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Abstract: In this paper, we study anisotropic exact solutions in the homogeneous Bianchi I back-
ground geometry in a multifield theory. Specifically, we consider the Chiral–Quintom theory, which
is an extension of the Chiral theory, because at least one of the scalar fields can have negative energy
density. Moreover, the Quintom theory can be recovered when one of the free parameters of the
theory vanishes. We find that Kasner-like and anisotropic exponential solutions exist for specific
functional forms of the scalar field potential. Finally, Noether symmetry analysis is applied for the
classification of the theory according to the admitted symmetries. Conservation laws are determined,
while we show that the Kasner-like solution is the analytic solution for the given model.
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1. Introduction

Cosmic inflation describes the accelerated period in the early stage of cosmological
history [1–3]. Inflation has been considered a solution to long-standing problems about
the structure of the universe, such as the flatness problem and horizon problems. Indeed,
the inflationary mechanism surpasses the requirement for the specific initial conditions in
cosmological history [4,5]. On the other hand, recent cosmological observations indicate
that, at the present time, the universe is under a second accelerated phase, known as
late-time acceleration attributed to the so-called dark energy [6]. In the context of general
relativity, acceleration occurs when there is a matter source that has a negative equation of
state parameter and provides effective “repulsive” (anti-)gravitational force.

The introduction of scalar fields in gravitational theory gives a very simple mechanism
for the description of the acceleration phases of the universe. In the minimally coupled
scalar field theory, the antigravitating behavior occurs when the scalar field potential domi-
nates [7–14]. Furthermore, for the description of the late-time acceleration of the universe,
phantom scalar fields with negative energy density have been proposed [15–18]. For the
phantom fields, the equation of state parameter can cross the phantom divide line and take
values lower than minus one. However, in order to solve the various problems, such as the
appearance of ghosts, and to describe the general cosmological history, multiscalar field
models have been considered.

The Quintom model [19,20] is a well studied two-scalar field cosmological model,
where one of the fields is quintessence and the second field is a phantom field. The
novelty of the Quintom theory is that the effective equation of state parameter can cross the
phantom divide line more than once without the appearance of ghosts. Another multiscalar
field model of special interest is the Chiral model [21], which has been used to describe
a multifield inflation known as hyperbolic inflation [22,23]. The analytic solution for the
hyperbolic inflationary model was derived recently in [24]. The equation of state parameter
in the Chiral model has as a lower bound the cosmological constant limit. However, because
of quantum transitions in the early universe, it can surpass that limit, and the effective
equation of state parameter crosses the phantom divide line [25].
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Recently, a generalization of the Chiral model was proposed in [26], where the scalar
fields can have negative energy density. This cosmological model has similarities with the
Quintom theory. Indeed, the equation of state parameter can cross the phantom divide line
more than once without the appearance of ghosts. In addition, it was found that this specific
model reproduced the epoch for hyperbolic inflation [27]. Furthermore, the presence of the
spatial curvature was investigated in [28,29]. In particular, it was found that this specific
model solved the flatness problem.

Anisotropic and inhomogeneous exact solutions play an important role in the de-
scription of the very early universe before inflation, since they can describe the small
anisotropic inhomogeneities in the cosmic observations [30,31]. The cosmic “no-hair” con-
jecture states that the future state of an accelerated universe is an isotropic universe [32].
In [33], anisotropic spacetimes were used to explain the CMB polarization and its implica-
tions for CMB anomalies. On the other hand, some anisotropic dark energy models were
investigated in [34,35].

The first analytic result, which supported the cosmic “no-hair” conjecture was derived
in [36]. Specifically, it was found that the presence of a positive cosmological constant in
Bianchi anisotropic spacetimes provided expanding Bianchi spacetimes, which evolved to
expanding de Sitter universes, see also the discussion in [37]. In the context of Chiral theory,
anisotropic spacetimes were investigated in [38–40], while some other studies of scalar
fields in anisotropic background spaces were presented in [41–43] and references therein.

In [38], exact anisotropic solutions in Chiral theory were determined, and it was
found that there exist exact anisotropic solutions for Bianchi III or Kantowski–Sachs back-
ground geometry where the two scalar fields contribute to cosmological history. Moreover,
anisotropic Kasner-like solutions, which belong to the Bianchi I family of spacetimes, were
not supported by the Chiral theory [39]. However, when a gauge field coupled to the scalar
field was introduced, anisotropic Bianchi I exact spacetimes were provided by the Chiral
model [40]. In this work, we focus our analysis on the existence of anisotropic Bianchi I
exact and analytic solutions for the Chiral–Quintom model proposed in [26].

