extended QED in the kinematics of the theory, in fact
the photon and electron dispersion relations result modified. Fixed an opportune reference frame and
limiting the analysis to rotationally isotropic LIV operators, the dispersion relations can be written as:

E2
e = p2

e + fe p + ge p2 + m2
e

E2
γ = (1 + fγ)p2

γ,
(16)

where fe = −2 b s, ge = −(c− d s), fγ = k
2 and s = ± represents the helicity of the particle. Posed the

rotational invariance of the theory, it is possible to define the coefficients, in the previous equations,
via the relations bµ = b nµ, cµν = c nµ nν, dµν = d nµ nν and kµναβ = k nµ nν nα nβ, where {nµ} are
opportune pure time-like vectors. Finally it is important to note the fact that the new phenomenology
must appear in an energy regime comparable to the particle mass, that is E ' m. The mSME deals
with dimension 3 and 4 operators, therefore the rotationally isotropic subset of this model coincides
broadly with VSR scenario.

Since SME is an effective field theory approach to LIV, it has become common to study even
non-power counting renormalizable terms [34–38] that are operators with mass.dimension bigger than
4. In fact, SM is commonly viewed as the low energy limit of a more general theory. Therefore its
renormalizability can emerge, in the infrared regime, neglecting some higher-order operators. These
assumed as generated by quantum gravity effects operators can be neglected, since they are suppressed
by an appropriate energy (or mass) scale. The complete Standard Model extension can be pursued by
following an analogous scheme, i.e., introducing perturbations operators for every interacting field.

2.3. Doubly Special Relativity

Another approach to LIV consists of attempting the construction of complete physical theories,
among which the most known is Doubly Special Relativity (DSR) [39–44]. The main motivation for
constructing such a new theory consists in the attempt to reconcile the existence of a second universal
constant (the Planck length) with the relativity principle, because the distance contraction induced by
the Lorentz transformations is in contrast with the idea of a minimum invariant length. This approach
to LIV in its last formulation is known as Relative Locality [45]. The central idea of this model consists
in supposing the momentum space and not the spacetime as the fundamental structure to describe
physics. Spacetime is considered only a local projection of the momentum space. The new proposal
of this model is that the concept of absolute locality is relaxed and different observers feel a personal
spacetime structure, which is energy (or equivalently momentum) dependent. The new principle of
local relativity states indeed that the momentum space is the fundamental structure at the basis of
the physical processes description, instead, spacetime description is constructed by every observer
in a personal, local way, losing universality. Spacetime becomes, therefore, an auxiliary concept,
which emerges from the fundamental momentum space, where the real dynamics take place [46–48].
This model is based on simple semiclassical assumptions about the momentum space geometry, that
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determine departure from the classical spacetime description, first of all, the relativity principle is
modified and acquires a local character.

The modified momentum space geometry is supposed to be determined by the Modified
Dispersion Relation (MDR), used to define the space metric:

MDR(p) = pµ gµν(p) pν = m2. (17)

The starting point to determine the momentum space connection consists instead in modifying
the interaction processes kinematics. More in detail, it consists of defining a modified composition rule
for momenta:

(p, q)→ (p⊕ q) = p + q + f (p, q), (18)

where f (p, q) represents a perturbation of the usual momenta sum. Therefore the momentum space
acquires an algebraic structure defined by the ⊕ operation.

Contemporary it is necessary to introduce the inverse operation, which lets to obtain incoming
momenta from the outgoing ones: (	p)⊕ p = 0. These definitions correspond to the replacement of
the momentum with a modified one, given by the relation:

πµ = M ν
µ (p)pnu, (19)

with the transformations M ν
µ (p) determined by the geometric features of the momentum space [37].

Finally the momentum space geometry can be determined from the algebraic properties generated
by the modified composition rule, with the affine connection given by:

∂

∂pa

∂

∂qb
(p⊕ q)c

∣∣
p=q=0 = −Γab

c (0). (20)

The torsion is evaluated from the asymmetric part of the composition rule:

− ∂

∂pa

∂

∂qb
((p⊕ q)c − (q⊕ p)c)

∣∣
p=q=0(0), (21)

and the curvature is defined as a measure of the departure from associativity for the new composition
rule:

2
∂

∂p[a

∂

∂qb]

∂

∂kc
((p⊕ q)⊕ k− p⊕ (q⊕ k))d

∣∣
p=q=k=0 = Rabc

d (0). (22)

To evaluate all these quantities away from the momentum space origin, it is necessary to define a
translation, as:

p⊕k q = k⊕ ((	k⊕ p)⊕ (	k⊕ q)) , (23)

so, for instance, the curvature evaluated in a generic point of the momentum space can be written as:

∂

∂pa

∂

∂qb
(p⊕k q)c

∣∣
p=q=0 = −Γab

c (k). (24)

It is possible to define the parallel transport determined by the geometric connection created by
the new composition law. Composing the momentum p of a particle with the infinitesimal one dq of a
different particle, one obtains:

pa ⊕ dqa = pa + τ b
a (p) dqb (25)

where the tensor τ determines the parallel transport operation and it can be expanded around the
p = 0 as:

τ b
a (p) = δ b

a − Γbc
a pc −

(
∂

∂pd
Γbc

a − Γbd
i Γic

a − Γdc
i Γbi

a

)
pc pd. (26)



Universe 2020, 6, 37 7 of 30

The corresponding conservation law acquires the explicit form:

Pa(p) = ∑
J

pJ
a −∑

J
CI J Γbc

a pI
b pJ

c , (27)

where CI J are coefficients opportunely defined.
The dynamics can be described by a variational principle, indeed it is possible to write the free

particle action as:

S f ree = ∑
J

∫
ds
(

xa
J pJ

a + λJ C J(p)
)

. (28)

The index J represents the particle species, s is an arbitrary time parameter, for instance, the
proper time, λ is a Lagrange multiplier and C(p) is defined as:

C J(p) = MDRJ(p)−m2 = pµ gµν(p) pν −m2, (29)

with gµν(p) obtained from (17).
The contraction xa

J pJ
a is defined using the standard metric, in order to preserve the Poisson

brackets:
{xa

I , pJ
a} = δa

b δ J
I . (30)

Integrating by parts, it is simple to obtain the following relation:

δS f ree = ∑
J

∫
ds

[
δxa

J ṗJ
a − δpJ

a

(
ẋa

J − λJ
δC J(p)

δpJ
a

)
+ δλJ C J(p)

]
, (31)

and the equations of motion have the desired form, given by:
ṗJ

a = 0

ẋa
J = λJ

δC J(p)

δpJ
a

C J(p) = MDRJ(p)−m2 = 0.

(32)

To determine what happens during particles interaction, it is necessary to consider even the
interaction contribution to the action, which can be written as the product of the conservation law (27)
times a Lagrange multiplier:

Sint = P(p)a ξa. (33)

The variation of this term is given by:

Pa(p) δχa −
(

xa
J (0)− χb δPb

δpJ
a

)
δpJ

a (34)

from which follows immediately, by the vanishing of the term proportional to δpJ
a:

xa
J (0) = χb δPb

δpJ
a

. (35)

From the previous relation and (27) one can obtain the equation:

xa
I (0) = χa − χb ∑

J
CI J Γbc

a pJ
c . (36)
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This equation expresses the worldline coordinate for every observer. If the momentum space
curvature is negligible, this expression reduces to the fact that every observer sees the same event
coordinate. This fact is in accordance with the usual physical description of interacting particles, that
takes place at a given spacetime point. In this way, it is possible to reconcile this model with the
standard physical description in the low energy limit.

To express the locality of the newly introduced relativity principle, it is sufficient to derive,
from (36), the relation:

∆xa
J (0) = −χb ∑

J
CI J Γbc

a pJ
c . (37)

This expression tells that different observers can detect the same interaction events separated by
different spacetime coordinates intervals. Only for a subset of privileged observers, the interaction
events take place in the reference frame origin and therefore are defined at the same set of coordinates.
The relativity principle, therefore, acquires a local valence and the Lorentz invariance, as usually
conceived, is modified.

In conclusion, the model constructed in this way substitutes the classical concept of spacetime as
fundamental background, where the physical interactions take place, with the idea that the invariant
background is constituted by a curved momentum space. This modification is made at the price to
renounce to the concept of an observer-independent locality.

Important to underline that even in this case the material particles dispersion relations are
modified and acquire a personal functional form. Finally, the curved geometry of the momentum space
acquires an energy dependence, these features remain a constant in most of the models describing LIV.

2.4. HMSR—Homogeneously Modified Special Relativity

This model is constructed in the attempt of preserving isotropy and homogeneity of spacetime
in a LIV scenario [49,50]. To pursue this aim the interaction with the background is geometrized.
In fact, in this theory Dispersion Relations (DR) are modified to perturb the kinematic, in order to
geometrically describe the interaction of massive particles with the supposed quantum structure of the
background spacetime structure. This means to modify the underlying geometry of Special Relativity
in order to describe the effects of the supposed quantum structure of spacetime on the kinematics of
particles.

MDR(p) := F2(p) = E2 −
(

1− f
(
|−→p |

E

)
−
)
|−→p |2 = m2 (38)

the f function is constructed to preserve the MDR rotational invariance.
The perturbation function is chosen homogeneous of degree 0, in order to preserve the geometrical

origin of the MDR:

f
(
|−→p |

E

)
=

∞

∑
k=1

αk

(
|−→p |

E

)k

. (39)

Imposing the zero-degree homogeneity to the perturbation function f the MDR results
homogeneous of degree 2, condition to be generated by a Finsler pseudo-norm. Therefore every
massive particle (fermion) feels a local spacetime parametrization, labeled by its momentum or energy.
The necessity to resort to a geometry that can deal with this parametrization follows, i.e., the Finsler
geometry.

A Finsler structure is constructed using a positively defined metric to pose the norm, instead a
pseudo-Finsler one resorts to a not positive metric. In this case, the pseudo-Finsler geometry is used,
because the underlying space-time structure is defined using the Minkowski standard metric, with
signature {+, −, −, −}.

Moreover, the Modified Dispersion Relation (MDR) does not present dependence on particle
helicity or spin, in fact, it is constructed without distinctions between particles and antiparticles, so the
constructed theory is CPT even. Since the publication of the Greenberg theorem [51], it is recognized
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that LIV does not imply CPT violation. In the same work, the opposite statement was declared true,
but this point is widely debated in literature [52–56].

