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Abstract: We show that the spherically symmetric black hole (BH) solution of a charged (linear
case) field equation of Rastall gravitational theory is not affected by the Rastall parameter and
this is consistent with the results presented in the literature. However, when we apply the field
equation of Rastall’s theory to a special form of nonlinear electrodynamics (NED) source, we derive
a novel spherically symmetric BH solution that involves the Rastall parameter. The main source of
the appearance of this parameter is the trace part of the NED source, which has a non-vanishing
value, unlike the linear charged field equation. We show that the new BH solution is Anti−de-Sitter
Reissner−Nordström spacetime in which the Rastall parameter is absorbed into the cosmological
constant. This solution coincides with Reissner−Nordström solution in the GR limit, i.e., when
Rastall’s parameter is vanishing. To gain more insight into this BH, we study the stability using
the deviation of geodesic equations to derive the stability condition. Moreover, we explain the
thermodynamic properties of this BH and show that it is stable, unlike the linear charged case that
has a second-order phase transition. Finally, we prove the validity of the first law of thermodynamics.

Keywords: Rastall gravitational theory; black hole; thermodynamics and first law

1. Introduction

Since the construction of Einstein’s general relativity (GR), the coupling between
a scalar field and the gravitational action in a geometric frame has been intensively
studied. A scalar theory formulation was made in [1], and Jordan–Brans–Dicke later built
a gravitational theory as an expansion of GR to investigate the variable of gravitational
coupling [2–4]. Afterward, a general combination between a scalar field and its derivative,
which yields second-order differential equations, is known as the Horndeski theory [5] that
gained much attention. Recently, many modifications of Einstein GR have been established.
Among these theories is the f (R) gravitational theory, which is regarded as a natural
generalization of Einstein’s Hilbert action [6]. This theory could be rewritten as a GR and
scalar field [7,8]. The above is a very brief summary related to the scalar fields in the frame
of a gravitational context. However, there is a huge literature on this subject.

The above discussions show one way of modification of GR. However, there is another
possibility that has been used to generalize the kinetic term of the scalar field that is
minimally coupled to the Einstein–Hilbert action. This possibility is called the k-essence
theory [9]. This theory is used as an option to the usual inflationary models that use a
self-interacting scalar field [9–14]. Recently, vacuum static spherically symmetric solutions
have been derived for the k-essence theories [14]. Some novel patterns have been derived
that involve a study of the event horizon. Nevertheless, interpolating such solutions as
black holes was difficult because it is impossible to define a distant region from the horizon.
Using the no-go theorem, it has been affirmed that solutions with a regular horizon can
exist but only of the type of cold black hole [15,16].

Another generalization of GR is to abound the restriction of the conservation law
encoded in the zero divergence of the energy-momentum tensor. Among the theories
that follow this direction is the one given by Rastall (1972), which is known as Rastall’s
theory [17]. In the frame of Rastall theory, the covariant divergence of the stress-energy
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momentum tensor is proportional to the covariant divergence of the curvature scalar, i.e.,
Tα

β;α ∝ R;β. Thus, any solution that has a zero or constant Ricci scalar Rastall theory will
be identical to Einstein GR. Explaining the behavior of the new source of Rastall’s theory is
not an easy task. We can consider, phenomenologically, this new source as an appearance
of quantum effects in the classical frame [18]. It is interesting to mention that the topic of
non-conservation of Tαβ is a feature that exists in diffusion models [19–23]. Furthermore,
the non-conservation of the energy-momentum tensor and its link to modified gravitational
theories has been analyzed in [24,25]. The variational principle in the frame of Riemannian
geometry is not held due to the non-conservation of Tαβ. Nevertheless, some features such
as Rastall’s theory can also be discovered in the frame of Weyl geometry [26]. Moreover,
external fields in the Lagrangian could give essentially the same behavior as Rastall’s theory
(for discussion of the external field see, for example [27]). An investigation of Rastall gravity,
for an anisotropic star with a static spherical symmetry, has been discussed in [28]. The
study of shadow and energy emission rates for a spherically symmetric non-commutative
black hole in Rastall gravity has been carried out [29]. The quasinormal modes of black
holes in Rastall gravity in the presence of non-linear electrodynamic sources have been
studied [30]. Moreover, the quasinormal modes of the massless Dirac field for charged
black holes in Rastall gravity have been discussed [31]. In the framework of Rastall gravity,
a new black hole solution of the Ayón-Beato-García type, surrounded by a cloud of strings,
is derived [32]. A solution of a static spherically symmetric black hole surrounded by a
cloud of strings in the frame of Rastall gravity is derived [33]. Moreover, two classes of
black hole (BH) solutions, conformally flat and non-singular BHs, are presented in [34].
A spherically symmetric gravitational collapse of a homogeneous perfect fluid in Rastall
gravity has been conducted in [35]. Oliveira also presented static and spherically symmetric
solutions for the Rastall modification of gravity to describe neutron stars [36].