Kasner spacetime [44] is one of the first anisotropic and homogeneous exact solutions
derived in the literature and describes an empty Bianchi I universe. The Kasner metric
depends on three parameters, which are constrained by two algebraic relations, so it is
a one-parameter family of solutions. There are many applications of the Kasner metric,
see for instance [45–47]. Moreover, Kasner spacetime describes the asymptotic behavior
of the Mixmaster universe, Bianchi IX metric, when the effects of the spatial curvature
are negligible. Kasner-like metrics [48–56], which are Kasner-like solutions with general-
ized Kasner-algebraic relations, are also of special interest. The structure of the paper is
as follows.

In Section 2, we present the considered gravitational model, which is that of the
Chiral–Quintom theory in a homogeneous and anisotropic Bianchi I background geometry.
Exact solutions, which describe anisotropic geometries with power-law and exponential
scale factors, are derived in Section 3. The existence of Kasner-like exact solutions are
investigated. In Section 4, we perform a detailed analysis of the field equations by using
the Noether symmetry approach. From this analysis, we can infer the existence of invariant
functions and conservation laws for the field equations, which can be used to construct
analytic solutions. Finally, in Section 5 we summarize our results.

2. Chiral–Quintom Theory

We assume the four-dimensional geometry with metric tensor gµν(xκ) and the multi-
scalar field gravitational model with gravitational action integral [57]

S =
∫

dx4√−g
(

R− 1
2

gµνHAB

(
ΦC
)

ΦA,µΦB,ν −V
(

ΦC
))

, (1)

where R = R(xκ) is the Ricciscalar of the background geometry gµν(xκ).
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The components of vector field ΦA(xκ) describe the scalar fields of the theory. In our
analysis, we assume two scalar fields, namely φ(xκ), ψ(xκ); that is, ΦA = (φ(xκ), ψ(xκ))T .
Thus, HAB

(
ΦC(xκ)

)
is a two-dimensional symmetric tensor; that is, HAB = HBA and

describes the geometry in which the two scalar fields lie. The interaction of the scalar fields
in the kinetic components is provided by the metric tensor HAB. Finally, V

(
ΦC(xκ)

)
is the

potential function, which drives the dynamics and the cosmological evolution.
In the Chiral–Quintom theory, the gravitational action integral (2) is defined as follows [26]

S =
∫

dx4√−g
(

R− 1
2

gµν

(
ε1φ,µ(xκ)φ,ν(xκ) + ε2e2κφ(xκ)ψ(xκ),µψ(xκ),ν

)
−V(φ)

)
, (2)

where ε1, ε2 have the constraints (ε1)
2 = 1 and (ε2)

2 = 1. The value −1 indicates that the
corresponding scalar field is phantom-like [26].

The Chiral model is recovered when ε1 and ε2 are positive numbers [22]. Parameter
κ plays a more important role, since it is related to the curvature of the two dimensional
spacetime HAB

(
ΦC(xκ)

)
, and a nonzero value is essential in order for the hyperbolic

inflation to occur [22]. Indeed, for κ = 0, the curvature of HAB
(
ΦC) vanishes, and the

Chiral–Quintom model reduces to the Quintom theory [19]. The later model however
does not reproduce the hyperbolic inflation. In this study, we consider a nonzero coupling
constant parameter, κ.

For the background space, we consider that of the anisotropic and homogeneous
Bianchi I spacetime

ds2 = −N2(t)dt2 + A2(t)dx2 + B2(t)dy2 + C2(t)dz2, (3)

where A(t), B(t), and C(t) are the three scale factors, and N(t) is the lapse function.
We prefer to work on the Misner variables, where the line element reads

ds2 = −N2(t)dt2 + e2α
(

e−2β+(t)dx2 + eβ+(t)+
√

3β−(t)dy2 + eβ+(t)−
√

3β−(t)dz2
)

, (4)

where now α(t) is the scale factor of a three-dimensional hypersurface, and β+(t), β−(t)
are the two anisotropic parameters.

When β̇+(t) = 0, β̇−(t) = 0, where dβ±
dt = β̇±, the line element (4) reduces to the

spatially flat Friedmann–Lemaître–Robertson–Walker spacetime. Parameter N(t) is the
lapse function where, without loss of generality, we select N(t) = 1.