Promoting the MDR to the role of norm in momentum space, it is possible to obtain the momentum
space Finsler metric using the relation:

g̃(p)µν =
1
2

∂

∂pµ

∂

∂pν
F2(E, −→p ) (40)

This equation produces a non-diagonal part, which does not give any contribution in computing
the dispersion relations. It can be therefore eliminated by an opportune “gauge” choice. The final form
of the metric becomes:

g̃µν(p) =

(
1 0
0 −(1− f (p/E))I3×3

)
. (41)

The Hamiltonian of the free massive particle in the proper time reference frame is defined as:

H =
√

g̃µν(p) pµ pν = F(p) (42)

consistently with standard Special Relativity. Resorting to the Legendre transformation it is possible to
obtain the velocity correlated with the momentum:

ẋµ =
∂

∂pµ
F(p) ' g̃µν(p) pν√

g̃µν(p) pµ pν

=
g̃µν(p) pν

m
. (43)

The metric homogeneity allows neglecting the metric derivative by the momentum, since this
term is a second order perturbation [49]. HMSR introduces therefore a simple way of inverting the
correspondence between four momentum and four velocity.
The explicit form of the Lagrangian can be computed from the Hamiltonian obtaining:

L = −→p −→̇x −H = −ẋµ pµ = −m
√

gµν(p) ẋµ ẋν, (44)

where the associated metric of the coordinate space has been obtained via the Legendre transformation:

g(x, ẋ(p))µν =

(
1 0
0 −(1 + f (p/E))I3×3

)
, (45)

where the Greek index refers to the local geometric structure, instead the Latin one refers to
a Minkowski common spacetime support structure. This model considers the geometry of the
momentum and the position space as correlated via the Legendre transformation. This allows
interpreting the Finsler co-metric resulting from the modified dispersion relation as the Finsler metric
describing the modified geometry. The pseudo-Finsler norm can indeed be expressed as a function of
the coordinates:

G(ẋ(p)) = F(p) (46)

and the related metric in the coordinate space can be computed via the relation:

g(x, ẋ(p))µν =
1
2

(
∂2G

∂ẋµ ẋν

)
. (47)

The metric in coordinate space constitutes the inverse of the one in momentum space:

g̃µα gαν = δ
µ
ν. (48)
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The associated generalized vierbeins1 are:

eµ
a(p) =

(
1

−→
0

−→
0 t

√
1− f (p) I3×3

)

e a
µ(p) =

(
1

−→
0

−→
0 t

√
1 + f (p) I3×3

) (49)

and are defined in order to obtain:

gµν(ẋ) = e a
µ(p(ẋ)) ηab e b

ν (p(ẋ))

g̃µν(p) = eµ
a(p) ηab eν

b(p)
(50)

where ηab represents the standard Minkowski norm ηab = diag{1, −1, −1, −1}. The resulting metric
is an asymptotically flat pseudofinslerian structure [57–62].

All the physical quantities are generalized, acquiring an explicit dependence on the momenta. In
this model every particle species has its own metric, with a personal maximum attainable velocity. For
this aspect this model is a generalization of VSR, i.e., it admits VSR as an high energy limit. The ratio
|−→p |

E admits indeed a finite limit |
−→p |
E → (1 + δ) with 0 < δ� 1 for E→ ∞. As consequence, even the

perturbation function admits a finite limit f
(
|−→p |

E

)
→ ε� 1 and the maximum attainable velocity for

every massive fermion becomes:
c′(E) = 1− ε. (51)

Moreover, every particle lives in a modified curved personal spacetime, therefore it is necessary
to introduce a new mathematical formalism to conduct computations between physical quantities
related to different interacting particles. The elements of the vierbein can be used as projectors from
the local curved space to a common support Minkowski flat space-time. The graph of the transition
from one tangent (local) space to the other becomes:

(TM, ηab, p) (TM, ηab, p′)

(Tx M, gµν(p)) (Tx M, gµν(p′)),

e(p)

Λ

e(p′)

e◦Λ◦e−1

where the explicit dependence of the metric from momenta is indicated. The possibility to construct a
modified form of the Lorentz group is an original feature of this model. Now, using again the vierbein
to project physical quantities from the local to global space, it is possible to define the general Modified
Lorentz Transformations (MLT) as:

Λ ν
µ (p) = ea

µ(Λp)Λ b
a eb

ν(p). (52)

These Modified Lorentz Transformations (MLT) are the isometries of the MDR (38), that is every
particle species presents its personal MLT, which are the isometries of the particle MDR. The caused
by LIV new physics emerges only in the interaction of two different species. That is every particle
type physics is modified in a different way by LIV. Therefore, to analyze the interaction of two
particles, it is necessary to determine how the reaction invariants—that is, the Mandelstam relativistic

1 The idea of a modified vierbein was introduced for example in [30], however, in HMSR a modified vierbein exists even in
momentum space and a correspondence between the co-metric in momentum space and the metric in coordinate space is
introduced.
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invariants—are modified. For this reason, it is natural to generalize the definition of the internal
product of the sum of two-particle species momenta.

〈p + q|p + q〉 = (pµ e µ
a (p) + qµ ẽ µ

a (q)) ηab (pν e ν
b (p) + qν ẽ ν

b (q)), (53)

where e µ
a (p) and ẽ µ

a (q)) are the vierbeins associated respectively with the two different particle species.
With this internal product, it is now possible to generalize the definition of the Mandelstam variables
s, t and u in such a way that can preserve the theory covariant formulation respect to the MLT. This
means that it is not necessary to introduce a preferred reference frame, in contrast with the great part
of the other LIV models. It is important to underline that the modified structure of the metric (41)
and (45) is analogous to the SME isotropic coefficient cµν. However, HMSR presents some differences
compared to SME. First, the perturbation tensor considered in HMSR is not traceless, since at least two
different particle species interact. Second and most important in HMSR isotropy is preserved not only
with respect to rotations, but even with respect to modified boosts.

