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Abstract: M dwarfs are main sequence stars and they exist in all stages of galaxy evolution. As the
living fossils of cosmic evolution, the study of M dwarfs is of great significance to the understanding
of stars and the stellar populations of the Milky Way. Previously, M dwarf research was limited due
to insufficient spectroscopic spectra. Recently, the data volume of M dwarfs was greatly increased
with the launch of large sky survey telescopes such as Sloan Digital Sky Survey and Large Sky Area
Multi-Object Fiber Spectroscopy Telescope. However, the spectra of M dwarfs mainly concentrate in
the subtypes of M0–M4, and the number of M5–M9 is still relatively limited. With the continuous
development of machine learning, the generative model was improved and provides methods
to solve the shortage of specified training samples. In this paper, the Adversarial AutoEncoder
is proposed and implemented to solve this problem. Adversarial AutoEncoder is a probabilistic
AutoEncoder that uses the Generative Adversarial Nets to generate data by matching the posterior
of the hidden code vector of the original data extracted by the AutoEncoder with a prior distribution.
Matching the posterior to the prior ensures each part of prior space generated results in meaningful
data. To verify the quality of the generated spectra data, we performed qualitative and quantitative
verification. The experimental results indicate the generation spectra data enhance the measured
spectra data and have scientific applicability.

Keywords: M-type dwarfs; adversarial AutoEncoder; spectral data generation; sky survey

1. Introduction

The traditional method to address spectral classification of stars is to combine their
photometric and spectroscopic data together. The most commonly used Harvard stellar
spectral classification system was proposed by the Harvard University Observatory in the
late 19th century [1]. In accordance with the order of the surface temperature of the star,
the system divides the stellar spectra into O, B, A, F, G, K, M, and other types [2].

M dwarfs are the most common stars in the Galaxy [3] and are characterized by low
brightness, small diameter and mass, and a surface temperature around or lower than
3500 K. With the nuclear fusion speed inside the M dwarfs being slow, M dwarfs tend
to have a long life span, and they exist in all stages of the evolution of the Galaxy [4]. A
huge number of spectra are obtained with the emergence of sky survey telescopes, such as
Sloan Digital Sky Survey (SDSS) [5,6] and Large Sky Area Multi-Object Fiber Spectroscopy
Telescope (LAMOST) [7,8].

However, the distribution of the subtypes is unbalanced. In the SDSS-DR15, as shown
in Figure 1, the spectra of M0–M4 are relatively greater in number, whereas that of M5–M9
is limited. The generation of specific subtype spectra of M dwarfs is helpful to solve the
problem of unbalanced distribution and provide more reliable samples for research. For
example, in the SDSS dataset, the number of M5–M9 is very low. When the data are
limited, it is difficult for astronomers to analyze them using machine learning or deep
learning methods, such as classification, clustering, dimensionality reduction, etc. If we
can effectively expand the data, we can improve the M Dwarf dataset to better understand
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these stars. In this study, we select M-class stars with unbalanced distribution of subtypes
M0–M6 (signal-to-noise ratio > 5) to verify the effectiveness of our method.

Figure 1. Distribution of M0–M6 dwarfs with signal-to-noise ratio > 5 of Sloan Digital Sky Survey
(SDSS) 15.

With the development of machine learning and deep learning, generation models
were remarkably improved. An increasing number of methods are proposed to solve the
lack of data, and all kinds of data, especially the two-dimensional data from the real world,
were expanded effectively. AutoEncoder is a kind of neural network. After encoding and
decoding, it can obtain output similar to the input. The Variational AutoEncoder (VAE), a
model proposed by Kingma and Welling [9], combines variational Bayesians with neural
network and achieves good results with data generation. Generative Adversarial Nets
(GAN) is a model proposed by Goodfellow et al. [10] to solve the lack of data, especially for
the 2D data from the real world [10–14]. GAN consists of a discriminator and a generator.
The discriminator is designed to determine whether the input data are real or fake data
generated by the generator, and the task of the generator is to generate fake data that can
confuse the discriminator as much as possible. Through such a dynamic game process,
similar data are generated.

The Adversarial AutoEncoder (AAE) is a model proposed by Makhzani et al. [15]. The
AAE replaces the generator of the traditional generation model, GAN, with an AutoEncoder
that can better learn the feature of discrete data. At the same time, the discriminator is used
to correct the distribution after encoding. By doing this, the problem of traditional GAN
with the generation of discrete data is solved effectively. However, due to the restriction
of traditional GAN structure, the AAE also has problems, such as unstable training and
model collapse, and training a good AAE with a small amount of data is difficult.