In the frame of cosmology, Rastall’s theory could degenerate into the Λ cosmological
dark matter, ΛCDM, at the background and at first-order levels, which means that a viable
model can be constructed in the frame of this theory. However, a few applications in the
domain of astrophysics have been completed [37]. Additionally, a study of the generalized
Chaplygin gas model to fit observations has been carried out in Rastall theory [38]. The
quantum thermodynamics of the Schwarzschild-like black hole found in the bumblebee
gravity model has been discussed in [39]. In recent years, various BH solutions, and in
particular, BH solutions of the Rastall field equations, have been investigated in many
scientific research papers. Among these are charged static spherically symmetric BH
solutions [40,41], Gaussian BH solutions [42,43], rotating BH solutions [44,45], Abelian–
Higgs strings [46], Gödel-type BH solutions [47], black branes [48], wormholes [49], BH
solutions surrounded by fluid, electromagnetic field [50] or quintessence fluid [51], BH
thermodynamics [52], among other theoretical efforts [53–56]. It is the aim of the present
study to show the effect of the Rastall parameter in the domain of spherically symmetric
spacetime using a special form of NED coupled with Einstein’s GR.

This paper has the following structure: in the next section, we present a summary of
Rastall’s theory. In Section 2.1, we give the NED field equations of Rastall’s gravity, then
we apply them to a spherically symmetric spacetime with two unequal metric potentials
and derive the NED differential equations. We solve this system and derive a new BH
solution that involves Rastall’s parameter. In Section 2.2, we extract the physical properties
of the BH solution and show that the metric potentials asymptote as Anti-de-Sitter (A)dS
Reissner–Nordström. Despite the applied NED field equations without cosmological
constant, we obtain (A)dS Reissner–Nordström. This means that the Rastall parameter acts
as a cosmological constant in this special form of NED theory. This result is consistent with
the study given by Visser [57]. It is important to stress that this solution in the GR limit, i.e.,
when the Rastall parameter equals zero, coincides with the Reissner−Nordström solution.
In Section 2.3, we derive the stability of geodesic motion using geodesic deviations. In
Section 3, we study some thermodynamical quantities. In Section 3.1, we show that our BH
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satisfies the first law of thermodynamics. In Section 4, we discuss the output results of this
study.

2. Spherically Symmetric BH Solution

Rastall’s assumptions [17,58], for a spacetime with a Ricci scalar R filled by an energy-
momentum Tµν, we have:

Tαβ
;α = εR ;

β , (1)

where ε is the Rastall parameter, which is responsible for the deviation from the standard GR
conservation law. Equation (1) returns to Einstein’s GR when the Ricci scalar is vanishing
or has a constant value.

Using the above data, we can write the Rastall field equations in the form [17,58]:

Rαβ −
[

1
2
+ λ

]
gαβR = χTαβ , (2)

where λ = χε and χ is the Newtonian gravitational constant and the units are used so
that the speed of light c = 1. Here,Rαβ is the Ricci tensor,R is the Ricci scalar, gαβ is the
metric tensor, and Tαβ is the energy-momentum tensor describing the material content. The
constant ε is the Rastall parameter that is responsible for the deviation from GR and when
(ε = 0) we obtain GR theory.

