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Abstract: The fermion condensate (FC) is investigated for a (2+1)-dimensional massive fermionic
field confined on a truncated cone with an arbitrary planar angle deficit and threaded by a magnetic
flux. Different combinations of the boundary conditions are imposed on the edges of the cone.
They include the bag boundary condition as a special case. By using the generalized Abel-Plana-type
summation formula for the series over the eigenvalues of the radial quantum number, the edge-
induced contributions in the FC are explicitly extracted. The FC is an even periodic function of the
magnetic flux with the period equal to the flux quantum. Depending on the boundary conditions,
the condensate can be either positive or negative. For a massless field the FC in the boundary-
free conical geometry vanishes and the nonzero contributions are purely edge-induced effects.
This provides a mechanism for time-reversal symmetry breaking in the absence of magnetic fields.
Combining the results for the fields corresponding to two inequivalent irreducible representations
of the Clifford algebra, the FC is investigated in the parity and time-reversal symmetric fermionic
models and applications are discussed for graphitic cones.
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1. Introduction

Field theoretical fermionic models in (2+1)-dimensional spacetime appear as long-
wavelength effective theories describing a relatively large class of condensed matter
systems, including graphene family materials, topological insulators, Weyl semimetals,
high-temperature superconductors, ultracold atoms confined by lattice potentials, and
nano-patterned 2D electron gases [1,2]. In the low-energy approximation, the corre-
sponding dynamics of charge carriers is governed with fairly good accuracy by the Dirac
equation, where the velocity of light is replaced by the Fermi velocity [3–5]. The latter is
much less than the velocity of light, and this presents a unique possibility for studying
relativistic effects.

Among the most interesting topics in quantum field theory is the dependence of
the properties of the vacuum state on the geometry of the background spacetime. The
emergence of Dirac fermions in the above mentioned condensed matter systems and
availability of a number of mechanisms to control the corresponding effective geometry
provide an important opportunity to observe different kinds of field-theoretical effects
induced by the spatial geometry and topology. In particular, it is of special interest to
investigate the influence of boundaries on the physical characteristics of the ground state.
This influence can be described by imposing appropriate boundary conditions on the
field operator. Those conditions modify the spectrum of vacuum fluctuations and, as
a consequence, the vacuum expectation values of physical observables are shifted by
an amount that depends on the bulk and boundary geometries and on the boundary
conditions. The general class of those effects is known under the name of the Casimir effect
(for reviews see [6–10]). In recent years, the Casimir effect for the electromagnetic field in

Universe 2021, 7, 73. https://doi.org/10.3390/universe7030073 https://www.mdpi.com/journal/universe

https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0002-6576-9895
https://doi.org/10.3390/universe7030073
https://doi.org/10.3390/universe7030073
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/universe7030073
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe7030073?type=check_update&version=1


Universe 2021, 7, 73 2 of 20

physical systems with graphene structures as boundaries has been widely discussed in
the literature (see references [11–34] and references [35–37] for reviews). By using external
fields, different electronic phases can be realized in Dirac materials. The magnitude and
the scaling law of the corresponding Casimir forces are essentially different for those
phases [38]. New interesting features arise in interacting fermionic systems [39–44].

Graphene family materials also offer a unique opportunity to investigate the boundary-
induced and topological Casimir effects for a fermionic field. On the edges of graphene
nanoribbons boundary conditions are imposed on the effective fermionic field that ensure
the zero flux of the quasiparticles. Those conditions are sources for the Casimir-type
contributions to the expectation values of physical characteristics of the ground state.
Similarly, the periodicity conditions along compact dimensions imposed on the fermionic
field in graphene nanotubes and nanorings give rise to the topological Casimir effect
for those characteristics. As such characteristics, in [45–47], the fermion condensate and
the expectation values of the current density and of the energy-momentum tensor have
been studied. The edge-induced Casimir contributions in finite length carbon nanotubes
were discussed in [48–50]. Tubes with more complicated curved geometries have been
considered in [51–54]. These geometries provide exactly solvable examples to model the
combined influence of gravity and topology on the properties of quantum matter. Note
that various mechanisms have been considered in the literature that allow to control the
effective geometry in graphene type materials [55–58].

As background geometry, in the present paper we consider a 2-dimensional conical
space with two circular boundaries (conical ring). The corresponding spacetime is flat and
is a (2+1)-dimensional analog of the cosmic string geometry. We investigate the influence
of the edges and of the magnetic flux, threading the ring, on the fermion condensate
(FC). The corresponding vacuum expectation values of the fermionic charge and current
densities have been recently studied in [59]. Among the interesting applications of the
setup under consideration are the graphitic cones. They are obtained from a graphene
sheet by cutting a sector with the angle πnc/3, nc = 1, 2, . . . , 5, and then appropriately
gluing the edges of the remaining sector. The opening angle of the cone, obtained in
this way, is given by φ0 = 2π(1− nc/6). The graphitic cones with the angle φ0 for all
the values corresponding to nc = 1, 2, . . . , 5, have been observed experimentally [60–62].
The corresponding electronic properties were studied in references [63–70]. Our main
interest here is the investigation of the Casimir-type contributions to the FC induced by the
edges of a conical ring for general values of the opening angle. The ground state fermionic
expectation values for limiting cases of the geometry under consideration, corresponding
to boundary-free cones and to cones with a single circular edge, have been examined in
references [71–76]. In particular, the FC has been discussed in [74]. The effects of finite
temperature on the FC were investigated in [77,78]. The formation of the FC in models with
a background scalar field has been recently discussed in [79,80]. The vacuum expectation
values for the charge and current densities on planar rings have been studied in [81].

The paper is organized as follows. In the next section we describe the geometry and
present the complete set of fermionic modes. Based on those modes, the FC is evaluated
in Section 3. Various representations are provided for the edge-induced contributions
and numerical results are presented. In Section 4, by combining the results for the fields
realizing two inequivalent irreducible representations of the Clifford algebra, we consider
the FC in parity and time-reversal symmetric models. Applications to graphitic cones are
discussed. The main results are summarized in Section 5.