For the quality of the generated spectrum, it is necessary to qualitatively test its
similarity with the original spectrum. Principal Component Analysis (PCA) [16] is a widely
used data dimensionality reduction algorithm that can extract features of high-dimensional
data. T-Distributed Stochastic Neighbor Embedding (t-SNE) is a visualization method for
high-dimensional data proposed by by Arjovsky et al. [17]. These two methods can visually
demonstrate the similarity between the observational spectra and the generated spectra.

Simultaneously, we use the generated spectrum to enhance the data of the classifier
to further quantitatively verify the value of the generated spectrum. Fully connected
neural network is a commonly used feature extraction method; through multilayer full
connection, the feature of the spectrum can be effectively extracted. Training the classifier
through two methods can visually show the performance improvement of the classifier
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after data expansion using the generated spectrum. The contribution of this paper could be
summarized as three-fold:

1. We used AAE to generate spectral data, and the model performed well with various
kinds of spectral data, providing new ideas for the generation of spectral data.

2. From a qualitative and quantitative perspective, we proved the high quality of the
generated spectra and the effectiveness and robustness of the AAE.

3. Our work provides a new direction for the combination of astronomy and ma-
chine learning.

2. Method

In this work, we propose to use an Adversarial AutoEncoder (AAE) to generate
spectral data. The model is composed of a generator and a discriminator; the generator is an
AutoEncoder composed of an encoder and a decoder, and the discriminator is implemented
by a GAN discriminant network. AAE does not directly train the network to generate
spectral data. Instead, the output of the encoder in the AutoEncoder is constrained to
conform to a preselected prior distribution by the game process between the discriminator
and the generator. The network parameters of autoencoder are continuously optimized to
make the output of the decoder as consistent as possible with the input of the AutoEncoder.
Finally, a decoder is obtained as the generator of spectral data, which can stably decode the
vector that conforms to a prior distribution into high-quality spectral data.

In this study, we use two fully connected neural networks to form the encoder and
decoder of the AutoEncoder, and the GAN discriminant network is constituted of a two-
layer, fully connected neural network. The model is shown in Figure 2. The training
process is divided into two stages: the reconstruction stage, which aims to obtain a decoder
that can stably reconstruct the encoding vector into high-quality spectral data, and the
regularization stage, which aims to constrain the encoding vector generated by the encoder
to an artificially selected prior distribution through GAN’s confrontation process.

Figure 2. Structure of the Adversarial AutoEncoder (AAE). AAE is composed of an autoencoder
and a discriminator. Green box part is autoencoder composed of an encoder and a decoder, and
yellow box part is a GAN composed of a discriminator and an autoencoder. Firstly, spectral data
are encoded and then decoded to generate reconstructed data similar to the input data. Secondly,
encoding vector of input spectral data and a randomly selected vector which conforms to the normal
distribution are used as false data and real data as input of the discriminator, respectively.

Formally, we denote the encoder as Q, P as the decoder and D as the generator of the
GAN. The input of the spectral data and the output of decoder are denoted as x and x̂ .The
encoding vectors generated by encoder are denoted as z and are constrained to a prior
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distribution p(z); in this paper, p(z) adopts standard normal distribution. The parameter
of our model is shown in Table 1:

Table 1. Parameters of AAE.

Encoder

Layer Input Shape Output Shape Activation Function

Input (20, 3522) (20, 1024) -
Linear (20, 1024) (20, 512) ReLU

BatchNorm1d (20, 512) (20, 512) -
Linear (20, 512) (20, 256) ReLU

BatchNorm1d (20, 256) (20, 256) -
Linear (20, 256) (20, 128) ReLU

BatchNorm1d (20, 128) (20, 128) -
Output (20, 128) (20, 32) -

Decoder

Layer Input Shape Output Shape Activation Function

Input (20, 32) (20, 128) -
Linear (20, 128) (20, 256) ReLU

BatchNorm1d (20, 256) (20, 256) -
Linear (20, 256) (20, 512) ReLU

BatchNorm1d (20, 512) (20, 512) -
Linear (20, 512) (20, 1024) ReLU

BatchNorm1d (20, 1024) (20, 1024) -
Output (20, 1024) (20, 3522) -

Discriminator

Layer Input Shape Output Shape Activation Function

Linear (20, 3522) (20, 128) ReLU
Linear (20, 128) (20, 1) Sigmoid

2.1. Reconstruction Stage

In the reconstruction stage, the encoder encodes the discrete spectral data x with
3522 dimensional features into a 32-dimensional code vector z, and then restores it to a
3522-dimensional reconstruction output x̂ through a symmetrical decoder. To ensure the
data reconstructed by the decoder are similar to the real data, the generated spectrum
and the original spectrum use binary cross entropy as the loss function to measure the
similarity between original and reconstructed data, as shown in Equation (1), and they also
use the gradient descent algorithm to minimize the loss and back-propagation to update
the parameters.