Finally, it is possible to generalize the SM of particle physics [49], following a procedure analogous
to that of SME. First of all, it is necessary to modify the Dirac matrices2, introducing the explicit
dependence on the momenta:

Γµ = e µ
a (p) γa Γ5 =

εµναβ

4!
ΓµΓνΓαΓβ = γ5. (54)

Next it is possible to modify the Clifford Algebra connecting the anticommutator of the Γ matrices
with the gµν(p) metric:

{Γµ, Γν} = 2 gµν(p) = 2 e a
µ(p) ηab e b

ν (p). (55)

Finally one can compute the spinor fields, preserving the plane wave form and obtaining:

ψ+(x) = ur(p)e−ipµxµ

ψ−(x) = vr(p)eipµxµ
,

(56)

where the spinors ur(p) and vr(p) normalization results modified compared to the usual definition.
It is simple to demonstrate that the modified Dirac equation

(iΓµ∂µ −m)ψ = 0 (57)

implies the MDR (38):

(iΓµ∂µ + m)(iΓµ∂µ −m)ψ+ = 0 ⇒ (Γµ pµ + m)(Γµ pµ −m)ur(p) = 0 ⇒

⇒
(

1
2
{Γµ, Γν}pµ pν −m2

)
ur(p) = 0 ⇒ (pµgµν pν −m2)ur(p) = 0

(58)

Finally, it is possible to obtain an amended formulation of the SM of particles, where for every
field an associated vierbein is used to project the physical quantities from the modified personal curved
space-time to the common Minkowski space. As an example it is reported the explicit form of the QED
Lagrangian:

L =
√
|det [g]| ψ(iΓµ∂µ −m)ψ + e

√
|det [g̃]| ψ Γµ(p, p′)ψ eµ

ν Aν, (59)

where e represents the vierbein correlated to the gauge field and the index µ represents a coordinate
of the Minkowski spacetime (TM, ηµν). Γµ(p, p′) represents the modified Dirac matrix that rules the

2 Γµ are indicated as modified Dirac matrices for brevity, but it is more correct to refer to them as the part of the modified
Dirac operator that is contracted with a single four-derivative.
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interaction of two different particles and depends on their two moments. The term that multiplies the
conserved current is a generalization of the analogous term borrowed from curved spacetime QFT,
where its explicit form is given by:

√
|det [g]|. In the low energy scenario the perturbation is negligible,

on the contrary in the high energy limit, it is possible to consider incoming and outgoing momenta
with approximately the same magnitude, even after interaction. Therefore the conserved currents do
not depend on the momenta and admit an high energy constant limit. The definition of the conserved
current reduces, as in [49], to:

Jµ = e
√
|det 1/2{Γµ, Γν}| ψ Γµ ψ = e

√
|det [g]| ψ Γµ ψ (60)

The modified SM formulation preserves the classical gauge SU(3)× SU(2)×U(1). In fact it is
possible to demonstrate that the Coleman Mandula theorem is still valid, even if the symmetry group
is given by P(p)⊗ Gint, where P(p) is the direct product of modified Poincaré groups, that depends
explicitly on the particle species and energy (momentum):

P(p) = ⊗iP (i)(p(i)) (61)

and Gint is the internal symmetries group (in this case SU(3)× SU(2)×U(1)).
Even the Poincaré brackets are modified, indeed it is possible to obtain:

{x̃µ, x̃ν} = {xie µ
i (p), xje ν

j (p)} = {xi, e ν
j (p)}e µ

i (p)xj + {e µ
i (p), xj}xie ν

j (p) = 0

{x̃µ, p̃ν} = {xie µ
i (p), pje

j
ν(p)} = {xi, pj}e

µ
i (p)ej

ν(p) + {xi, ej
ν(p)}e µ

i (p)pj = δ
µ
ν + {xi, ej

ν(p)}e µ
i (p)pj

{ p̃µ, p̃ν} = {piei
µ(p), pje

j
ν(p)} = 0,

(62)

where the coordinates x̃ and p̃ are defined in the modified curved space-time. The coordinates x and p
are defined on the flat local model. It is necessary to consider that the vierbein (49) is function of the
ratio of momentum and energy, therefore the Poincaré brackets acquire a non trivial form as in curved
momentum space theories [63]. HMSR presents therefore a correspondence with DSR, since in both
models the momentum space is considered curved. Moreover resorting to the vierbein to project the
momenta to the universal Minkowski support model (19), in HMSR it is possible to obtain a momenta
modified composition rule:

(p, q) → (p⊕ q) = (pa ea
µ(p) + qa ẽa

µ(q)). (63)

Contrary to what happens in DSR this composition rule does not present a universal character,
instead, it is species-depending and it is associative and abelian.

3. LIV and Neutrino Oscillations

3.1. Hamiltonian Approach

Now it is possible to focus on the analysis of the supposed Lorentz violation effects impact
on neutrino phenomenology. The introduction of LIV can, in fact, modify the flavor oscillation
probabilities. The formalism here introduced was developed for the SME environment and is still valid
for theories like VSR and HMSR that coincides in some aspects with the SME scenario. The extended
Standard Model Lagrangian can be written in the general form [30,36–38]:

L = L0 + LLIV , (64)
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with
LLIV = −

(
tµψγµψ + kµψγµγ5ψ

)
−
(
rµνψγµ∂νψ + sµνψγµγ5∂νψ

)
. (65)

The previous relation can be rewritten taking into account that only left-hand neutrino couple:

LLIV = −(aL)µψLγµψL − (cL)µνψγ
µ
L∂νψL, (66)

where (aL)µ = 1
2 (tµ + kµ) and (cL)µν = 1

2 (rµν + sµν). The first term, proportional to (aL)µ, in
Equation (66), violates CPT and consequently the Lorentz invariance, while the second contribution,
proportional to (cL)µν, breaks “only" Lorentz invariance. In this way one can write the effective
Hamiltonian with the explicit form:

He f f = H0 + HLIV , (67)

where H0 denotes the standard Lorentz covariant Hamiltonian and HLIV indicates the perturbation
introduced by the LIV violating terms (66). Neglecting the standard part of the Hamiltonian (H0)

since it contributes identically to all the three mass eigenvalues oscillations probabilities for a fixed
momentum neutrino beam, it is possible to use a perturbative approach. The remaining part of the
extended Hamiltonian becomes therefore:

H =
1

2E

(
M2 + 2(aL)µ pµ + 2(cL)µν pµ pν

)
, (68)

where M2 is a 3× 3 matrix that in the mass eigenvalues basis assumes the form: m2
1 0 0

0 m2
2 0

0 0 m2
3

 . (69)

Using the quantum mechanics perturbation theory, the new eigenstates become:

|ν̃i〉 = |νi〉+ ∑
i 6=j

〈νj|HLIV |νi〉
Ei − Ej

|νj〉. (70)

Now one can introduce the perturbed time evolution operator:

S(t) =
(

e−(iH0+HLIV)teiH0t
)

e−iH0t =

=
(

e−i(H0+HLIV)teiH0t
)

S0(t)
(71)

and the oscillation probability can be evaluated as:

P(να → νβ) = |〈β(t)|α(0)〉|2 =∣∣∣∣∣∑n

[
〈β(t)|

(
|n0〉〈n0|+ ∑

j 6=n

〈j0|HLIV |n0〉
E0

n − E0
j
|j0〉〈j0|

)
|α(0)〉+ . . .

]∣∣∣∣∣
2

= P0(να → νβ) + P1(να → νβ) + . . .

(72)

In Equation (72) P0(να → νβ) represents the standard predicted oscillation probability, the
remaining term is given by:

P1(να → νβ) =

=∑
ij

∑
ρσ

2LRe
((

S0
αβ

)∗
UαiU∗ρi H

LIV
ρσ UσjU∗βjτij

)
, (73)
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with:
Uαi = 〈α|i〉, (74)

where |α〉 represents a generic flavor eigenstate and |j〉 denotes a mass eigenstate. Moreover in (73):

τij =

{
(−i)e−iEit i = j
e−iEi t−e−iEj t

Ei−Ej
i 6= j,

(75)

with the Hamiltonian matrix constrains:{
HLIV

αβ =
(

HLIV
βα

)∗
α 6= β

HLIV
αα ∈ R.

(76)

Hence also the flavor transition probability can be expanded perturbatively, as expected [64–66].
This approach allows appreciating that the introduction of LIV in the neutrino sector can perturb the
oscillation probability pattern without changing its general shape. In the case of high energy sources,
such as for atmospheric or astrophysical neutrinos, an exact Hamiltonian diagonalization can be useful.
Details on the analytic formulae for the exact diagonalization can be found for CPT odd perturbation
operators in [67] and for the CPT even case in [68]. A numerical approach to LIV effects applied to
astrophysical neutrinos flavor transitions can be found in [69,70].

3.2. LIV and Neutrino Masses

Since it is of great importance having alternate hypotheses when investigating new physics, some
models try to explain oscillations resorting to LIV, without the classical concept of neutrino masses [71].
It is indeed possible to introduce terms in the Standard Model Lagrangian that generate masses by the
interaction with background fields, as in [38], where the modified Dirac equation can be written using
the modified Dirac matrices:

Γ µ
AB =γµδAB + cµν

ABγν + dµν
ABγ5γν+

+e µ
AB + i f µ

ABγ5 +
1
2

gµντ
AB σντ

(77)

and the modified mass matrix:

MAB =mAB + im5ABγ5 + a µ
ABγµ+

+b µ
ABγ5γµ +

1
2

Hµν
ABσµν.

(78)

In the previous equations m and m5 are CPT and Lorentz symmetry preserving mass terms. The
CPT preserving, but Lorentz violating terms are: c, d, H, while a, b, e, f , g are CPT and consequently
LI violating. It is important to underline that in this case, the LIV introduced mass terms would
constitute a theoretical justification for the oscillations, but this kind of LIV introduced masses would
not modify the general dependence of oscillation probabilities on neutrino energy. Therefore, it would
not amend the “standard” oscillation shape with the introduction of new effects.

This approach was used for example in [71]. In this work the LIV generated perturbation is
produced by a Lagrangian that is a subclass of the SME one, with the form:

L = i ψ
i
γµ∂µψi + i ψ

icµν, ijγµ∂νψj + i ψ
ieµ, ij∂µψj, (79)

where the Greek indices refer to tensor spatial components, instead the Latin ones refer to flavor of
different neutrinos. The constant background tensor cµν, ij is chosen diagonal in space-time indices and
preserves CPT symmetry, instead the vector eµ, ij violates CPT.
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In the SME scenario is set another specific attempt to derive a model that tries to explain the
neutrino oscillations phenomenon resorting to LIV: the puma model [72]. Following the Hamiltonian
approach, this function is perturbed in order to take into account the perturbation induced by LIV
effects:

HLIV = A(E)

 1 1 1
1 1 1
1 1 1

+ B(E))

 1 1 1
1 0 0
1 0 0

+ C(E))

 1 0 0
0 0 0
0 0 0

 , (80)

where A(E), B(E) and C(E) depend on the energy of the particle. The function A has the explicit
form A(E) = m2

2E and therefore decreases inversely with energy. The parameter m is the unique mass
parameter required by this theory. The functions B and C instead present a non-standard energy
dependence, they indeed increase with energy. All the SME coefficients contributing to the model are
chosen to be spacetime constants in order to preserve translation invariance and energy and momentum
conservation. The model is rotationally invariant, but it is not covariant under the action of boosts.
Moreover, this model does not require all the parameters needed to describe neutrino oscillations
used in the standard description, however, this theory necessitates resorting to one neutrino mass
parameter. For example in classical description the 3νSM survival probabilities are described resorting
to 4 parameters: ∆m2

sol , θ12, ∆m2
atm, θ13, instead the puma model requires only one mass m to describe

the phenomenon. In conclusion, even this model can attribute only part of the oscillation phenomenon
to LIV and necessitates at least one mass correlated parameter.