The modification in the spacetime geometry given by the L.H.S. of Equation (2) links
to two modifications of different material contents of the right hand side of Equation (2):

(i) Firstly, Equation (2) is mathematically equivalent to adding new materials of the
actual material sources to the right hand side of the standard GR field equations, which
can be seen as an effective source accompanying the actual material sources considered in
the model. For this reason, we can rewrite Equation (2) in a mathematical equivalent form
as [17,58]:

Rαβ −
1
2

gαβR = χT1αβ , where T1αβ = Tαβ −
χ ε

1 + 4χ ε
gαβT . (3)

The term − ε
1+4ε gαβT is the energy-momentum tensor that represents the effective source

that arises from the actual material and T is the trace of Tαβ, i.e., T = gαβTαβ = −(1 + 4ε)R.
Now rewrite Equation (3) in the form: 1

Rαβ − gαβR
[

1
2
+ ε

]
≡ Rαβ + gαβT

[
1 + 2ε

2(1 + 4ε)

]
= Tαβ . (4)

In this study, we will use Equation (4) but we will assume the energy-momentum tensor
Tαβ to be combined with electromagnetic field and takes the following form:

Tαβ = Eαβ, where Eαβ = Fµ
αFµβ −

1
4

gαβF , (5)

with Fµβ being the antisymmetric Faraday tensor and F = FµνFµν = dξ and ξ = ξαdxα is
the electromagnetic gauge potential Maxwell field [59]. The tensor Fµβ satisfies the vacuum
Maxwell equations:

Fαβ
;α = 0 , Fαβ;σ + Fβσ;α + Fσα;β = 0 . (6)

(ii) Secondly, this modification implies a violation of the local conservation of the
tensor T1αβ of an actual material source because its divergence is not necessarily vanishing.

It is important to stress that Equation (4) with the energy-momentum tensor given
by Equation (6) has a contradiction since the LHS of Equation (4) has a non-vanishing
covariant derivative,

{
Rαβ − gαβR

[
1
2 + ε

1+4ε

]}
;β
6= 0, while the RHS has a vanishing
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value, Tαβ
;β = 0. Thus, the only way to overcome this issue is the fact that the solution of

these field equations must have a zero Ricci scalar2, which ensures the well-known results
in the literature that the Rastall parameter has no effect in the linear Maxwell field.

2.1. Nonlinear Charged Spherically Symmetric BH Solution in Rastall’s Theory

In this subsection, we are going to present a special form of NED theory coupled with
GR. For this aim, we are going to take into account a dual representation, i.e., imposing the
auxiliary field Sαβ, which is convenient to couple with GR [60,61]. Specifically, we involve
the Legendre transformation:

H = 2FLF − L, (7)

where H is an arbitrary function, LF ≡ ∂L
∂F and L(F) is an arbitrary function of F. If

L(F) = F we return to the linear case. Assuming,

Sµν = LFFµν , S =
1
4
SαβSαβ = L2

FF , with Fµν = HSSµν , (8)

where HS = ∂H
∂S . The field equation of nonlinear electrodynamics yields the form [60]:

∂ν

(√
−gSµν

)
= 0, (9)

where the energy-momentum tensor of the NED is defined as:

Tν
µ

NED
≡ 2(HSSµαSνα − δν

µ[2SHS −H]). (10)

We mention that in general Equation (10) has a non-vanishing trace3:

T
NED

= 8(H−HSS) 6= 0 , (11)

and has a vanishing value in the linear theory, i.e., when H = F and S = F. Finally, the
electric and magnetic fields in the NED case take the form [60,61]:

E =

∫
Ftrdr =

∫
HSStrdr , Br =

∫
Frφdφ =

∫
HSSrφdφ,

Bθ =

∫
Fθrdr =

∫
HSSθrdr, Bφ =

∫
Fφrdr =

∫
HSSφrdr , (12)

where E and B are the components of the electric and magnetic fields, respectively. Now
we are going to use the field Equation (4) with the energy-momentum tensor Tαβ, that is
combined with the NED, and obtain:

Tµν

NED
≡ Eµν, where Eµ

ν = 2(HSSµαSνα − δν
µ[2SHS −H]) . (13)

Now, let us assume that the spherically symmetric spacetime has the form:

ds2 = −µ(r)dt2 +
dr2

ν(r)
+ r2(dθ2 + sin2 θ dφ2) , (14)

where µ(r) and ν(r) are unknown functions of the radial coordinate r. For the spacetime
(14), the symmetric affine connection takes the form:

Γtt
r =

1
2

νµ′ , Γtr
t =

µ′

2µ
, Γrr

r =
ν′

2ν
, Γrθ

θ = Γrφ
φ =

1
r

,

Γθθ
r = −rν , Γθφ

φ = cot θ , Γφφ
r = −rν sin2 θ , Γφφ

θ = − sin θ cos θ . (15)
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The Ricci scalar of the spacetime (14) has the form:

R(r) =
r2νµ′2 − r2µµ′ν′ − 2r2µνµ′′ − 4rµ[νµ′ − µν′] + 4µ2(1− ν)

2r2µ2 . (16)

Here, µ ≡ µ(r), ν ≡ ν(r), µ′ ≡ dµ
dr , µ′′ ≡ d2µ

dr2 and ν′ ≡ dν
dr .

Using Equation (14) in Equation (4), where the energy-momentum tensor is given by
Equation (13), then:

The t t- component of Rastall field equation is:

1
2r2µ2[2µνξ ′′ + ξ ′(µν′ − νµ′)]

{
2µνξ ′′

{
2µνεr2µ′′ − r2νεµ′2 + rµµ′ε[4ν + rν′] + 2µ2[(1 + 2ε)[rν′ + ν] + 1 + r2H+ 2ε]

}
+ξ ′

(
2r2µνµ′′ε[µν′ − νµ′] + r2ν2εµ′3 − 2rµνµ′2[rν′ + 2ν]ε + µ2µ′

[
r2εν′2 − 2rνν′ − 2ν({1 + 2ε}(ν− 1)− r2H)

]
+µ3

{
2ν′[(1 + 2ε){rν′ + ν− 1} − r2H] + r2νH′

})}
= 0 ,

The r r- component of Rastall field equation is:

1
2r2µ2[2µνξ ′′ + ξ ′(µν′ − νµ′)]

{
2µνξ ′′

{
2µνεr2µ′′ − r2νεµ′2 + rµµ′[2(1 + 2ε)ν + εrν′] + 2µ2[(1 + 2ε)[ν− 1] + 2εrν′ − r2H]

}
+ξ ′

(
2r2µνµ′′ε[µν′ − νµ′] + r2ν2εµ′3 − 2rµνµ′2[rν′ε + (1 + 2ε)ν] + µ2µ′

[
r2εν′2 + 2rνν′ − 2ν({1 + 2ε}(ν− 1)− r2H)

]
+2µ3

{
2εrν′2 + ν′[(1 + 2ε){ν− 1} − r2H] + r2νH′

})}
= 0 ,

The θ θ = φ φ- component of Rastall field equation is:

1
4r2µ2[2µνξ ′′ + ξ ′(µν′ − νµ′)]

{
2µνξ ′′

{
2µν(1 + 2ε)r2µ′′ − r2ν(1 + 2ε)µ′2 + rµµ′[2(1 + 4ε)ν + (1 + 2ε)rν′] + 2µ2[4ε[ν− 1]

+(1 + 4ε)rν′ − 2r2H]
}
+ ξ ′

(
2r2µνµ′′(1 + 2ε)[µν′ − νµ′] + r2ν2(1 + 2ε)µ′3 − 2rµνµ′2[rν′(1 + 2ε) + (1 + 4ε)ν]