For the background geometry described by the line element (4), the corresponding
field equations that follow from the variational of the action integral (2) are

3H2 − 3
4

((
β̇+
)2

+
(

β̇−
)2
)
=

1
2

(
ε1φ̇2 + ε2e2κφψ̇2

)
+ V(φ), (5)

2Ḣ + 3H2 +
3
4

((
β̇+
)2

+
(

β̇−
)2
)
= −1

2

(
ε1φ̇2 + ε2e2κφψ̇2

)
+ V(φ), (6)

β̈+ + 3Hβ̇+ = 0, (7)

β̈− + 3Hβ̇− = 0, (8)

ε1(φ̈ + 3Hφ̇) + V,φ = e2κφε2κψ̇2, (9)

ψ̈ + 3Hψ̇ = −2κψ̇φ̇. (10)

where H = α̇ is the Hubble function.

3. Anisotropic Exact Solutions

In this section, we investigate the existence of exact solutions of special interest for the
field equations. Firstly, let us recover the Kasner vacuum solution by assuming φ(t) = 0,
ψ(t) = 0, and V(φ) = 0.
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Then, for the specific functional forms

H(t) =
H0

t
, β+(t) = β0

+ ln t and β−(t) = β0
− ln t, (11)

from Equations (5)–(8), we obtain

H0 =
1
3

and
(

β0
+

)2
+
(

β0
−

)2
=

4
9

. (12)

The later two algebraic expressions are the so-called Kasner relations expressed in the
Misner variables.

3.1. Singular Solution

We consider now the case where the two scalar fields contribute to the field equations;
that is, φ̇(t)ψ̇(t) 6= 0, and the Bianchi spacetime is described by the singular solution

α(t) = p ln t, β+(t) = β0
+ ln t, and β−(t) = β0

− ln t . (13)

This anisotropic solution corresponds to the family of Kasner-like solutions with initial
cosmological singularity when t = 0. Recall that we have assumed the constant lapse
function N(t) = 1.

From the field Equations (7) and (8), we derive p = 1
3 ; thus, the remaining field

equations read (
β0
+

)2
+
(

β0
−

)2
− 4

9
+

2
3

t2
(

2V + ε1φ̇2 + ε2e2κφψ̇2
)
= 0, (14)

(
β0
+

)2
+
(

β0
−

)2
− 4

9
− 2

3
t2
(

2V − ε1φ̇2 − ε2e2κφψ̇2
)
= 0, (15)

ε1φ̇ + t
(

V,φ − e2κφε2κψ̇2 + ε1φ̈
)
= 0, (16)

and

ψ̈ + ψ̇

(
1
t
+ 2κφ̇

)
= 0. (17)

Equation (17) provides ψ̇ = ψ0
e−2κφ

t . Hence, by replacing this in the rest of the
equations, we obtain V(φ) = 0, and

φ(t) =
1
κ

ln(Φ(t)), (18)

with

Φ(t) = ±ψ0

√
6ε2

ξ
sinh

(
Φ1 ± iκ

√
ξ

6ε1
ln t

)
, (19)

where ξ = 9
((

β0
+

)2
+
(

β0
−
)2 − 4

9

)
, and Φ1 is an integration constant.

Consequently, in order for the scalar field φ(t) to be a real field, ε1ε2 < 0, which means
power-law solutions exist, i.e., Kasner-like solutions, only when one of the scalar fields is
phantom-like, and the cosmological model is that of the Chiral–Quintom theory.

3.2. Exponential Solution

Now, we assume the nonsingular solution with

α(t) = H0t , β+(t) = β0
+t and β−(t) = β0

−t . (20)
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We substitute this into the field equations, and we find

ψ(t) = ψ0e−3H0t−2κφ , V(φ) = 3H2
0 , (21)

and
φ =

1
κ

ln(Φ(t)), (22)

in which

Φ(t) = ±κ

(
i

ψ0

3H0

√
ε2

ε1
e−3H0t −Φ1

)
, (23)

where Φ1 is an integration constant.
Consequently, in order for a real solution to exist, ε2

ε1
< 0; that is, one of the scalar fields

is phantom, the other is quintessence. The cosmological model is that of Chiral–Quintom
theory.