3.3. HMSR and Neutrino Oscillations

An equivalent way to introduce LIV in the neutrino oscillations sector consists in resorting to
the MDRs [73], in order to geometrize the neutrino interaction with the background. The MDRs are
assumed with explicit form (38), so that the results are originated by a metric in the momentum space,
as already shown, and this guarantees the validity of Hamiltonian dynamics. The ultra-relativistic
particle propagation in a vacuum is governed by the Schrödinger equation, whose solutions are written
in the form of generic plane waves:

ei(pµxµ) = ei(Et−−→p ·−→x ) = eiφ. (81)

To give the explicit form of the solution, it is possible to start from the MDR (38), and using the
approximation of ultrarelativistic particle |−→p | ' E, we obtain:

|−→p | =

√
|−→p |2

(
1− f

(
|−→p |

E

))
+ m2 '

' E
(

1− 1
2

f
(
|−→p |

E

))
+

m2

2E
.

(82)

This procedure allows evaluating the phase φ of the plane wave of Equation (81) for a given mass
eigenstate, using the natural measure units, for which t = L:

φ = Et− EL +
f
2

EL− m2

2E
L =

(
f E− m2

E

)
L
2

. (83)

Hence, the same energy E two mass neutrino eigenstates phase difference can be written as:

∆φkj = φj − φk =
( f j − fk)

2
EL−

(
m2

j

2E
−

m2
k

2E

)
L =

=

(
∆m2

kj

2E
−

δ fkj

2
E

)
L.

(84)
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In addition to the usual 3× 3 unitary matrix PMNS, the oscillation probability shows therefore a
dependence on the phase differences ∆φkj. In the most general case, the transition probability from a
flavor |α〉 to a flavor |β〉, that includes even the CP violating phase, can be written in the usual form:

P(να → νβ) =δαβ − 4 ∑
i>j

Re
(

UαiU∗βiU
∗
αjUβj sin2(∆φij)

)
+

+2 ∑
i>j

Im
(

UαiU∗βiU
∗
αjUβj sin2(∆φij)

)
.

(85)

The oscillation probability results modified and this effect is caused by the LIV violating
perturbation term, proportional to δ fkj = fk − f j in the phase differences defined in Equation (84).
This term is different from zero only if the LIV violations coefficients fi are different for the three mass
eigenstates. Otherwise, the expression of Equation (85) reduces to the usual three-flavor oscillation
probability, as in the case of absence of LIV. Since the high energy limit of HMSR is VSR, it is possible
to consider the limit of the perturbation function in the analysis pursued, in order to obtain a superior
constraint on the perturbation magnitude.

It is essential to notice that in this MDR induced and CPT even LIV theory, oscillation effects result
caused by the difference of perturbations between different mass eigenstates [74]. The fundamental
assumption, that represents a reasonable physical hypothesis, is that every mass state presents a
personal maximum attainable velocity, since it interacts in a particularly personal way with the
background. It is even important to underline that the form of LIV, introduced in HMSR model,
could not explain the neutrino oscillation, without resorting to the introduction of masses. In fact,
the perturbative LIV mass term is proportional to the energy of the particle, and this is in contrast
with the evidence of neutrino oscillations for the general pattern. In fact, neutrino oscillations are well
described by phase, depending only on squared masses differences, divided by the energy:

∆φjk =

(
m2

j

2E
−

m2
k

2E

)
=

∆m2
jk

2E
L, (86)

and LIV effects, of the type here introduced, could only appear at high energies as tiny perturbative
effects (84). Therefore this model can account only for relatively little deviations from “standard
physics” at the highest observable energies in the neutrino oscillation sector. Nevertheless, these
effects are very interesting experimentally, because they could open a window on what can be new
fundamental physics, the realm of quantum gravity.

3.4. HMSR and Neutrino Oscillations Phenomenology

In order to evaluate the impact on neutrino phenomenology the three oscillation probabilities,
ruling the neutrino oscillations (Pνeνµ , Pνeντ and Pνµντ ) are evaluated by means of Equations (84) and (85)
in presence of LIV. This analysis has been pursued in the realistic three flavor scenario and the values of
the ∆m2

ij and of the various PMNS matrix elements (Uα,i), used for the computations, have been taken
from the most recent global fits, including all the different neutrino experiments [75,76]. For simplicity,
the value δ = 0 is assumed for the Dirac CP violation phase. This effect could be reintroduced,
modifying in a simple way the analysis.

