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Abstract: Two different Hamiltonian formulations of the metric gravity are discussed and applied
to describe a free gravitational field in the d dimensional Riemann space-time. Theory of canonical
transformations, which relates equivalent Hamiltonian formulations of the metric gravity, is inves-
tigated in detail. In particular, we have formulated the conditions of canonicity for transformation
between the two sets of dynamical variables used in our Hamiltonian formulations of the metric
gravity. Such conditions include the ordinary condition of canonicity known in classical Hamilton
mechanics, i.e., the exact coincidence of the Poisson (or Laplace) brackets which are determined
for both the new and old dynamical Hamiltonian variables. However, in addition to this, any true
canonical transformations defined in the metric gravity, which is a constrained dynamical system,
must also guarantee the exact conservation of the total Hamiltonians Ht (in both formulations) and
preservation of the algebra of first-class constraints. We show that Dirac’s modifications of the classi-
cal Hamilton method contain a number of crucial advantages, which provide an obvious superiority
of this method in order to develop various non-contradictory Hamiltonian theories of many physical
fields, when a number of gauge conditions are also important. Theory of integral invariants and
its applications to the Hamiltonian metric gravity are also discussed. For Hamiltonian dynamical
systems with first-class constraints this theory leads to a number of peculiarities some of which have
been investigated.

Keywords: gravity; Hamiltonian; momenta; constraints; Poisson brackets

1. Introduction

The main goal of this study is a deep analysis of canonical transformations of the
Hamiltonian dynamical variables which are applied in the metric gravity. We investigate
general properties of such transformations and formulate some criteria of canonicity. An-
other aim is to discuss modifications made by Dirac [1–3] in the classical Hamilton method.
We want to show that Dirac’s approach has many crucial advantages for the development
and following improvement of various Hamiltonian formulations for the free gravitational
field in metric gravity, where 2d additional gauge conditions exist. We also introduce the
integral invariants of the metric gravity and discuss applications of these invariants to the
current and new Hamiltonian formulations of the metric gravity.

In metric gravity the classical gravitational field is described as a symmetric tensor
field which is defined in the d dimensional Riemann space-time. As is well known, the
general theory of metric gravitational field(s) have been created more than 100 years ago
by A. Einstein and it is based on his fundamental idea that the actual gravitational field has
a tensor nature and it is defined in the four-dimensional (Riemann) space-time. Since then
the gravitational field is designated as covariant components of the fundamental metric
tensor gαβ. In general, the metric gravity can be developed in the d dimensional space-time
(or d-space), where d ≥ 3, while the time is always one-dimensional. In other words, there
is no need to restrict ourselves to the four-dimensional case only, where d = 4. In this
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study we also deal with the d-dimensional Riemann space-time. Everywhere below the
notation x, designates the d-dimensional vector which has the contravariant components
xα, while its covariant components are designated as xα, where α = 0, 1, . . . , d− 1. The
temporal component (or time component) of the coordinate vector x is x0, while its spatial
components are xk (k = 1, 2, . . . , d− 1). The same rule is applied everywhere in this study:
components of d-vectors are labelled by Greek indices, while spatial components of these
vectors are denoted by Latin indices. In respect to this agreement all components of the
covariant fundamental tensor (or metric tensor) are designated as gαβ (see above), while the
notation gαβ stands for the components of contravariant fundamental (or metric) tensor [4,5].
The determinant of the gαβ is called the fundamental determinant and it is denoted by
letter g. In the metric gravity the numerical value of g is always real and negative, but
the −g value is positive, which allows one to operate with the expression such as

√−g
and consider functions of

√−g. Any suffix with a comma before it denotes differentiation
according to the general scheme F,µ = dF

dxµ . In particular, the temporal derivative are always

designated as F,0

(
= dF

dx0

)
. For an arbitrary metric-dependent functional F(gαβ) the notation

F,γ means F,γ =
(

∂F
∂gµν

)
gµν,γ, etc.