2. Geometry and the Field Modes

We consider a charged fermionic field in (2+1)-dimensional conical spacetime de-
scribed by the coordinates x0 = t, x1 = r, x2 = φ, with r > 0, 0 6 φ 6 φ0. The correspond-
ing metric tensor is given by

gµν = diag(1,−1,−r2) . (1)
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For φ0 = 2π this metric tensor corresponds to (2+1)-dimensional Minkowski space-
time. For φ0 < 2π one has a planar angle deficit 2π − φ0 and the spacetime is flat ev-
erywhere except at the apex r = 0 where it has a delta type curvature singularity. In
(2+1)-dimensional spacetime there are two inequivalent irreducible representations of the
Clifford algebra with the 2× 2 Dirac matrices γ

µ

(s) = (γ0, γ1, γ2
(s)), where s = ±1 corre-

spond to two representations. We will use the representations with γ0 = diag(1,−1) and

γ1 = i
(

0 e−iqφ

eiqφ 0

)
, γ2

(s) =
s
r

(
0 e−iqφ

−eiqφ 0

)
, (2)

where q = 2π/φ0. Note that one has the relation γ2
(s) = −isγ0γ1/r.

Let ψ(s), s = ±1, be two-component spinor fields corresponding to two inequivalent
irreducible representations of the Clifford algebra. In the presence of an external gauge
field Aµ, the corresponding Lagrangian density has the form

L(s) = ψ̄(s)(iγ
µ

(s)D(s)µ −m(s))ψ(s), (3)

with the covariant derivative operator D(s)µ = ∂µ + Γ(s)µ + ieAµ, the spin connection
Γ(s)µ and the Dirac adjoint ψ̄(s) = ψ†

(s)γ
0. We are interested in the effects of two circular

boundaries r = a and r = b, a < b, on the fermion condensate (FC)

〈0|ψ̄(s)ψ(s)|0〉 ≡ 〈ψ̄(s)ψ(s)〉, (4)

where |0〉 corresponds to the vacuum state. On the edges the boundary conditions
(

1 + iλ(s)
r n(r)

µ γ
µ

(s)

)
ψ(s) = 0, r = a, b, (5)

will be imposed with λ
(s)
r = ±1 and with n(r)

µ being the inward pointing unit vector
normal to the corresponding boundary. We can pass to the new set of fields ψ′(s) defined

as ψ′(+1) = ψ(+1), ψ′(−1) = γ0γ1ψ(−1). The corresponding Lagrangian density is presented

as L(s) = ψ̄′(s)(iγ
µDµ − sm(s))ψ

′
(s), where γµ = γ

µ

(+1) and Dµ = D(+1)µ. The boundary

conditions are transformed to
(

1 + iλ(s)′
r n(r)

µ γµ
)

ψ′(s) = 0, with λ
(s)′
r = sλ

(s)
r and r = a, b.

By taking into account that ψ(−1) = γ0γ1ψ′(−1), for the FC we get 〈ψ̄(s)ψ(s)〉 = 〈ψ̄′(s)ψ′(s)〉.
The boundary condition (5) with λ

(s)
r = 1 has been used in MIT bag models to confine the

quarks inside hadrons (for a review see [82]). In condensed matter applications it is known
as infinite mass or hard wall boundary condition [83]. As it has been mentioned in [83],
another possibility to confine the fermions corresponds to the condition (5) with λ

(s)
r = −1.

Note that one has
(

in(r)
µ γ

µ

(s)

)2
= 1 and for the eigenvalues of the matrix in(r)

µ γ
µ

(s) we get±1.

Here, the upper and lower signs correspond to the boundary conditions (5) with λ
(s)
r = −1

and λ
(s)
r = 1, respectively. More general boundary conditions for the confinement of

fermions, containing additional parameters, have been discussed in [84–89].
In the discussion below, the investigation for the FC will be presented in terms of

the fields ψ′(s) = ψ, omitting the prime and the index. So, we consider a two-component
fermionic field ψ(x) obeying the Dirac equation

(
iγµDµ − sm

)
ψ(x) = 0, (6)

and the boundary conditions
(

1 + iλrn(r)
µ γµ

)
ψ(x) = 0, r = a, b, (7)
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where λr = sλ
(s)
r take the values ±1. We will consider the FC in the region a 6 r 6 b

where n(u)
µ = nuδ1

µ, with na = −1 and nb = 1. Note that the topology of the conical
ring is nontrivial and the periodicity condition on the field should be specified along the
φ-direction as well. Here we impose a quasiperiodicity condition with a phase 2πχ:

ψ(t, r, φ + φ0) = e2πiχψ(t, r, φ). (8)

The special cases include the untwisted and twisted fermionic fields with χ = 0 and
χ = 1/2, respectively. For the external gauge field we assume a simple form with the
covariant components Aµ = Aδ2

µ in the region a 6 r 6 b. The corresponding field strength
Fµν vanishes on the conical ring and the effect of that configuration of gauge field on the
properties of the fermionic vacuum is purely topological. Assuming that the 2D conical
geometry under consideration is embedded in 3D Euclidean space, the parameter A can
be interpreted in terms of the magnetic flux for a gauge field A′k, k = 0, 1, 2, 3, living in
(3+1)-dimensional flat spacetime. Introducing 3D cylindrical coordinate system (ρ, ϕ, z)
with the axis z along the axis of the cone, we get the relations ρ = r/q and ϕ = qφ.
If the magnetic field B = rot A corresponding to the vector potential A′k is localized in
the region ρ < a/q of the 3D space, then for the magnetic flux Φ =

∫
B · dS, threading

the conical ring, one obtains Φ =
∮

A · dl = 2πρAφ, where as an integration contour
we have taken a circle on the conical ring and Aφ is the physical azimuthal component
of the vector potential. Now, by taking into account that Aφ = −A/r and 2πρ = φ0r,
we find Φ = −φ0 A. Note that in this interpretation we have a situation similar to that
in braneworld models with extra dimensions: for a part of the fields the whole space is
accessible (the gauge field in the problem at hand) and the another part of the fields (the
fermion field) is confined to a hypersurface (the conical ring). As an example of physical
realization of the 2D model embedded in 3D Euclidean space, in Section 4 we will consider
graphene conical rings. The effect of the magnetic flux on the FC, discussed below, is of the
Aharonov-Bohm-type and it does not depend on the profile of the magnetic field sourcing
the flux. The spatial geometry of the problem under consideration with the magnetic flux
is presented in Figure 1.
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Figure 1. The geometry of a conical ring threaded by a magnetic flux.