loss =
1
n

n

∑
i=1
||x− x̂||2 (1)

2.2. Regularization Stage

In the regularization stage, we conduct confrontation training similar to GAN, where
the decoder of the AutoEncoder is used as the generator and the GAN discriminant network
is used as the discriminator.

First, a standard normal distribution code vector with a size of 32 is randomly gener-
ated as the positive sample, and the code vector generated by the encoder is used as the
negative sample. Then, the discriminator extracts the features of the input encoding vector
and uses the Sigmoid activation function in the last layer of the discriminator to normalize
the final output within the range of [0, 1]. The output of the discriminator represents the
probability of the input being true, which determines whether the input’s distribution is
closer to the real spectral data coding or the standard normal vector distribution. There-
fore, the parameter optimization of the discriminator is carried out according to the idea
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of zero-sum game, as shown in Equation (2), which represents the probability that the
discriminator successfully recognizes the real data as true and the generated data as fake.

maxD = Ex∼p(x)[log(D(x))] + Ez∼p(z)[log(1− D(G(z)))] (2)

When training the generator, we improve the generator’s ability to confuse the dis-
criminator by optimizing the parameters of the encoder so as to minimize the probability
of the discriminator successfully discriminating the generated data. As such, the encoding
vector z generated by the encoder conforms to the prior distribution p(z) as much as
possible, as shown in Equation (3), which represents the probability that the generated data
are recognized as fake by the discriminator.

minG = Ez∼p(x)[log(1− D(G(z)))] (3)

In the process of model training, the ability of decoder to reconstruct the code vector z
into spectrum continuously improves, and the code vector distribution obtained by the
encoder gradually approaches the standard normal distribution simultaneously. Through
this model, we obtain a decoder as the spectrum generator, which can reconstruct any vector
conforming to the standard normal distribution into a high-quality target spectrum. When
generating the spectrum, we first randomly generate a set of vector groups conforming to
the standard normal distribution as the encoding vector, and then directly use the trained
decoder as the generator to generate the spectrum. The detailed optimization procedures
are summarized in Algorithm 1.

Algorithm 1 Adversarial AutoEncoder Training Strategy.

Input: Target spectral data Xt;
Output: Spectrum X̂t generated by AAE ;

1: for i ∈ [1, epochs] do
2: for each mini-batch xi ∈ Xt do

Reconstruction phase:
3: Encoding xi to zi by Q;
4: Decoding zi to x̂i by P;
5: compute Reconstruction loss between xi and x̂i as Equation (1) and update the

encoder and decode;
Regularization phase:

6: Randomly choose vectors ẑi from a Gaussian distribution as true data
7: Generate vectors zi from xi as false data by Generator G (same as Encoder P)
8: Combine zi and ẑi as training data Z;
9: Discriminating Z and compute Regularization loss as Equations (2) and (3), then

update Discriminator D and Generator G;
10: end for
11: end for

Generate data:
12: Randomly choose vectors ẑi from a Gaussian distribution
13: Use Encoder Q as Generator transforms ẑi to Xt as generate data
14: return Xt

2.3. Visualization of Dimensionality Reduction

PCA and t-SNE convert high-dimensional data to low-dimensional data under the
premise of small information loss, which is conducive to visualization. The goal of t-SNE is
to map the data distribution of the high-dimensional space into the low-dimensional space
and take the difference of the probability distribution of the data in the high-dimensional
and low-dimensional space as a constraint condition. We define the KL divergence to
represent the difference between the two distributions; the smaller the KL divergence is,
the smaller the difference is:
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C = ∑ KL(Pi|Qi) = ∑
i

∑
j

pj,i log

(
pj,i

qj,i

)
(4)

pj|i =
exp

(
−
∥∥xi − xj

∥∥2/
(
2σ2

i
))