This paper has the following structure. The next two Sections play the role of ‘introduc-
tory part’ for our current analysis. In particular, in the next Section we introduce the regular
Γ− Γ Lagrangian of the metric gravity. Then, by using this Γ− Γ Lagrangian we define the
momenta πµν which are also the dynamical (Hamiltonian) variables. These momenta are
considered as variables which are dynamically conjugate to the corresponding generalized
coordinates gαβ. In general, the momenta πµν are defined as the partial derivatives of the

Γ− Γ Lagrangian in respect to the ‘velocities’ ∂gµν

∂t = gµν,0. The arising set of 2d dynamical
variables {gαβ, πµν} includes all variables which are needed to develop the Hamiltonian
formulation of the metric gravity. In particular, both canonical HC and total Ht Hamiltoni-
ans of the metric gravity are written as the quadratic functions of all space-like momenta
πpq and as a linear combination of temporal momenta π0µ(= πµ0). This essentially means
that the free gravitational field is a constrained dynamical (Hamiltonian) system [6,7] and
all d temporal momenta π0µ(= πµ0) of this field can rigorously be defined only as the
primary constraints. The commutators (or Poisson brackets) of these primary constraints
with the canonical and total Hamiltonians produce d secondary constraints. In general, the
properly defined Poisson brackets always play a central role in Hamiltonian formulations of
many physical theories. Briefly, we can say that the Poisson brackets is the most important
working tool of any consistent Hamiltonian theory.

In Section 5 by using our Poisson brackets we derive the Hamiltonian equations of
motion for all dynamical variables of the metric gravity. Analogous Hamilton equations
for the primary and secondary first-class constraints are also derived and discussed. The
Dirac closure of this Hamiltonian formulation is explicitly demonstrated. Then we consider
another Hamiltonian formulation of the metric gravity developed by Dirac [1]. For this
Hamiltonian formulation we also derive the corresponding Hamilton equations of motion
and determine the Poisson brackets between all essential first-class constraints (see, also our
Appendix A). Then we define the canonical transformations of the dynamical Hamiltonian
variables which relate both these Hamiltonian formulations, i.e., [1,6]. The criteria of
canonicity for arbitrary transformations of the dynamical variables are formulated in the
Section 6. Then we discuss modifications made by Dirac in the classical Hamiltonian
method [1–3]. We have shown explicitly that these Dirac’s modifications allowed him to
create a logically closed and transparent Hamiltonian approach which has many advantages
to study actual motions of various physical fields when numerous gauge conditions must
also be taken into account. Here we also formulate the new principle of the “complete
reverse recovery” which must be applied to any Hamiltonian formulation of the metric
gravity to check its validity and correct relations with the original Einstein’s field equations.
This simple and physically clear principle can be used to “separate the wheat from the
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chaff” (Matthew, 3:13) in Hamiltonian gravity. It allows us to operate only with the true
Hamiltonian formulations of metric gravity and discard the fake ones.

In Section 8 we introduce integral invariants of the metric gravity. In some sense this
is a central part of this study, since the method of integral invariants allows one to create a
real foundation for the Hamiltonian formulations of the metric gravity. In particular, by
applying the integral invariants of metric gravity one can easy perform all steps of the
rigorous Hamiltonian procedure and formulate various criteria of canonicity which can be
applied actual transformations of dynamical variables. Concluding remarks can be found in
the last Section. This paper also includes three Appendixes. Appendix A is a ‘pure technical’
part, which contains derivations of some formulas. These formulas and expressions are
of paramount importance for this study, but they could not be included in the main text,
since this would damage the logic and harmony of our presentation. In Appendix B we
discuss a number of tricky moments which traditionally complicate the correct definition
of canonicity in classical and quantum mechanics. In Appendix C we explicitly derive
some important formulas for the integral invariants. Along with the discussions of the
latest achievements in Hamiltonian metric gravity, we also wanted to write a simple and
transparent article which can be understood by any theoretical physicist who is familiar
with the modern Hamiltonian methods developed for constrained dynamical systems.

2. Regular Γ− Γ Lagrangian Density of the Metric Gravity

In this Section we introduce the regularized (or regular) Lagrangian density of metric
gravity. As is well known (see, e.g., [8,9]) the original Lagrangian density of the metric
gravity coincides with the integrand in the Einstein–Hilbert integral-action LEH which
equals to the product of scalar (or Gauss) curvature of the d-dimensional space R = gαβRαβ

and factor
√−g, which is Jacobian of the transformation from the flat space to the curved

Riemann space (see, e.g., [8,9]). The invariant integral
∫

R
√−gdΩ is called the gravita-

tional action. The explicit form of Lagrangian density is LEH =
√−gR =

√−ggαβRαβ =
√−ggαβgγσRγασβ, where R = gαβRαβ is the scalar (or Gauss) curvature of d-dimensional
space-time, while Rαβ is the Ricci tensor