4. Noether Symmetry Analysis

The application of symmetry analysis is a powerful method for the construction of
conservation laws and invariant functions necessary for the analytical study of nonlin-
ear dynamical systems [58–60]. In the case of dynamical systems, which follow from a
variational principle, Noether’s theorems provide a system method for the derivation of
conservation laws [58].

In cosmological studies, the Noether symmetry approach has been widely applied.
For a review on the subject, we refer the reader to [61]. The analysis of the cosmological
field equations with the requirement for the field equations to admit conservation laws
generated by Noether’s theorems has been used in two ways. Indeed, new conservation
laws have been constructed for the nonlinear field equations, which led to the derivation of
new analytic solutions [62–65]. Moreover, Noether symmetry analysis has been applied
as a classification method for the determination of the unknown functions of the given
theorem. This approach has geometric characteristics because Noether symmetries are
related to the geometry where the dynamical variables are defined [66,67]. We omit the
presentation of the basic properties of the Noether symmetry analysis, which can be found
in [61].

For the Chiral–Quintom model of our analysis, the cosmological field equations are
derived by the variation of the point-like Lagrangian

L = L
(
α, α̇, β+, β̇+, β−, β̇−, φ, φ̇, ψ, ψ̇

)
, (24)

where

L = e3α

(
6α̇2 − 3

4

((
β̇+
)2

+
(

β̇−
)2
)
− 1

2

(
ε1φ̇2 + ε2e2κφψ̇2

)
+ V(φ)

)
. (25)

The point-like Lagrangian (25) describes an autonomous dynamical system where, for
an arbitrary potential function V(φ), it admits the Noether symmetry vector field X1 = ∂t.
The corresponding conservation law is the Hamiltonian function

H = e3α

(
6α̇2 − 3

4

((
β̇+
)2

+
(

β̇−
)2
)
− 1

2

(
ε1φ̇2 + ε2e2κφψ̇2

)
−V(φ)

)
, (26)

where from the constraint Equation (5), H = 0. However, for specific functional forms
of V(φ) additional symmetries may exist. There exist two cases, VA(φ) = V0e−λφ and
VB(φ) = 0, where additional Noether point symmetries for the Lagrangian (25) exist. For
other forms of potential functions, symmetries may exist, including generalized symmetries,
hidden symmetries, and others.

We focus on the exponential potential VA(φ) = V0e−λφ. The admitted Noether sym-
metries are

X2 = ∂β+ , X3 = ∂β− ,
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X4 = β−∂β+ − β+∂β− , X5 = ∂ψ ,

and
X6 = 2t∂t +

2
3

∂α +
4
λ

(
∂φ − κψ∂ψ

)
.

The corresponding Noetherian conservation laws are

I2(X2) = e3α β̇+ , I3(X3) = e3α β̇−, (27)

I4(X4) = e3α
(

β− β̇+ − β+ β̇−
)
, (28)

I5(X5) = e3αe2κφψ̇, (29)

I6(X6) = 2tH− 4e3α
(

α̇− ε1

λ
φ̇ +

ε2

λ
e2κφκψψ̇

)
. (30)

By using the constraint Equation (5), conservation law I6(X6) reads I6(X6) = −4e3α(α̇−
ε1
λ φ̇+ ε2

λ e2κφκψψ̇).
We can easily see that the set of conservation laws are not in involution. The conserva-

tion law I6(X6) is written as

I6(X6) = −4e3α
(

α̇− ε1

λ
φ̇ +

ε2

λ
κ I5ψ

)
. (31)

Thus, we can not infer the Liouville integrability property of the field equations.
A question which arises is whether we can use the invariant functions defined by the

vector field X6 in order to construct an exact solution. Indeed, the Lie invariants, which
correspond to X6, are

α(t) =
1
3

ln t + α0 , φ =
2
λ

ln t + φ0, and ψ = ψ0t−2 κ
λ . (32)

By replacing these in the field equations for the α0, φ0, and ψ0 constants, it follows
that ψ0 = 0, V0 = 0, and the Kasner-like relation is(

β0
+

)2
+
(

β0
−

)2
− 4

9λ2 e6α0
(

λ2 − 6ε1

)
= 0, (33)

which is nothing other than the exact solution of a minimally coupled scalar field without
any contribution of the potential function or the generalized Kasner-like solution for a
five-dimensional Brane.