+µ2µ′
[
r2(1 + 2ε)ν′2 − 4ν(2ε(ν− 1)− r2H)

]
+ 2µ3

{
(1 + 4ε)rν′2 + 2ν′[2ε{ν− 1} − r2H] + 4r2νH′

})}
= 0 , (17)

where H is an arbitrary function and ξ is the field of electric charge. Equation (17) reduces
to the linear charged Einstein’s field equations when ε = 0 and H = F [62,63]. The exact
solution of Equation (17) for the electric field takes the form4:

µ(r) =
c2(c3r4 + (1 + 4ε)[12r2 + 12rc4 − 3c5])

r2 , ν(r) =
c3r4 + (1 + 4ε)[12r2 + 12rc4 − 3c5]

12r2(1 + 4ε)
,

ξ(r) =
c1

r
, H = c3 +

c5

r4 ≡ c3 + F . (18)

The Rastall parameter has an effect in the NED case, as shown by Equation (18). We
return to the linear charged case when H = F ≡ c5

r4 [64]. We stress the fact that if we repeat
the same above calculations taking into account the electric and magnetic fields, given by
Equation (12), we can easily verify the same conclusion of the above case, i.e., Rastall’s
parameter has an effect and its behavior will be similar to the form given by Equation (18).
If we want to derive a solution that is different from Einstein’s GR, we must generalize
Rastall’s theory to f (R)-Rastall’s theory [65]

2.2. The Physical Properties of the BH Solutions (18)

Now, we are going to explain the physics of the BH solution (18). For such purposes,
we rewrite the components of the metric potential of the BH (18) as:
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µ(r) = ν(r) = r2Λe f f + 1− 2M
r

+
q2

r2 , ξ = − q
r

, H = 12Λe f f .(1 + 4ε)− 4q2

r4 . (19)

where we have:

c1 = −q , c2 =
1

12(1 + 4ε)
, Λe f f . = c3c2 , c4 = −2M , and − 4q2 = c5 , c5 = −4

√
c1 . (20)

Equation (20) shows that we have an effective cosmological constant in the solution of the
NED charged case while their field equations have no cosmological constant. This means
that the Rastall parameter acts as an effective cosmological constant in the NED charged
case with the fact that the Rastall parameter ε 6= − 1

4 . From Equations (19) and (14) we
obtain5:

ds2 =−
{

r2Λe f f + 1− 2M
r

+
q2

r2

}
dt2 +

dr2

r2Λe f f + 1− 2M
r + q2

r2

+ dΩ2 , (21)

where dΩ2 = r2(dθ2 + sin2 θ dφ2) is a 2-dimensional unit sphere.
Equation (21) shows that solution (18) asymptotes as (A)dS and does not equal

Reissner–Nordström spacetime due to the Rastall parameter. Equation (21) clearly investigates
how the Rastall parameter acts as a cosmological constant. Equation (21) coincides with GR
when H = F, which means c3 = 0, and this gives Rissner–Nordström BH solution because
Λe f f = 0. From Equations (19) and (16) we achieve:

R(r) = −12Λeff . (22)

Equation (22), shows in a clear way that the Rastall parameter acts as a cosmological
constant and the conservation law of both sides of Equation (2) are satisfied.

Using Equation (19) we obtain the invariants as:

RµνρσRµνρσ = −24Λeff +
48m2

r6 − 96mq2

r7 +
56q4

r8 , RµνRµν = 36Λeff +
4q4

r8 , R = −12Λeff . (23)

Here
(
RµνρσRµνρσ,RµνRµν,R

)
are the Kretschmann scalar, the Ricci tensor square, and

the Ricci scalar, respectively. The Kretschmann scalar and the Ricci tensor square have a
true singularity when r = 0. All of the above invariants are identical with the invariant of
(A)dS-Reissner–Nordström BH solution of GR. The discussion of the invariant of (A)dS
Reissner–Nordström can be applied on the invariant given by Equation (23) with the
exclusion of the value ε = − 1

4 .
Before we close this subsection we are going to calculate the trace of the NED given by

Equation (11) using solution (18) as:

T
NED

= c3 6= 0 . (24)

Equation (24) shows in a clear way that if c3 = 0 we will obtain a vanishing trace and, in
that case, Rastall’s parameter will have no effect, which supports the above discussion.