Rαβ =
∂Γγ

αβ

∂xγ
−

∂Γγ
αγ

∂xβ
+ Γγ

αβΓλ
γλ − Γλ

αγΓγ
βλ , or Rαβ = gµνRµανβ = gνµRνβµα = Rβα (1)

In this equation and everywhere below in this study the notation Γγ
αβ = 1

2 gγν
(

∂gνα

∂xβ +

∂gνβ

∂xα −
∂gαβ

∂xν

)
are the Cristoffel symbols of the second kind (see, e.g., [4]). The Ricci

tensor Rαβ = gγσRγασβ is simply related to the Einstein tensor Gαβ = gγσRαγσβ, since
Rαβ = −Gαβ [4]. In this notation the governing equations of the free gravitational field (fa-
mous Einstein’s equations) are written in one of the following forms: Rαβ = 0 = Gαβ. Any
Hamiltonian formulation of the metric gravity must reproduce these original field equa-
tions exactly and unambiguously. This is the new fundamental principle of the “complete
reverse recovery” and its applications to various new and old Hamiltonian formulations of
the metric gravity allows one quickly “to separate the wheat from the chaff” (Mathew, 13,
24–30) (see below).

An alternative (but equivalent!) form of the same Lagrangian density is written as:
LEH =

√−ggαβgγσRγασβ, where the notation Rαβγσ designates the Riemann curvature
tensor (or Riemann-Cristoffel tensor) which is

Rαβγσ =
1
2

[ ∂2gασ

∂xβ∂xγ
+

∂2gβγ

∂xα∂xσ
−

∂2gαγ

∂xβ∂xσ
−

∂2gβσ

∂xα∂xγ

]
+ Γρ,ασΓρ

βγ − Γρ,βσΓρ
αγ , (2)

where Γλ,µν = 1
2

(
∂gνα

∂xβ +
∂gνβ

∂xα −
∂gαβ

∂xν

)
are the Cristoffel symbols of the first kind. The

Riemann–Cristoffel tensor defined in Equation (2) is a covariant tensor of the fourth
rank. As follows from the last equation the Einstein–Hilbert Lagrangian density LEH =
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√−ggαγgβσRαβγσ contains a number of second-order derivatives
∂2gαβ

∂xγ∂xλ and cannot be
used directly in the principle of least action. However, as it follows from Equations (1)
and (2) all these derivatives of the second order are included in the Lagrangian density
LEH only as a linear combination with the constant coefficients which do not contain any
derivative of the metric tensor. Such a linearity of the invariant integral

∫
R
√−gdΩ upon

the second-order derivatives of the metric tensor can be used to transform this integral
(by means of Gauss’s theorem) to the integral which does not include any second-order
derivative. After a few simple transformations the invariant integral Sg is reduced to
the form

∫
R
√
−gdΩ =

∫
gαβ
(

Γλ
αγΓγ

βλ − Γγ
αβΓλ

γλ

)√
−gdΩ +

∫ ∂
[√−g

(
gαβΓγ

αβ − gαγΓβ
αβ

)]
∂xγ

dΩ , (3)

where the integrand of the first integral in the right-hand side of this equation contains
only products of different powers of components of the metric tensor and their first-order
derivatives, while the second integral has the form of a divergence of the vector-like

quantity
√−g

(
gαβΓγ

αβ − gαγΓβ
αβ

)
. It is clear that the second integral can be transformed

(with the help of Gauss’s theorem) into an integral over a hyper-surface surrounding the d-
dimensional volume over which the integration is carried out in other two integrals. When
we vary the gravitational action Sg, the variation of this (second) term in the right-hand
side of Equation (3) vanishes, since in respect to the principle of least action, the variation
of the gravitational field at the limits of the region of integration must be equal zero.

Now, from Equation (3), one finds

δSg = δ
∫

LEHdΩ = δ
∫

R
√
−gdΩ = δ

∫
LΓ−ΓdΩ , or

δLEH
δgµν

=
δ
(

R
√−g

)
δgµν

=
δLΓ−Γ

δgµν
(4)

where the notation δ means variation, while the notation δF
δgµν

means the variational deriva-
tive (or Lagrange derivative) of the functional F. Furthermore, in this equation the sym-

bol LΓ−Γ =
√−ggαβ

(
Γλ

αγΓγ
βλ − Γγ

αβΓλ
γλ

)
stands for the regularized (or regular) Γ− Γ La-

grangian density of the metric gravity which plays a central role in numerous Hamiltonian
approaches developed for the metric gravity. As follows from Equation (4) the variational
derivative of the LΓ−Γ Lagrangian density is a true tensor, while the original LΓ−Γ La-
grangian density is not a true scalar. The equality, Equation (4), expresses the fact that we
can replace the ‘singular’ Einstein–Hilbert Lagrangian density LEH =