For the case of the zero potential function VB(φ) = 0, the admitted Noether symmetries
are

X2 , X3 , X4 , X5 ,

Y6 = ∂φ − κψ∂ψ , Y7 =
2
3

∂α

and
Y8 = ψ∂φ −

(κ

2
ψ− ε1

2κ
e−2κφ

)
∂ψ.

The corresponding conservation laws are I2(X2), I3(X3), I4(X4), I5(X5), and

I6(Y6) = e3α
( ε1

λ
φ̇− ε2

λ
e2κφκψψ̇

)
, (34)

I7(Y7) = 2tH− 4e3αα̇ , (35)

I8(Y8) = e3α
(

ε1ψφ̇− ε2e2κφψ̇
(κ

2
ψ− ε1

2κ
e−2κφ

))
. (36)

In contrast to the exponential potential function, in this case, there exist at least three
conservation laws, which are in involution and independent; that is, the field equations
form a Liouville integrable system.
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We proceed with the derivation of the analytic solution.

Analytic Solution for VB(φ)

With the use of the conservation laws I2(X2), I3(X3), and I5(X5) the field equations
can be written with the use of the Hamiltonian formalism as

H =
e−3α

12ε1

(
6p2

φ + ε1

(
9
(

I2
2 + I2

3

)
+ 6e−2κφ I2

5 − p2
α

))
≡ 0, (37)

where
α̇ =

1
6

pαe−3α , φ̇ = −
pφ

ε1
e−3α . (38)

Consequently, the field equations are

ṗα = 0 , ṗφ = e−3α−2κφε2κ I2
5 . (39)

The analytic solution is derived

α(t) =
1
3

ln
( pα

2
(t− t0)

)
. (40)

which is the Kasner-like solution found in the previous section.
We conclude that the Kasner-like solution is the analytic solution for the given cosmo-

logical model.

5. Conclusions

In this study, we determined the exact cosmological solutions for the field equations
in the Chiral–Quintom theory with anisotropic and homogeneous background geometry.
The Chiral–Quintom theory belongs to the multiscalar field theories, and it is an extension
of the Chiral model where now at least one of the scalar fields can have a negative energy
density; that is, it has a phantom behavior. The theory extends the Quintom multifield
theory, where the kinetic part of the scalar fields defines a two-dimensional manifold of
non-zero constant curvature.

The cosmological field equations form a nonlinear dynamical system of ordinary dif-
ferential equations, the dependent variables, the scale factors {α(t), β+(t), β−(t)}, and the
two scalar fields {φ(t), ψ(t)}. We investigated the existence of exact anisotropic solutions,
which belong to the family of Kasner-like spacetimes and to the accelerated exponential
geometries, by giving the explicitly functional form of the scale factors {α(t), β+(t), β−(t)}.
These two geometries, described by the latter exact solutions, were provided by the Chiral–
Quintom theory for an appropriate functional form of the scalar field potential.

Moreover, because the cosmological field equations form a Hamiltonian dynamical
system, and a Lagrangian function exists, we applied the Noether symmetry approach for
the investigation of conservation laws. In particular, the Noether symmetry conditions
were used to constrain the potential function according to the admitted Noether symmetries
for the field equations. Two potential functions were derived, the exponential potential
and the zero potential, where, for these two potential functional forms, extra conservation
laws related to point symmetries exist. For the zero potential, we were able to infer the
integrability property of the field equations, where we proved that the Kasner-like solution
was the general analytic solution for this specific cosmological model. On the other hand,
for the exponential potential, we were not able to prove the integrability property for the
field equations and to write the analytic solution as in the case of the spatially Friedmann–
Lemaître–Robertson–Walker background geometry with matter source [24].

The existence of a Kasner-family anisotropic exact solution indicates that the field
equations admit actual solutions for the anisotropic initial condition. That is, anisotropy
is supported by the cosmological model, and when there is not a potential function, the
spacetime retains anisotropy. However, when a constant scalar field potential appears, then
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the resulting spacetime has exponential scale factors leading to an inflationary universe
described by the isotropic de Sitter spacetime [36].

In a future work we plan to investigate the stability properties of the Chiral–Quintom
theory and extend the analysis presented in [39] for the Chiral model. Such analysis
is essential in order to understand the global evolution of the field equations for other
potential functions, whether the Chiral–Quintom theory solves the isotropization problem,
and whether anisotropic initial conditions can lead to hyperbolic inflation.

Funding: This research received no external funding.
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