The ground state FC is expressed in terms of the fermion two-point function
S(1)(x, x′) as

〈ψ̄ψ〉 = − lim
x′→x

Tr(S(1)(x, x′)). (9)

The two-point function describes the correlations of the vacuum fluctuations and
is defined as the VEV S(1)

ik (x, x′) = 〈0|[ψi(x), ψ̄k(x′)]|0〉 with the spinor indices i and k.
The trace in (9) is taken over those indices. The FC plays an important role in discussions of
chiral symmetry breaking and dynamical mass generation for fermionic fields. Expanding
the fermionic operator in terms of a complete set of the positive and negative energy mode
functions ψ

(+)
σ and ψ

(−)
σ , obeying the conditions (7), (8), and using the anticommutation
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The ground state FC is expressed in terms of the fermion two-point function
S(1)(x, x′) as

〈ψ̄ψ〉 = − lim
x′→x

Tr(S(1)(x, x′)). (9)

The two-point function describes the correlations of the vacuum fluctuations and
is defined as the VEV S(1)

ik (x, x′) = 〈0|[ψi(x), ψ̄k(x′)]|0〉 with the spinor indices i and k.
The trace in (9) is taken over those indices. The FC plays an important role in discussions of
chiral symmetry breaking and dynamical mass generation for fermionic fields. Expanding
the fermionic operator in terms of a complete set of the positive and negative energy mode
functions ψ

(+)
σ and ψ

(−)
σ , obeying the conditions (7), (8), and using the anticommutation
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relations for the fermionic annihilation and creation operators, the following mode sum is
obtained for the FC

〈ψ̄ψ〉 = −1
2 ∑

σ
∑

κ=−,+
κψ̄

(κ)
σ ψ

(κ)
σ . (10)

Here, σ stands for the complete set of quantum numbers specifying the solutions
of the equation (6), ∑σ is understood as a summation for discrete components and as an
integration for continuous ones.

In the problem under consideration for the mode functions in the region a 6 r 6 b
one has [59]

ψ
(κ)
σ = Cκeiq(j+χ)φ−κiEt

(
gβ j ,β j(γa, γr)e−iqφ/2

εjγeiqφ/2

κE+sm gβ j ,β j+εj(γa, γr)

)
, (11)

where E =
√

γ2 + m2 is the energy, j = ±1/2,±3/2, . . ., εj = 1 for j > −α and εj = −1 for
j < −α,

β j = q|j + α| − εj/2. (12)

Here and in what follows

α = χ + eA/q = χ− eΦ/(2π). (13)

The radial functions in (11) are given by the expression

gβ j ,ν(γa, γr) = Y(a)
β j

(γa)Jν(γr)− J(a)
β j

(γa)Yν(γr) , (14)

with the Bessel and Neumann functions Jν(x), Yν(γr), and with the notation

f (u)β j
(x) = λunu(κ

√
x2 + m2

u + smu) fβ j(x)− εjx fβ j+εj(x), (15)

for f = J, Y, u = a, b, and mu = mu.
The mode functions (11) obey the boundary condition on the edge r = a. The eigen-

values of the radial quantum number γ are determined by the boundary condition on the
edge r = b. They are solutions of the equation

Cβ j(b/a, γa) ≡ J(a)
β j

(γa)Y(b)
β j

(γb)− J(b)β j
(γb)Y(a)

β j
(γa) = 0. (16)

We will denote by γ = γl , l = 1, 2, . . ., the positive roots of this equation. The eigen-
values of γ are expressed as γ = γl = zl/a. Note that under the change (α, j)→ (−α,−j)
one has β j → β j + εj and β j + εj → β j. From here, we can see that under the change

(κ, α, j)→ (−κ,−α,−j) (17)

we get

f (u)β j
(uγ)→ −εj(λunu/u)(κE + sm) f (u)β j

(uγ), (18)

and, hence, the roots γl are invariant under the transformation (17).
The normalization coefficient is given by

|Cκ |2 =
πqz
16a2

E + κsm
E

Tab
β j
(z), (19)
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where z = zl = γla, E =
√

z2/a2 + m2, and we have defined the function

Tab
β j
(z) =

z
E + κsm




Bb J(a)2
β j

(z)

J(b)2β j
(zb/a)

− Ba



−1

, (20)

with

Bu = u2
[

E− κλunu

u

(
E− κsm

2E
+ εjβ j

)]
. (21)

Note that the parameters χ and Φ enter in the expression of the mode functions in
the gauge-invariant combination α. This shows that the phase χ in the quasiperiodicity
condition (8) is equivalent to a magnetic flux −2πχ/e threading the ring and vice versa.

In addition to an infinite number of modes with γ = γl , depending on the boundary
conditions, one can have a mode with γa = iη, η > 0. As it has been shown in [59], for that
mode η 6 ma and, hence, E > 0. This means that under the boundary conditions (7) the
vacuum state is always stable.

For half-integer values of the parameter α, in addition to the modes with j 6= −α and
discussed above, a special mode with j = −α is present. The upper and lower components
of the corresponding mode functions are expressed in terms of the trigonometric functions.
These mode functions and the equation determining the eigenvalues of the radial quantum
number are given in [59]. For j = −α and for boundary conditions with λb = −λa, one
has also a zero energy mode with γ = im. In a way similar to that discussed in [59] for
the vacuum expectation values of the charge and current densities, it can be seen that
the special mode with j = −α and E 6= 0 does not contribute to the FC. The latter is a
consequence of the cancellation of the contributions coming from the positive and negative
energy modes. The contribution of the zero energy mode to the FC is zero as well. Note
that the latter is not the case for the expectation values of the charge and current densities.

3. Fermion Condensate

Given the complete set of fermionic modes, the FC on the conical ring is obtained by
using the mode sum formula (10). First let us consider the case when all the roots of the
eigenvalue equation are real. Substituting the mode functions (11), the FC in the region
a 6 r 6 b is presented in the form

〈ψ̄ψ〉 = − πq
32a2 ∑

j
∑

κ=±

∞

∑
l=1

Tab
β j
(z)

z
E

×
[
(sm + κE)g2

β j ,β j
(z, zr/a) + (sm− κE)g2

β j ,β j+εj
(z, zr/a)

]
z=zl

, (22)

where E =
√

z2/a2 + m2 and the summation goes over j = ±1/2,±3/2, . . .. The opera-
tors ψ̄ and ψ in the left-hand side of (22) are taken at the same spacetime point and the
expression on the right-hand side is divergent. Various regularization schemes can be
used to make the expression finite. To be specific, we will assume that the regularization
is done by introducing a cutoff function without writing it explicitly. The final result for
the renormalized FC does not depend on the specific form of that function. By taking
into account that the roots zl are invariant under the transformation (17) and by using
the transformation rule (18) we can see that the FC is an even periodic function of the
parameter α, defined by (13), with the period 1. In particular, we have periodicity with
respect to the enclosed magnetic flux with the period equal to the flux quantum 2π/e. If we
present the parameter α in the form α = n0 + α0, with |α0| 6 1/2 and n0 being an integer,
then the FC will depend on the fractional part α0 only. Note that the vacuum expectation
values of the charge and current densities are odd periodic functions of the magnetic flux
with the same period.
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An alternative representation of the FC is obtained from (22) by using the Abel-Plana-
type formula [90,91]