The outcome of the study on oscillation phenomenology is reported in the following series
of figures. The different oscillation probabilities Pνανβ

are plotted in absence and in presence of
LIV violating terms. The plots are obtained for fixed neutrino beam energy values as a function of
the baseline length L. The first series of three graphs are obtained for E = 1 GeV and reports the
probabilities Pνµντ , Pνµνe and Pνeντ . The probability Pνµντ is the most relevant one for the atmospheric
neutrinos study and for long-baseline accelerator neutrino experiments. Even Pνµνe is of great interest
both for short and long baseline accelerator experiments and it is also important for reactor antineutrino
experiments, because Pν̄µ ν̄e = Pνµνe under the CPT invariance assumption.
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The three LIV correction parameters fk are assumed of the same magnitude and are
ordered following a natural hierarchy with the highest associated to the heaviest mass eigenstate.
The perturbation magnitude is governed by the differences δ f32 and δ f21 (83) In Figures 1–3 the values
δ f32 = δ f21 = 1× 10−23 are employed and for energy beam of E = 1 GeV LIV would modify in a visible
way the oscillation probability patterns. In Figure 4 are plotted the effects for a neutrino beam with the
same energy E = 1 GeV in the case of LIV parameters with magnitude δ f32 = δ f21 = 1× 10−25. In this
last case LIV effects are no more visible unless the energy beam or the baseline length are increased.

Figure 1. Oscillation probability νµ → νe, computed for neutrino energy E = 1 GeV, “standard theory”
(red curve) and LIV (blue curve), for LIV parameters δ f32 = δ f21 = 1× 10−23, as function of the
baseline L. Baseline L in km [73].

Figure 2. Same analysis of Figure 1, but for the oscillation νµ → ντ . Baseline L in km [73].
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Figure 3. Same analysis of Figure 1, but for the oscillation νe → ντ . Baseline L in km [73].

Figure 4. Example of the fact that with Lorentz Invariance Violation (LIV) of parameters δ fkj ' 10−25

for energy beam of E = 1 GeV LIV effects are not visible. Baseline L in km [73].

For lower LIV parameters magnitude effects are visible only for higher energy beam values.
In Figures 5–7 the results for the 3 oscillation probabilities are plotted, in the case of E = 100 GeV energy
beams. In these plots the LIV parameters are assumed in order to obtain δ f32 = δ f21 = 4.5× 10−27

and perturbation effects are visible. Even the effects for E = 1 TeV neutrino are studied. Neutrino
energies in the region from TeV to PeV are of great interest for neutrino telescopes experiments like
ANTARES [77], KM3NET [78], IceCube [79] and Auger [80,81] (the last one for cosmic neutrinos with
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energies above EeV). In Figures 8–10 are reported the results for E = 1 TeV energy neutrinos, obtained
for various LIV magnitude parameters.

Figure 5. Same analysis of Figure 1, but for LIV parameters δ f32 = δ f21 = 4.5× 10−27 and for neutrino
energy beam E = 100 GeV. Baseline L in km [73].

Figure 6. Same of Figure 5 in the case of the oscillation probability Pνµντ . Baseline L in km [73].
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Figure 7. Same of Figure 5, but for Pνeντ . Baseline L in km [73].

Figure 8. Pνµνe oscillation probability, as function of baseline L, for neutrino energy E = 1 TeV, for
“classical theory”, LI (orange curve) and for LIV models, with parameters equal respectively to δ f32 =

δ f21 = 4.5× 10−27 (blue), δ f32 = δ f21 = 4.5× 10−28 (red) and δ f32 = δ f21 = 4.5× 10−29 (green curve).
Baseline L in km [73].
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Figure 9. Same analysis of Figure 8, but for the case of Pνµντ . Baseline L in km [73].

Figure 10. Same analysis of Figure 8, but for Pνeντ . Baseline L in km [73].
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Hence, selecting the appropriate experimental context, in future one could use the detailed
study of high energy neutrinos to further constraint the LIV coefficients. The plots obtained by this
analysis must be compared with actual experimental sensitivities. The experimental results listed
are taken in [82] and are obtained working in the language of SME (Table 1). Here are reported only
the sensitivities correlated with the isotropic coefficient cµν derived by various experiments. As a
matter of fact, the comparison between HMSR and the Hamiltonian approach used in the SME as a
reference for all the listed experiments is not so immediate, because HMSR investigates a sector not
yet analyzed in SME, that generated by the trace of the tensor cµν. Therefore only the posed by various
experiments on the isotropic coefficient cµν constrains magnitude order is reported as indication of the
experiment sensitivities:

Table 1. Experimental sensitivities for the Standard Model Extension (SME)neutrino sector isotropic
LIV tensor cµν.

Experiment Order of Magnitude of cµν Constrain Posed by the Experiment Reference

SuperKamiokande 10−26 ÷ 10−27 [68,83]
IceCube 10−26 ÷ 10−27 [84,85]

Daya Bay 10−18 [86]
Minos 10−23 [87]

Minos FD 10−23 [88]
Minos ND 10−21 ÷ 1023 [89]

SNO 10−17 ÷ 10−19 [90]
Double Chooz 10−17 ÷ 10−18 [91]

T2K 10−20 ÷ 10−21 [92]
LSND 10−18 [93]

MiniBoone 10−20 [94]

To obtain a phenomenological analysis, useful for realistic experimental scenarios, one needs to
take into account the knowledge of the different interaction energy depending cross-sections σβ(E)
of a β neutrino with the detector and an accurate knowledge of the foreseen initial flux Φα(L, E) of
an α flavor neutrino at given energy E. The number Nα,β of detected transition events caused by the
να → νβ flavor oscillation, will be given by:

Nα,β ∝ Φα(L, E) Pνα ,νβ
(L, E) σβ(E), (87)

where L represents the distance from the production to the detection point and Pνα ,νβ
is the usual

oscillation probability. Then this information must be integrated over the neutrino energies. Finally
one must take into account functions describing the detector resolution and efficiencies.