2.3. Stability of Geodesic Motion of BH Given by Equation (19)

The equations of geodesic are given by [66]:

d2xγ

dε2 +

{
γ
βρ

}
dxβ

dε

dxρ

dε
= 0 , (25)
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where ε is a canonical parameter. Moreover, the equations of geodesic deviation are given
as [67,68]:

d2$σ

dε2 + 2
{

σ
µν

}
dxµ

dε

d$ν

dε
+

{
σ

µν

}
, ρ

dxµ

dε

dxν

dε
$ρ = 0 , (26)

where $α is the deviation of the four-vector.
Following the procedure in [69,70], one can get the stability condition as:

3µνµ′ − σ2µµ′ − 2rνµ′2 + rµνµ′′

µν′
> 0 , (27)

where µ and ν are given by Equation (19). Using Equation (27), one can obtain the following
form of σ2 as:

σ2 =
3µνµ′′ − 2rνµ′2 + rµνµ′′

µ2ν′2
> 0 . (28)

Equation (28) is plotted in Figure 1 using specific values of the model. In this figure, we
study Λe f f = 0, Reissner−Nordström GR spacetime and Λe f f 6= 0 of the BH solution (19).
The two cases display the regions where the BH solution is stable/unstable by unshaded
and shaded regions, respectively.

(a) Stability of the BH for the case
Λe f f = 0 and Λe f f . = 0.083

(b) Horizons of the linear Maxwell field

(c) Horizons of the non–linear Maxwell
field

Figure 1. Plot (a) shows the behavior of Equation (28) viz r for BH (19). The behavior of the metric
potential µ(r), which characterizes the horizons by putting µ(r) = 0: (b) for linear Maxwell Rastall
gravity theory; (c) for the nonlinear electrodynamics Rastall’s theory. The values of m for the linear
case are 1.3; 0.99; 0.8 and q = 1, while for the nonlinear case m = 1.3; 1.1 and 0.9, q = 1 and Λe f f .= 0.3.
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3. The Thermodynamical Properties of the of BH Given by Equation (19)

The thermodynamics of BH is considered an interesting topic in physics because
it enables us to understand the physics of the solution. Two main approaches have
been proposed to understand the thermodynamical quantities of the BHs: The first
approach, delivered by Gibbons and Hawking [71,72] constructed to understand the
thermal properties of the Schwarzschild BH through the use of Euclidean continuation. In
the second approach, one has to define the gravitational surface from which we can define
the Hawking temperature. Then, one can be able to study the stability of the BH [73–76].
Here, we are going to follow the second approach to investigate the thermodynamics of the
(A)dS BH obtained in Equation (19) and then analyze its stability. The physical quantities
characterized by the BH (19) are the mass, m, the charge, and the effective cosmological
constant Λe f f ..

The horizons of Equation (19) are calculated by deriving the roots of µ(r) = 0, which
we plot in Figure 1b,c using specific values. Plots of Figure 1b,c indicate the roots of µ(r)
that fix the horizons of BH (19), i.e., r1 and rh . We should emphasize that in the linear
case, for m > 0, q > 0, and Λe f f . = 0, we can show that the two roots can be formed when
m > mmin > q. However, when m = mmin, we fix the degenerate horizons, i.e., rdg, at
which r1 = rh, which is the Nariai BH whose thermodynamics is studied [77–79]. However,
when m < mmin < q, there is no BH formed, which means that we have a naked singularity
as shown in Figure 1b. The same discussion can be used for the NED case, where the
degenerate horizon is shown in Figure 1c [78–87]. In this study, we use positive values
of the effective cosmological constant because this gives two horizons. Nevertheless, it is
important to mention that negative values of the effective cosmological constant create
the same pattern, which is characterized by two horizons [88,89]. The stability of the BH
depends on the sign of the heat capacity Hc. Now, we are going to discuss the thermal
stability of the BHs through their behavior of heat capacities [10,90–92]:

Hc =
dEh
dTh

=
∂m
∂rh

(
∂T
∂rh

)−1
, (29)

where Eh is the energy. If Hc > 0 or (Hc < 0), the BH will be thermodynamically stable
or unstable, respectively. To understand this process, we suppose that at some point the
BH absorbs more radiation than it emits, which yields positive heat capacity, which means
that the mass is indefinitely increased. In contrast, when the BH emits more radiation than
it absorbs, this yields a negative heat capacity, which means the BH mass is indefinitely
decreasing until it disappears. Therefore, a BH that has a negative heat capacity is unstable
thermally.

To calculate Equation (29), we need the analytical forms of mh ≡ m(rh) and Th ≡ T(rh).
Therefore, let us calculate the mass of the BH in an event horizon rh. Thus, we put µ(rh) = 0,
given by Equation (19) and obtain:

mh
Equation (19)

=
Λe f f rh

4 + rh
2 + q2

2rh
. (30)

Equation (30) shows that the total mass of BH is a function of rh, the charge and Λe f f .. For
specific values of the charge we plot the relation of the horizon mass-radius in Figure 2a,
which shows:

m(rh → 0)→ ∞, m(rh → ∞)→ ∞. (31)

The temperature of BH is calculated at the outer event horizon r = rh as [93]:

T =
κ

2π
. (32)
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Here, κ is the surface gravity defined as κ = µ′(rh)
2 . The temperatures of the BH (18) is

given by:

Th
Equation (19)

=
1

2π

(
Λe f f rh +

1
rh

2

[
m− q2

rh

])
, (33)

with Th being the temperature at rh. For our two cases, linear and nonlinear electrodynamics,
we depict the temperatures in Figure 2b for specific values. Figure 2b shows that the
horizon temperature Th has a zero value at rh = rdg. However, when rh < rdg, the horizon
temperature becomes negative and forms an ultracold black hole. This result was discussed
by Davies [94] who said that there are no obvious reasons from the thermodynamical
viewpoint that prevent a BH temperature from becoming negative and linked this to a
naked singularity. This is exactly what happened in Figure 2b when rh < rmin region. The
case of ultracold BH is explained by the existence of a phantom energy field [95], which
investigates the decrease of the mass behavior in Figure 2b. When rh > rdg, the temperature
becomes positive. When rh becomes larger, the temperatures of both linear and nonlinear
cases change in a similar manner.

(a) Mass–radius relation (b) Hawking temperature–radius relation

(c) Heat capacity–radius relation

Figure 2. Plots of thermodynamical quantities of BHs. (a) The mass-radius relation, which determines
the minimal mass. (b) The hawking temperature, which vanishes at rh. (c) The heat capacity.
Moreover, the linear case investigates a second-order phase transition. All the figures are plotted for
mh = q = 1.
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Now we are going to evaluate the heat capacity, Hc. Using Equations (29), (30), and
(33) we get:

Hc
Equation (19)

=
2πrh

2
[
3Λe f f rh

4 + rh
2 − q2

]
2(Λe f f rh

4 + 3q2 − 2mrh)
.

(34)

The above equation is not easy to obtain from any information; thus, we depicted it in
Figure 2c with specific values of the parameters. As shown in Figure 2c, both cases of linear
and nonlinear charged BH solutions, Hc vanishes at rdg and also their temperatures. In the
GR limit, the linear case, Hc has positive values when rh > rdg; however, when rh < rdg, it
has negative values. In the NED case, the heat capacity is always positive unless rh < rdg.