∞

∑
l=1

w(zl)Tab
β j
(zl) =

4
π2

∫ ∞

0
dx

w(x)

J(a)2
β j

(x) + Y(a)2
β j

(x)
− 2

π
Res
z=0




w(z)H(1b)
β j

(zb/a)

Cβ j(b/a, z)H(1a)
β j

(z)




− 1
π

∫ ∞

0
dx ∑

p=+,−

w(xepiπ/2)K(bp)
β j

(xb/a)/K(ap)
β j

(x)

K(ap)
β j

(x)I(bp)
β j

(xb/a)− I(ap)
β j

(x)K(bp)
β j

(xb/a)
, (23)

for the function w(z) analytic in the half-plane Re z > 0 of the complex plane z. Here
and below H(l)

ν (x), with l = 1, 2, are the Hankel functions and the notation H(lu)
β j

(x) is
defined in accordance with (15). In the second integral on the right-hand side of (23), for the
modified Bessel functions fν(x) = Iν(x), Kν(x), the notations

f (up)
β j

(x) = δ f x fβ j+εj(x) + λunu

[
κ

√(
xepπi/2

)2
+ m2

u + smu

]
fβ j(x), (24)

are introduced with p = +,−, u = a, b, and

δI = 1, δK = −1. (25)

Additional conditions on the function w(z) are given in [91]. By taking into ac-
count that √(

xepπi/2
)2

+ m2
u =

{ √
m2

u − x2, x < mu,
pi
√

x2 −m2
u, x > mu,

(26)

for x > 0, we see that f (u+)
β j

(x) = f (u−)β j
(x) in the range x ∈ [0, mu]. In addition, for the

function w(x) corresponding to the series over l in (22) one has w(xe−iπ/2) = −w(xeiπ/2)
for x ∈ [0, ma]. From these properties it follows that for the FC the integrand of the last
integral in (23) vanishes in the integration range x ∈ [0, ma]. It can also be seen that for the
FC the residue in (23) is zero.

As a result, applying the formula (23) for the series over l in (22), the FC in the region
a 6 r 6 b is decomposed into two contributions. The first one, denoted below as 〈ψ̄ψ〉a,
comes from the first term in the right-hand side of (23) and is presented in the form

〈ψ̄ψ〉a = −
q

8πa2 ∑
j

∑
κ=±

∫ ∞

0
dz

z
E

(sm + κE)g2
β j ,β j

(z, zr/a) + (sm− κE)g2
β j ,β j+εj

(z, zr/a)

J(a)2
β j

(z) + Y(a)2
β j

(z)
. (27)

The second contribution comes from the last term in (23). Introducing the modified
Bessel functions, we get the following representation of the FC:

〈ψ̄ψ〉 = 〈ψ̄ψ〉a +
q

2π2

∞

∑
n=0

∑
p=±1

∫ ∞

m
dx

x√
x2 −m2

Re





K(b)
np (bx)/K(a)

np (ax)

G(ab)
np (ax, bx)

×
[
(sm + i

√
x2 −m2)G(a)2

np ,np(ax, rx)− (sm− i
√

x2 −m2)G(a)2
np ,np+1(ax, rx)

]}
, (28)

where instead of the summation over j we have introduced the summation over n with

np = q(n + 1/2 + pα0)− 1/2. (29)

Here and in what follows, for the functions fν(z) = Iν(z), Kν(z) we use the notation

f (u)np (z) = δ f z fnp+1(z) + λunu(i
√

z2 −m2
u + smu) fnp(z), (30)
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with u = a, b, and the functions in the right-hand side of (28) are defined by

G(u)
np ,ν(x, y) = K(u)

np (x)Iν(y)− (−1)ν−np I(u)np (x)Kν(y),

G(ab)
np (x, y) = K(a)

np (x)I(b)np (y)− I(a)
np (x)K(b)

np (y). (31)

Similar to the case of the charge and current densities, discussed in [59], it can be
shown that the expression (28) is valid in the presence of bound states as well. Under the

replacements λu → −λu, s → −s we have f (u)np (z) →
[

f (u)np (z)
]∗

and the last term in (28)
changes the sign.

The term 〈ψ̄ψ〉a in (28) does not depend on b. By using the asymptotic formulas
for the modified Bessel functions (see, for example, [92]), it can be seen that in the limit
b→ ∞ the last term in (28) behaves as e−2mb for a massive field and like (a/b)q(1−2|α0|)+1

for a massless field. From here it follows that 〈ψ̄ψ〉a = limb→∞〈ψ̄ψ〉 and the contribution
〈ψ̄ψ〉a presents the FC in the region a 6 r < ∞ of (2+1)-dimensional conical spacetime
for a fermionic field obeying the boundary condition (7) at r = a. Hence, the last term
in (28) is interpreted as the contribution induced by the second boundary at r = b when
we add it to the conical geometry with a single edge at r = a. In order to further extract the
edge-induced contribution in 〈ψ̄ψ〉a we use the relation

g2
β j ,ν

(z, y)

J(a)2
β j

(z) + Y(a)2
β j

(z)
= J2

ν(y)− ∑
l=1,2

J(a)
β j

(z)H(l)2
ν (y)

2H(la)
β j

(z)
, (32)

where ν = β j, β j + εj. This relation is easily obtained by taking into account that J(a)2
β j

(z) +

Y(a)2
β j

(z) = H(1a)
β j

(z)H(2a)
β j

(z). Applying (32) for separate terms in (27), we can see that the
part in the FC coming from the first term in the right-hand side of (32), denoted here by
〈ψ̄ψ〉0, does not depend on a and is presented as

〈ψ̄ψ〉0 = − qsm
4π ∑

j

∫ ∞

0
dx x

J2
β j
(xr) + J2

β j+εj
(xr)

√
x2 + m2

. (33)

This part corresponds to the FC in a boundary-free conical space and has been in-
vestigated in [74] for the case s = 1. The corresponding renormalized value is given by
the expression

〈ψ̄ψ〉0,ren = − sm
2πr

{ [q/2]

∑
l=1

(−1)l cot(πl/q)
e2mr sin(πl/q)

cos(2πlα0)

+
q
π ∑

δ=±1
cos[qπ(1/2 + δα0)]

∫ ∞

0
dy

tanh y
e2mr cosh y

sinh[q(1− 2δα0)y]
cosh(2qy)− cos(qπ)

}
, (34)

where [q/2] is the integer part of q/2. Note that for points away from the edges of the
conical ring the boundary-induced contribution in the FC is finite and the renormalization
is required for the boundary-free part only.