It must be underlined that the detector cannot have a point resolution in energy, so it is
important to conduct a comparison between the oscillation probability integral averaged respect
to a range of energy values with and without LIV (Figure 11). To complete the analysis, even the
percentage differences of LI and LIV predicted integral averaged probabilities are plotted in Figure 12.
In these plots, the maximum baseline L has been chosen in order to be of interest for atmospheric
neutrino analysis.
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Figure 11. Comparison between oscillation probability integral averaged on energy range values
from 1 GeV to 10 GeV, in LI scenario (blue line) and LIV scenario (red line), with δ f32 = 10−23 and
δ f21 = 10−25. Baseline L in km.

Figure 12. Percentage difference of the two probabilities from the previous plot (LI and LIV). Baseline
L in km.
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The effects of LIV are visible and in the case of higher energies of the neutrino beams or increased
sensitivity of the detector it is possible to pose more restrictive constraints on the LIV parameters.

From the comparison between the experimental results and the theoretical predictions, one can
extract the information about the impact of this model supposed LIV violations and can put constraints
on the magnitude order of the LIV coefficients.

4. LIV and Mass Hierarchy

Another interesting aspect of LIV and neutrinos is studied in the work of Jurkovich [95] and
regards the influence on the possibility to discriminate neutrino Mass Hierarchy (MH). In that work
the model investigated is based on the SME, so it does not preserve the covariance of the theory respect
to amended Lorentz transformations. What emerges is that LIV can affect the long base experiments
sensitivity on MH detection.

The neutrino sector is investigated introducing a modified Lagrangian that provides changes in
the kinematical terms:

Ld−dim = iν†
iL∂µνiL − id−3γ

j1...jd−4
i ν†

iLσk∂k∂j1 ...∂jd−4
νiL, (88)

where γ
j1...jd−4
i are d− 4 tensors and σk are the Pauli matrices. The dispersion relations are modified

and again assume the form:
E2 = (1 + γ)2p2 (89)

where γ = γ
j1...jd−4
i pj1 ...pjd−4

. If massive neutrinos are considered the dispersion relation assumes the
explicit form:

E2 = (1 + γ)2p2 + m2 (90)

and the usual Hamiltonian in the mass basis assumes the explicit form:

H −→ H0 + HLIV (91)

where H0 represents the usual Hamiltonian:

H0 =

 0 0 0
0 ∆m2

12/2E 0
0 0 ∆m2

31/2E

+ U V(x)U† (92)

HLIV represents the perturbation term introduced by LIV:

HLIV =

 0 0 0
0 ∆γd

21Ed−3 0
0 0 ∆γd

31Ed−3

 . (93)

Now the results of [95] are compared with those produced by HMSR applied to the MH detection
for experiments like JUNO [96]. Resorting to the model presented in the previous section and used for
investigating the effects of LIV on oscillation, the energy spectrum of the foreseen detected neutrinos
is constructed and compared with the standard predicted spectrum (Figures 13 and 14). What is
possible to see is that LIV can not affect the general shape of the foreseen spectrum for a short to
medium baseline experiment like JUNO. It can generate only small perturbations not visible in the
shape of direct and inverse hierarchy oscillations. Therefore it is possible to conclude that short and
medium baseline experiments can detect LIV effects in an efficient way only studying the neutrino
probability and not mass hierarchy. This result was expected, since reactor neutrinos have energies
with a magnitude of the order of MeV and LIV perturbations start to be visible for GeV neutrino
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beams. In fact, the phase perturbation introduced by HMSR is proportional to L× E. On the contrary
in [95] it is shown that mass hierarchy can be visibly affected for long-baseline experiments, like Dune.

Figure 13. JUNO experiment foreseen spectrum plotted as a function of the variable L/E, for fixed
baseline L = 55 km. Plot reproduced by the author following [96].

Figure 14. JUNO experiment modified spectrum by LIV, with δ f32 = 10−23 and δ f21 = 10−25, plotted
as a function of the variable L/E, for fixed baseline L = 55 km. In this plot there are no visible differences
with respect to the previous one.
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5. Conclusions

Neutrino physics is an ideal playground to search for deviations from Lorentz invariance, thanks
to its various set of experiments, covering a wide spectrum of energies and baselines. Other works, for
instance, explore the influence of LIV on the foreseen observed spectra, in the case of superluminal
correction to neutrino propagation [97,98]. Short and Long baseline neutrino experiments seem to be
ideal structures to test the validity of Lorentz Invariance, due to their great sensitivity to the detection
of phase differences in neutrino propagation. Moreover, the neutrino oscillation phenomenon involves
three different masses eigenstates. So it is interesting to consider future experiments such as JUNO,
DUNE, T2K to constrain the magnitude of LIV perturbations. In particular, it will be interesting to
conduct a systematic analysis of what can be detected by new and really advanced facilities, as JUNO
for instance, regarding the study of neutrino oscillations probability. A preliminary study conducted
in this work about the possibility to investigate MH discrimination seems to exclude the possibility
to resort to short baseline reactor experiments. However, in [95], long-baseline experiments appear
as candidates to conduct this kind of research. The investigation on the effects of LIV on the Mass
Hierarchy discrimination for long-baseline experiments can be an interesting research aim. In fact, it
can open another window on the study of fundamental symmetries of nature, presenting another sector
where posing Lorentz Invariance under investigation. Finally, neutrino oscillation physics can be used
in the future to investigate the validity of alternative gravity theories, i.e., modified General Relativity
theories [99,100]. These models indeed introduce a modification of the geometry of space-time, causing
kinematical perturbations that can manifest in neutrino oscillation sector.
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