3.1. First Law of Thermodynamics of the BH Solution (18)

Using Equation (30) we obtain:

M = mh =
Λe f f rh

3

2
+

rh
2
+

q2

2rh
. (35)

Moreover, from the definition of entropy:

S =
A
4

= πrh
2 , (36)

we can show that the effective cosmological constant and pressure are given as [96]:

P =
3Λe f f

8π
. (37)

Equation (35) can be rewritten in terms of pressure and entropy as:

M(S, q, P) =
1

6
√

πS

(
3π q2 + 3S + 8P S2

)
. (38)

Therefore, the parameters related to S, q, and P are calculated as:

T =

(
∂M
∂S

)
P,q

=
1

4πrh

(
1− q2

rh
2 + 3πrh

2Λe f f .

)
,

ξ =

(
∂M
∂q

)
S,P

=
q
rh

, V =

(
∂M
∂P

)
S,q

=
4
3

πrh
3 , (39)

where ξ, T, and V are the electric potential, temperature, and thermodynamic volume,
respectively. Using the above equations, the following Smarr relation is:

M = 2TS + ξq− 2VP , (40)

from which it is easy to prove the first law of thermodynamics as:

dM = TdS + ξ dq + VdP . (41)

Equation (40) ensures the validity of the first law of the BH (19).

4. Discussion and Conclusions

In this research, we have considered spherically symmetric BH in Rastall’s theory of
gravity. We study the NED spherically symmetric spacetime and derive an exact solution
that is affected by the Rastall parameter. This is the first time we derive a NED BH solution



Universe 2022, 8, 510 11 of 14

from the field equation of Rastall’s gravitational theory. The main contribution of Rastall’s
parameter in this study comes from the contribution of the trace of the NED, which has a
non-vanishing value in contrast to the linear Maxwell theory. We show that the effect of the
Rastall parameter acts as a cosmological constant, and the BH behaves asymptotically as
(A)dS Reissner–Nordström spacetime. When the Rastall parameter vanishes, we obtaiin
spacetime, which asymptotes as flat Reissner–Nordström spacetime.

We have used the geodesic deviation to obtain the stability of the geodesic motion of
the NED case. Furthermore, we investigated the horizons and demonstrated that the BHs
presented in this study could have two horizons: the event horizon r1 and the effective
cosmological one rh. Furthermore, we fixed the minimum value of the BH mass that
occurred at the degenerate horizon. We have also studied the thermal phase transitions and
showed that in the linear electrodynamics case, i.e., ε = 0, the temperature became negative
when rh < rd and, therefore, heat capacity became negative and, thus, we have unstable
BH [97–100]. The same conclusions can be applied to the NED case. However, at rh > rd,
we have a positive value of the Hc, which yields a stable BH. Finally, we proved the validity
of the first law of thermodynamics. It is worth noting that the result of thermodynamics
presented in this study agrees with the study of thermodynamics presented in [101] when
the rotation parameter a is vanishing.

In this study, we have discussed Rastall’s theory using a special form of non-linear
electrodynamics. This special form of non-linear electrodynamics reduces in our model to a
linear form plus a cosmological constant. However, a deeper analysis is necessary, possibly
regarding quantum effects in the universe. Meanwhile, the effects of Rastalls cosmology on
the formation and properties of non-linear structures is a very promising research program.
Furthermore, the study of f (R)-Rastall’s theory will be extremely rich in the context of
astrophysics [65]. Within the frame of f (R), a BH, which is similar to Reissner–Nordström
BH is presented [102] for a specific form of f (R). Is it possible to derive a similar solution
within Rastall’s f (R)? This study will be carried out elsewhere.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Notes
1 In this study we assume the relativistic units, i.e., χ = 8πG

c4 = 1.
2 In the frame of Rastall theory, Reissner−Nordström is a solution since its Ricci scalar has a vanishing value.
3 The non-vanishing of the trace is an important property in the frame of Rastall’s theory so that the effect of the Rastall parameter

may appear unlike Maxwell field theory.
4 Solution (18) has been checked using Maple software 19.
5 This result is consistent with what we have done in [57] where the author has shown that the Rastall theory is equivalent to

Einstein’s general relativity or equivalent to Einstein’s field equation plus an arbitrary cosmological constant
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