The contribution to the FC 〈ψ̄ψ〉a coming from the last term in (32) is induced by
the edge at r = a in the region a 6 r < ∞. That contribution is further transformed by
rotating the integration contour over z by the angle π/2 for the terms with the Hankel
functions H(1)

β j
(zr/a), H(1)

β j+εj
(zr/a), and by the angle−π/2 for the terms with the functions

H(2)
β j

(zr/a), H(2)
β j+εj

(zr/a). The parts of the integrals over the intervals [0, ima] and [0,−ima]
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cancel each other. Introducing in the remaining integrals the modified Bessel functions the
FC 〈ψ̄ψ〉a is presented in the form

〈ψ̄ψ〉a = 〈ψ̄ψ〉0,ren +
q

2π2

∞

∑
n=0

∑
p=±1

∫ ∞

m
dx

x√
x2 −m2

Re





I(a)
np (ax)

K(a)
np (ax)

×
[(

sm + i
√

x2 −m2
)

K2
np(rx)−

(
sm− i

√
x2 −m2

)
K2

np+1(rx)
]}

, (35)

where np is defined by (29). It can be seen that in the special case s = 1, λa = 1 this
expression coincides with the result from [74]. The condensate given by (35) changes
the sign under the replacement (s, λa) → (−s,−λa). Combining this property with the
corresponding behaviour of the last term in (28), we conclude that the FC 〈ψ̄ψ〉 in the
region a 6 r 6 b changes the sign under the transformation

(s, λa, λb)→ (−s,−λa,−λb). (36)

For a massless field the FC in the boundary-free geometry vanishes and the single
edge induced contribution is simplified to (see also [74] for the boundary condition with
λa = 1)

〈ψ̄ψ〉a = −
λaq

2π2a2

∞

∑
n=0

∑
p=±1

∫ ∞

0
dx

K2
np(xr/a) + K2

np+1(xr/a)

K2
np+1(x) + K2

np(x)
. (37)

In this special case the total FC on a conical ring takes the form

〈ψ̄ψ〉 = 〈ψ̄ψ〉a −
q

2π2

∞

∑
n=0

∑
p=±1

∫ ∞

0
dx x Im


K(b)

np (bx)

K(a)
np (ax)

×
G(a)2

np ,np(ax, rx) + G(a)2
np ,np+1(ax, rx)

G(ab)
np (ax, bx)


, (38)

where now

f (u)np (z) = δ f z fnp+1(z) + iλunuz fnp(z). (39)

Of course, for a massless field the FC does not depend on the parameter s. The zero
FC for a massless field, realizing one of the irreducible representations of the Clifford
algebra and propagating on a conical space without boundary, is related to the time-
reversal (T-)symmetry of the model. The presence of the edges gives rise to nonzero FC
and, hence, breaks the T-symmetry. This mechanism of T-symmetry breaking for planar
fermionic systems have been discussed in [83]. The symmetry breaking was interpreted
semiclassically in terms of the phases accumulated by the waves travelling along closed
geodesics inside a bounded region and reflected from the boundary.

In the representation (28) for the FC on a conical ring with edges r = a and r = b, the
part corresponding to a cut cone with a 6 r < ∞ is explicitly separated. An alternative
representation, where the part corresponding to a cone with finite radius b is extracted, is
obtained from (28) using the identity

I(a)
np (ax)

K(a)
np (ax)

K2
ν(y) +

K(b)
np (bx)

K(a)
np (ax)

G(a)2
np ,ν(ax, y)

G(ab)
np (ax, bx)

=
K(b)

np (bx)

I(b)np (bx)
I2
ν(y) +

I(a)
np (ax)

I(b)np (bx)

G(b)2
np ,ν(bx, y)

G(ab)
np (ax, bx)

, (40)
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with ν = np, np + 1. This identity is directly obtained by taking into account the defini-
tions (31). Separating the contributions coming from the first term in the right-hand side,
the FC in the region a 6 r 6 b is presented in the form

〈ψ̄ψ〉 = 〈ψ̄ψ〉b +
q

2π2

∞

∑
n=0

∑
p=±1

∫ ∞

m
dx

x√
x2 −m2

Re





I(a)
np (ax)/I(b)np (bx)

G(ab)
np (ax, bx)

×
[(

sm + i
√

x2 −m2
)

G(b)2
np ,np(bx, rx)−

(
sm− i

√
x2 −m2

)
G(b)2

np ,np+1(bx, rx)
]}

,(41)

where

〈ψ̄ψ〉b = 〈ψ̄ψ〉0,ren +
q

2π2

∞

∑
n=0

∑
p=±1

∫ ∞

m
dx

x√
x2 −m2

Re





K(b)
np (bx)

I(b)np (bx)

×
[
(sm + i

√
x2 −m2)I2

np(rx)− (sm− i
√

x2 −m2)I2
np+1(rx)

]}
. (42)

In the limit a → 0 and for |α0| < 1/2 the second term in the right-hand side of (41)
tends to zero as aq(1−2|α0|) whereas the first term does not depend on a. This allows to
interpret the part 〈ψ̄ψ〉b as the FC on a cone 0 6 r 6 b for a field obeying the boundary
condition (7) on a single circular boundary at r = b. With this interpretation, the last term
in (41) corresponds to the contribution when we additionally add the boundary at r = a
with the respective boundary condition from (7). In the special case s = 1, λb = 1 the
FC (42) coincides with the result derived in [74].

For a massless field, from (41) we get the following alternative representation for
the FC:

〈ψ̄ψ〉 = 〈ψ̄ψ〉b −
q

2π2

∞

∑
n=0

∑
p=±1

∫ ∞

m
dx x Im


 I(a)

np (ax)

I(b)np (bx)

×
G(b)2

np ,np(bx, rx) + G(b)2
np ,np+1(bx, rx)

G(ab)
np (ax, bx)


, (43)

with the single edge contribution

〈ψ̄ψ〉b = − λbq
2π2b2

∞

∑
n=0

∑
p=±1

∫ ∞

0
dx

I2
np(xr/b) + I2

np+1(xr/b)

I2
np(x) + I2

np+1(x)
. (44)

The latter is negative for the boundary condition with λb = 1 and positive for the
condition with λb = −1.