∑k 6=i exp
(
−‖xi − xk‖2/

(
2σ2

i
)) (5)

qj|i =
exp

(
−
∥∥yi − yj

∥∥2
)

∑k 6=i exp
(
−‖yi − yk‖2

) (6)

where xi and xj represent two different spectral data, yi and yj correspond to xi and xj in
low-dimensional space, σi represents the variance of the Gaussian distribution constructed
with xi as the center, pj|i represents the probability that xj is the neighborhood of xi, and
qj|i represents the conditional probability that yj is the domain of yi. The gradient descent
method is used to solve the optimization problem and find the minimum value of KL
divergence. During iterative optimization, the data distribution in the low-dimensional
space continuously gets closer to the data distribution in the high-dimensional space.
Finally, the resulting low-dimensional space data can be considered the mapping of high-
dimensional data in low dimensions.

3. Experiment
3.1. Spectra Acquisition and Preprocessing

A total of 25,892 M-type dwarf spectra from SDSS DR15 were obtained through
Casjob 1. The subtype ranges from M0 to M6. The total number of M6 spectra we choose to
generate is 127, accounting for 0.49% of the total, as shown in Table 2.

Table 2. Number of the experimental spectra.

Type 5–10 (SNR) 10–15 (SNR) Up15 (SNR)

M0 2850 1503 2023
M1 1919 1025 1134
M2 3300 1745 1343
M3 3105 1055 1170
M4 1658 779 603
M5 334 137 82
M6 86 21 20

Then, we normalize the spectra using the following steps:

1. Discard all the spectral data with a signal-to-noise ratio < 5.
2. The uniform wavelength range is 3800–9000 Å, and the sampling points for each

sample data is 3522.
3. Normalize each sampling point of the sample data, as shown in Equation (7). The

range is [0, 1].

Xi =
Xi − Xmin

Xmax − Xmin
(7)

After normalization of each spectrum, the spectra is used as the input to the AutoEn-
coder network.

3.2. Spectra Generation

The spectra generation uses AAE to accept the original spectra as input. In 500 iter-
ations of training, as shown in Figure 3, the loss of the autoencoder first experienced a
rapid decrease and then became stable, indicating that the autoencoder part of AAE can
successfully output reconstructed data that are similar to that of the input. In addition,
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although there are some fluctuations in the loss of the generator and the discriminator, it
is basically in a state of balance, indicating that the discriminator and the generator reach
equilibrium during the game process, and problems such as gradient disappearance did
not occur.

0 50 100 150 200 250 300 350 400 450 500

Epoch

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Losses Vary during Training

Loss of Discriminator

Loss of Generator

Loss of Autoencoder

Figure 3. Loss of generator, discriminator, and autoencoder during training: – – represents loss of
discriminator fluctuates in range of [1.2, 2.0], – - – - represents the loss of generator fluctuates in range
of [0.4, 1.0], —— represents loss of autoencoder fluctuates in range of [0.4, 0.8].

Simultaneously, the AAE gradually and steadily generates higher-quality spectral data,
as shown in Figures 4 and 5. With training of the model, the noise of the generated spectral
data gradually decreases, the characteristic peaks are more obvious, and the signal-to-noise
ratio is significantly improved. The generated spectrum and the measured spectrum are
very similar in multiple characteristic peaks, and the generator learned the feature of the
original spectral data.

Figure 4. Generated spectral data during training.
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Figure 5. Compare original spectral data with generated spectral data.

3.3. Qualitative Experiment

After training, a model trained against the AutoEncoder was obtained, and 400 M6
dwarf spectra (black) were generated for verification. Simultaneously, 127 measured M6
spectra (red) and 400 data of M0∼M5 dwarf were selected.

All the spectral data are reduced to two dimensions and projected by PCA, as shown
in Figure 6. The black area basically surrounds the red area and is clearly distinguished
from M0–M5 type dwarfs. Furthermore, a few outliers exist due to the influence of the
signal-to-noise ratio.

-25 -20 -15 -10 -5 0 5 10 15 20 25

-10

-5

0

5

10

15

20

25

30
PCA Result

Figure 6. Result of dimension reduction by PCA.

We use t-SNE to visualize the above data by dimensionality reduction, as shown in
Figure 7. Most of the black areas also coincide with the red areas. Although a small part of
the black area does not coincide with the red area, there are black areas near each red area,
which once again proves AAE’s ability to generate the simulation data.
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Figure 7. Visualization result of t-SNE dimension reduction.