The FC in (38) diverges on the edges r = a, b. The divergence at r = a comes from the
single boundary part 〈ψ̄ψ〉a in the representation (28) and the divergence on the edge r = b
comes from the term 〈ψ̄ψ〉b in (41). In order to find the leading term in the asymptotic
expansion over the distance from the edge at r = u, u = a, b, we note that for |r/u− 1| � 1
the dominant contribution in the edge-induced parts 〈ψ̄ψ〉u (the last terms in (35) and (42))
come from large values of x and n. By using the uniform asymptotic expansions for the
modified Bessel functions, to the leading order we get

〈ψ̄ψ〉 ≈ − λu

8π(r− u)2 . (45)

In deriving this result we have additionally assumed that m|r − u| � 1. Near the
edges the leading term does not depend on the mass, on the magnetic flux and on the angle
deficit of the conical geometry. It is of interest to note that the vacuum expectation values
of the charge and current densities are finite on the ring edges [59].



Universe 2021, 7, 73 11 of 20

In Figure 2 we display the FC for a massless fermionic field on a conical ring as
a function of the radial coordinate. The graphs are plotted for b/a = 8, q = 1.5 and
α0 = 1/4. The curves I and II correspond to the boundary conditions on the edges
with (λa, λb) = (1, 1) and (λa, λb) = (1,−1), respectively. The graphs for the remaining
combinations of the set (λa, λb) are obtained by taking into account the property that for
a massless field the FC changes the sign under the replacement (λa, λb) → (−λa,−λb).
In the case I the FC is negative everywhere. For the case II the condensate is negative near
the edge r = a and positive near r = b. This behavior is in accordance with the asymptotic
estimate (45).

I

II

1 2 3 4 5 6 7 8

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

r/a

a
2
〈ψ

ψ
〉

Figure 2. The radial dependence of the FC for a massless field on a conical ring with the parameters
b/a = 8, q = 1.5, α0 = 1/4. The graphs I and II correspond to the sets (λa, λb) = (1, 1) and
(λa, λb) = (1,−1), respectively.

The dependence of the FC on the parameter α0 is depicted in Figure 3 for a massless
field and for the parameters b/a = 8 and q = 1.5. The full and dashed curves correspond
to r/a = 3 and r/a = 5. As in Figure 2, the graphs I and II are for the sets (λa, λb) = (1, 1)
and (λa, λb) = (1,−1), respectively. The FC is continuous at half-integer values of the
ratio of the magnetic flux to the flux quantum. The corresponding derivative for the case
(λa, λb) = (1, 1) is continuous as well. For the boundary conditions with (λa, λb) = (1,−1)
the derivative of the FC with respect to the magnetic flux is discontinuous for half-integer
values of the ratio of the magnetic flux to the flux quantum.

I

I

II

II

-0.4 -0.2 0.0 0.2 0.4

-1.0

-0.5

0.0

0.5

α0

1
0
2
a
2
〈ψ

ψ
〉

Figure 3. The fermion condensate (FC) versus the parameter α0 for a massless field. The graphs are
plotted for b/a = 8, q = 1.5, r/a = 3 (full curves) and r/a = 5 (dashed curves).
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Figure 4 displays the FC as a function of the parameter q, determining the planar angle
deficit for conical geometry. The graphs are plotted for a massless field and for the values
of the parameters b/a = 8, α0 = 1/4, r/a = 3 (full curves) and r/a = 5 (dashed curves). As
before, the curves I and II correspond to (λa, λb) = (1, 1) and (λa, λb) = (1,−1), respectively.

I

I

II

II

1 2 3 4 5 6 7

-1.0

-0.5

0.0

0.5

q

1
0
2
a
2
〈ψ

ψ
〉

Figure 4. The dependence of the FC on the planar angle deficit of the conical space for α0 = 1/4. The
values of the remaining parameters are the same as those for Figure 3.

All the graphs above were plotted for a massless field. In order to see the effects
of finite mass, in Figure 5 we depicted the dependence of the FC on the dimensionless
parameter ma for s = 1, b/a = 8, q = 1.5, r/a = 2 and α0 = 1/4. The curves I, II, III,
IV correspond to the sets of discrete parameters (λa, λb) = (1, 1), (1,−1), (−1, 1) and
(−1,−1), respectively. The graphs for s = −1 are obtained from those in Figure 5 by taking
into account that the FC changes the sign under the transformation (36). As seen, the
dependence on the mass, in general, is not monotonic. Of course, as we could expect the
FC tends to zero for large values of the mass.

I

II

III

IV

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

-4

-2

0

2

4

6

ma

1
0
2
a
2
〈ψ

ψ
〉

Figure 5. The FC as a function of the mass for s = 1 and for fixed values b/a = 8, q = 1.5, r/a = 2,
α0 = 1/4. The separate graphs correspond to different combinations of the boundary conditions on
the ring edges.

In the discussion above we have considered the simplest configuration of external
gauge field which can be interpreted in terms of the magnetic flux threading the conical ring.
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The magnetic field is zero on the ring, where the fermion field is localized, and its influ-
ence is purely topological. New interesting effects in (2+1)-dimensional fermionic models
appear in the presence of magnetic fields directly interacting with fermions. In particular,
the formation of the FC and chiral symmetry breaking have been studied extensively in the
literature (for a recent review see [93]). These investigations have been done within the
framework of models with four-fermion and/or gauge interactions. They have demon-
strated that magnetic fields serve as a catalyst of chiral symmetry breaking and the latter
occurs even in the limit of weak gauge couplings. In some models the FC is related to
the gauge field condensate 〈FµνFµν〉. An example is the relation 〈ψ̄ψ〉 ∼ −〈FµνFµν〉/mψ

(Fµν is the gluon field strength tensor and mψ is the mass of the ψ-quark) between the
quark and gluon condensates in quantum chromodynamics, valid in the heavy quark
limit [94]. This relation gives the leading order term in the expansion over 1/mψ. The
gauge field condensate can also be formed for abelian gauge fields (see, for example, [95]
for the formation of photon condensate in braneworld models on the AdS bulk).

As it has been mentioned before, in the model under consideration with boundary
conditions (7) for the eigenvalues of the radial quantum number one has γ2 + m2 > 0 and
the vacuum state is stable. However, the inclusion of fermion interactions may lead to
instabilities, as a result of which phase transitions take place. The FC appears as an order
parameter in those transitions. In particular, the phase transitions, the chiral symmetry
breaking and dynamical mass generation within the framework of (2+1)-dimensional
Nambu–Jona-Lasinio (NJL) (or Gross-Neveu)-type models with four-fermion interactions
have been previously discussed in the literature (see, for example, [93,96–102] and the
references [103–105] for applications in graphene). The influence of additional boundary
conditions on the fermionic field, induced by the presence of boundaries or by compactifi-
cation of spatial dimensions, was investigated as well (see, for instance, [41,43,106–110] and
references therein). In particular, it has been shown that those conditions may either reduce
or enlarge the chiral breaking region. In some cases the compactification may exclude the
possibility for the dynamical symmetry breaking.

4. Fermion Condensate in P- and T-Symmetric Models

For a fermion field ψ(x) in two spatial dimensions, realizing one of the irreducible
representations of the Clifford algebra, the term mψ̄ψ in the corresponding Lagrangian
density is not invariant with respect to the parity (P) and time-reversal (T) transformations.
The P- and T-symmetries can be restored considering models involving two fields ψ(+1)
and ψ(−1) realizing inequivalent irreducible representations and having the same mass.
The corresponding Lagrangian density is given by L = ∑s=±1 L(s) with the separate terms
from (3). We assume that the fields obey the boundary conditions (5) on the ring edges.
The total FC is presented in two equivalent forms, ∑s=±1〈ψ̄(s)ψ(s)〉 and ∑s=±1〈ψ̄′(s)ψ′(s)〉.
An equivalent representation of the model is obtained combining the two-component fields
in a single 4-component spinor Ψ = (ψ(+1), ψ(−1))

T with the Lagrangian density

L = Ψ̄(iγµ

(4)Dµ −m)Ψ, (46)

where the 4× 4 Dirac matrices are given by γ
µ

(4) = I ⊗ γµ for µ = 0, 1, and γ2
(4) = σ3 ⊗ γ2

with σ3 being the Pauli matrix. For the corresponding FC one has the standard expression
〈Ψ̄(x)Ψ(x)〉. The boundary conditions on the edges r = a, b are rewritten as

(
1 + iΛrnµγ

µ

(4)

)
Ψ(x) = 0, (47)

with Λr = diag(λ(+1)
r , λ

(−1)
r ). Alternatively, we can introduce the 4-component spinor

Ψ′ = (ψ′(+1), ψ′(−1))
T and the set of gamma matrices γ

′µ
(4) = σ3 ⊗ γµ. For the corresponding

Lagrangian density one gets L = Ψ̄′(iγ′µ
(4)Dµ −m)Ψ′ and for the FC 〈Ψ̄′(x)Ψ′(x)〉. Now
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the boundary conditions take the form
(

1 + iΛrnµγ
′µ
(4)

)
Ψ′(x) = 0. The latter has the same

form as (47), though with different representation of the gamma matrices.
Note that by adding to the set of the gamma matrices γ

µ

(4), µ = 0, 1, 2, the Dirac

matrix γ3
(4) we get the set γ

µ

(4), µ = 0, 1, 2, 3, that obeys the Clifford algebra in (3+1)-

dimensional spacetime. Now we can construct the chiral γ5
(4) = i ∏3

µ=0 γ
µ

(4) matrix which

anticommutes with the γ
µ

(4), µ = 0, 1, 2, 3, matrices and realizes the chiral transformation

Ψch(x)→ eiχchγ5
(4)Ψ(x) with a phase χch. For a massless field the Lagrangian density (46)

is invariant under the chiral transformation but the boundary condition (47) is not. In the
literature bag models for hadrons have been considered with boundary conditions invariant
under the chiral transformation (chiral bag models, for reviews see [111–113]). In those
models the chiral symmetry is restored by introducing a chiral field that is coupled with
the quarks at the bag surface. The chiral field can be expressed in terms of the isovector
pion field. In chiral bag models the boundary condition on the fermionic field at the bag

surface has the form
(

eiwγ5
(4) + inµγ

µ

(4)

)
Ψ(x) = 0, where the coefficient w in the exponent

is expressed through the pion field on the bag surface.
Let us consider different combinations of the boundary conditions for the fields ψ(+1)

and ψ(−1). First we assume that λ
(+1)
u = λ

(−1)
u , u = a, b. For the coefficients in the boundary

conditions for the fields ψ′(+1) and ψ′(−1) one gets λ
(−1)′
u = −λ

(+1)′
u . From here we conclude

that the condensates 〈ψ̄(+1)ψ(+1)〉 and 〈ψ̄(−1)ψ(−1)〉 are obtained from the formulas in the

previous sections taking s = 1, λu = λ
(+1)
u and s = −1, λu = −λ

(+1)
u , respectively. If the

parameter χ in the condition (8) and the charges e are the same for the fields ψ(+1) and
ψ(−1), then the parameter α is the same as well. Now, recalling that the FC discussed in
the previous section, changes the sign under the replacement (s, λu)→ (−s,−λu), we see
that the total fermionic condensate vanishes. This means that in the model at hand with
two fields and with the parameters in the boundary conditions λ

(+1)
u = λ

(−1)
u the Casimir

contributions induced by the edges do not break the parity and time-reversal symmetries.
In the second case with λ

(+1)
u = −λ

(−1)
u , the fields ψ(+1) and ψ(−1) obey different boundary

conditions, whereas for the fields ψ′(+1) and ψ′(−1) the boundary conditions are the same.
In this case the total FC is nonzero and the parity and time-reversal symmetries are broken
by the boundary conditions. Note that, the nonzero FC may appear in the first case
as well if the masses or the phases χ for separate fields are different. Hence, the edge-
induced effects provide a mechanism for time-reversal symmetry breaking in the absence
of magnetic fields.

Among the interesting condensed matter realizations of fermionic models in (2+1)-
dimensional spacetime is graphene. For a given spin degree of freedom, the effective
description of the long-wavelength properties of the electronic subsystem is formulated in
terms of 4-component fermionic field

Ψ = (ψ+,A, ψ+,B, ψ−,A, ψ−,B)
T . (48)

Two 2-component spinors ψ+ = (ψ+,AS, ψ+,BS) and ψ− = (ψ−,AS, ψ−,BS) correspond
to two inequivalent points K+ and K− at the corners of the hexagonal Brillouin zone for
the graphene lattice. The components ψ±,A and ψ±,B present the amplitude of the electron
wave function on the triangular sublattices A and B. The Lagrangian density for the field
Ψ is given as (in standard units)

Lg = Ψ̄[ih̄γ0
(4)∂t + ih̄vF ∑

l=1,2
γl
(4)(∇l + ieAl/h̄c)− ∆]Ψ, (49)

where c is the speed of light, vF ≈ 7.9× 107 cm/s is the Fermi velocity, and ∆ is the energy
gap in the spectrum. The spatial components of the covariant derivative are expressed as
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Dl = ∇l + ieAl/h̄c with e being the electron charge. Various mechanisms for the generation
of the gap, with the range 1 meV . ∆ . 1 eV, have been considered in the literature. For
the corresponding Dirac mass and the related Compton wavelength one has m = ∆/v2

F
and aC = h̄vF/∆. The characteristic energy scale in graphene made structures is given by
h̄vF/a0 ≈ 2.51 eV, where a0 is the inter-atomic distance for the graphene lattice. The fields
ψ+ and ψ− correspond to the fields ψ(+1) and ψ(−1) in our consideration above and the
Lagrangian density (49) is the analog of (46). Hence, the parameter s corresponds to the
valley-indices + and − in graphene physics.