3.4. Quantitative Experiment
3.4.1. Evaluation Protocol

To better evaluate the results of quantitative experiments, we propose an evaluation
protocol consisting of Precision (P), Recall (R), and F1-score (F). Precision quantifies
the number of positive class predictions that actually belong to the positive class; Recall
quantifies the number of positive class predictions made out of all positive examples in the
dataset, and F1-score provides a single score that balances both the concerns of Precision
and Recall in one number, as defined in (8).

P =
TP

TP + FP
R =

TP
TP + FN

F =
2TP

2TP + FP + FN
(8)

True Positive (TP) represents the number of correctly predicted positive samples; True
Negative (TN) represents the number of correctly predicted negative samples; False Posi-
tive (FP) represents the number of incorrectly predicted positive samples; False Negative
(FN) represents the number of incorrectly predicted negative samples, as shown below in
the Confusion Matrix in Figure 8.

Figure 8. Confusion Matrix.

3.4.2. Quantitative Experiment

To further quantitatively evaluate the quality of the spectrum generated by the AAE
model, we used fully connected neural networks as spectral classifiers for classification,
as shown in Table 3. We also chose all data from the M-type data set of M0–M6 with a
signal-to-noise ratio of >5 as train data (0.75) and test data (0.25).



Universe 2021, 7, 326 10 of 12

Table 3. Parameters of Classifer.

Classifier

Layer Input Shape Output Shape Activation Function

Input (1, 3522) (20, 1000) ReLU
Linear (1, 1000) (1, 200) ReLU
Linear (1, 200) (1, 50) ReLU
Output (1, 50) (1, 7) Softmax

Firstly, we use both the train and test data to train a classifier to verify the accuracy of
generated spectral data so as to verify whether generated data could represent the desired
class, as shown in Table 4. Then, we use the AAE model for data enhancement to complete
all the train spectral data to 3000 to verify the enhancement of generated data for the real
spectral data, as shown in Table 5.

Table 4. Accuracy of M0–M6 data generated by AAE.

Data Type
AAE

P R F

m0 1.000 1.000 1.000
m1 99.95 99.92 99.94
m2 99.91 99.95 99.93
m3 99.99 99.85 99.92
m4 97.63 99.85 98.73
m5 74.65 95.46 83.78
m6 96.73 67.69 79.64

macro avg 95.55 94.67 94.56
weighted avg 95.55 94.67 94.56

Table 5. Classification of M0–M6 subdwarfs with data augmentation.

Data Type
Ori AAE

P R F P R F

m0 97.91 98.23 98.07 98.07 98.01 98.04
m1 95.55 94.89 95.22 95.34 95.12 95.23
m2 96.64 96.16 96.40 96.85 96.16 96.50
m3 95.41 95.91 95.66 95.35 96.04 95.70
m4 95.06 94.81 94.94 94.80 94.55 94.68
m5 84.42 92.86 88.44 85.91 91.43 88.58
m6 87.50 65.62 75.00 77.42 75.00 76.19

macro avg 93.21 91.21 91.96 91.96 92.33 92.13
weighted avg 96.07 96.06 96.05 96.07 96.06 96.06

The quantitative experimental results of the AAE model can be analyzed. The AAE
model can generate target spectral data stably and with high quality, representing the target
class exactly. Data enhancement of the spectral data can not only improve the classification
effect of the model, but also remit the problem of imbalanced data distribution. In the
future, we will further explore the data-influencing factors on the spectral quality of the
AAE generation model.

4. Discussion

In this section, we will discuss the astronomical application and the potential for
further study of AAE. In case of a high cost of actual observation, AAE can generate
simulation spectra to improve the M Dwarf dataset to better understand these stars in a
simple way. It provides a reference method for the automatic searching of other rare and
special celestial objectives in the massive spectra. This method can simulate any type of
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spectrum and is an innovative research method, and we will extend AAE to other types
of spectra for further studies. Moreover, AAE is an extension of GAN, so it can refer to
other improvements related to GAN to improve the performance of AAE in spectral data
generation, such as Wasserstein GAN [18], Cycle GAN [19], and so on.

5. Conclusions

In this paper, we proposed using AAE to generate high-quality spectral data. To verify
the effectiveness of AAE, we designed quantitative and qualitative experiments on M-type
stars. The experimental results showed that the generated spectra can expand the original
spectra, and the expanded range does not exceed one subtype, which has strong practical
value and significance.
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