For graphitic cones the allowed values of the opening angle are given by
φ0 = 2π(1− nc/6), where nc = 1, 2, . . . , 5. The transformation properties of the spinor
fields under the rotation by the angle φ0 about the cone axis are studied in [63,65,67,70].
For odd values of nc the condition that relates the spinors with the arguments φ + φ0 and φ
mixes the valley indices by the matrix e−iπncτ2/2 with the Pauli matrix τ2 acting on those
indices. One can diagonalize the corresponding quasiperiodicity condition by a unitary
transformation. For graphitic cones with even nc the components with different values of
the valley-index are not mixed by the quasiperiodicity condition. The latter corresponds
to (8) with the inequivalent values χ = ±1/3 for the parameter χ. In accordance with
the consideration given above, if the boundary conditions and the masses for the fields
corresponding to different valleys are the same, the contributions to the FC coming from
those fields cancel each other and the total FC vanishes. However, some mechanisms for
the gap generation in the spectrum break the valley symmetry (an example is the chemical
doping) and the corresponding Dirac masses for the fields ψ+ and ψ− differ. In this case
one has no cancellation and a nonzero total FC is formed. As it has been mentioned above,
the nonzero FC is also generated by imposing different boundary conditions on the edges of
the ring for the fields corresponding to different valleys. In these cases the expression of the
FC for a given spin degree of freedom is obtained by combining the formulas given above
for separate contributions coming from different valleys. In the corresponding expressions
it is convenient to introduce the Compton wavelengths aC+ and aC− instead of the Dirac
masses m+ and m− through the replacements m±u→ u/aC± for u = a, b, r.

The boundary conditions for fermions in the effective description of graphene struc-
tures with edges (graphene nanoribbons) depend on the atomic terminations. For special
cases of zigzag and armchair edges those conditions have been discussed in [85] (for a
generalization see [89]). The equivalence between the boundary conditions considered
in [83,85] has been discussed in [89]. The boundary conditions for more general types of the
atomic terminations in graphene sheets were studied in [84,86,89]. The general boundary
conditions contain four parameters.

5. Conclusions

The FC is an important characteristic of fermionic fields that plays an important role
in discussions of chiral symmetry breaking and dynamical generation of mass. It appears
as an order parameter for the confinement-deconfinement phase transitions. In the present
paper we have investigated the FC for a (2+1)-dimensional fermionic field localized on a
conical ring with a general value of the planar angle deficit. The consideration is presented
for both inequivalent irreducible representations of the Clifford algebra. The boundary
conditions on the edges of the ring are taken in the form (7) with discrete parameters λa
and λb. As a special case they include the boundary condition used in MIT bag model
of hadrons for confinement of quarks. The mode-sum for the FC contains summation
over the eigenvalues of the radial quantum number γ. The latter are determined from the
boundary conditions on the ring edges and are roots of the transcendental equation (16).
Depending on the values of the discrete parameters (s, λa, λb), one can have modes with
purely imaginary values of γ. For those modes, corresponding to bound states, we have
γ2 + m2 > 0. This shows that for boundary conditions under consideration the fermionic
vacuum state is always stable.
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For an equivalent representation of the FC, we have applied the generalized Abel-
Plana-type formula (23) to the series over the eigenvalues of γ. That allowed to extract
explicitly the part in the FC corresponding to the region a 6 r < ∞ of a conical space with
a single adge and to present the part induced by the second edge in the form of the integral
that is well adapted for numerical evaluations (last term in (28)). The first contribution,
corresponding to the conical region a 6 r < ∞ (the second edge at r = b is absent), is
further decomposed in the form of the sum of the boundary-free and edge-induced terms
(formula (35)). An alternative representation of the FC on a conical ring, given by (41), is
obtained by using the identity (40) for the modified Bessel functions. In that representation
the part in the FC is extracted which corresponds to a finite radius cone (with the radius b)
and the last term in (41) is induced by the second edge at r = a, added to that geometry.
For a massless field the boundary-free contribution in the FC vanishes and the nonzero
FC is entirely due to the presence of boundaries (due to the Casimir effect). In this case
the expressions for the edge-induced contributions to the FC are simplified to (38) and (43)
with the single-edge geometry parts (37) and (44). The latter are positive for the boundary
condition with λu < 0 and negative for λu > 0.

All the separate contributions to the FC on the conical ring are even periodic functions
of the magnetic flux, enclosed by the ring, with the period equal to the flux quantum.
At small distances from the edge at r = u, u = a, b, the leading term in the asymptotic
expansion over the distance is given by the simple expression (45). The leading term
does not depend on the mass and on the magnetic flux and is positive (negative) for the
boundary condition with λu < 0 (λu > 0). For a massless field the FC in the boundary-free
conical geometry vanishes and the nonzero contributions are purely edge-induced effects.
This provides a mechanism for T-symmetry breaking in the absence of magnetic fields.

For a fermionic field realizing one of the irreducible representations of the Clifford
algebra, the mass term in the Lagrangian density is not invariant under the parity and
time-reversal transformations. Invariant fermionic models are constructed combining two
fields corresponding to two inequivalent irreducible representations. In those models, the
total FC is obtained by summing the contributions coming from the separate fields. The
latter are obtained based on the results presented in Section 3. If the parameters (χ, λu) and
the masses for the separate fields are the same, then the corresponding contributions cancel
each other and the total FC is zero. In this case the Casimir-type contributions do not break
the parity and time-reversal symmetries of the model. If at least one of the parameters
(χ, λu, m) is different for the fields in the combined Lagrangian, the total FC is nonzero
and the symmetries are broken. The results obtained in the paper can be applied for the
investigation of the FC in graphitic cones with circular edges. The opening angle of the
latter can be used as an additional parameter to control the electronic properties. In the
long-wavelength approximation these properties are well described by the Dirac model
with appropriate periodicity conditions with respect to the rotations around the cone axis.
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