√−gR by the regular

Γ− Γ Lagrangian density LΓ−Γ =
√−ggαβ

(
Γλ

αγΓγ
βλ− Γγ

αβΓλ
γλ

)
which is variationally equiv-

alent to the original Einstein–Hilbert Lagrangian density and contains no second-order
derivative. This Γ− Γ Lagrangian density is also written in the following form

LΓ−Γ =
1
4
√
−gBαβγµνρ

(∂gαβ

∂xγ

)(∂gµν

∂xρ

)
=

1
4
√
−gBαβγµνρgαβ,γgµν,ρ

=
1
4
√
−g
(

gαβgγρgµν − gαµgβνgγρ + 2gαρgβνgγµ − 2gαβgγµgνρ
)

gαβ,γgµν,ρ , (5)

where Bαβγµνρ is a homogeneous cubic polynomial of the contravariant components of
the metric tensor gαβ. The explicit definition of the Bαβγµνρ quantities follows directly
from Equation (5). Below, we shall deal with the Γ− Γ Lagrangian density only. In order
to simplify the following formulas we shall designate this Lagrangian density by the
letter L, i.e., L = LΓ−Γ. Now, by using the Γ− Γ Lagrangian density we can derive the
explicit expressions for all contravariant components of momenta πµν and obtain the closed
expression for the Hamiltonian(s) of the metric gravity. These important steps are made in
the next Section.
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3. Momenta—Canonical and Total Hamiltonians of Metric Gravity

In the previous Section we have introduced the Γ− Γ Lagrangian density, Equation (5),
of the metric gravity. At the second step of any standard Hamiltonian procedure, by
using the known Lagrangian density we have to define the corresponding momenta. Our
current derivation of momenta in this study is based on the approaches developed in
the two earlier papers [1,6] which still play a central role in all modern Hamiltonian
formulations of the metric gravity. First, we need to re-write the formula, Equation (5), for
the Γ− Γ Lagrangian density to a slightly different form where all temporal derivatives of
the covariant components of metric tensor, i.e., gαβ,0, are explicitly separated from other
similar derivatives (see, e.g., [6,10])

L =
1
4
√
−gBαβ0µν0gαβ,0gµν,0 +

1
2
√
−gB(αβ0|µνk)gαβ,0gµν,k +

1
4
√
−gBαβkµνl gαβ,kgµν,l , (6)

where the notation B(αβγ|µνρ) means a ‘symmetrical’ Bαβγµνρ quantity which is symmetrized
in respect to the permutation of two groups of indexes, i.e.,

B(αβγ|µνρ) =
1
2

(
Bαβγµνρ + Bµνραβγ

)
= gαβgγρgµν − gαµgβνgγρ

+ 2gαρgβνgγµ − gαβgνρgγµ − gαρgβγgµν . (7)

The contravariant components of momentum πγσ are defined as partial derivatives of
the Lagrangian density, Equation (6), in respect to the corresponding velocities gγσ,0 (see,
e.g., [3]). The expressions for the contravariant components of gravitational momenta (or
momenta, for short) are

πγσ =
∂L

∂gγσ,0
=

1
2
√
−gB((γσ)0|µν0)gµν,0 +

1
2
√
−gB((γσ)0|µνk)gµν,k , (8)

where B((γσ)0|µν0) = 1
2

(
B(γσ0|µν0) + B(σγ0|µν0)

)
is the symmetrized linear combination of

the two B(γσ0|µν0) quantities. The first term in the right-hand side of this equation is written
in the form

1
2
√
−gB((γσ)0|µν0)gµν,0 =

1
2
√
−gg00

(
eµνeγσ − eµγeνσ

)
gµν,0 =

1
2
√
−gg00Eµνγσgµν,0 , (9)

where the notations eµν and Eµνγσ stands for the Dirac contravariant tensors of the second
and fourth ranks, respectively. The explicit expressions for these tensors are

eµν = gµν − g0µg0ν

g00 , and Eµνγρ = eµνeγρ − eµγeνρ , (10)

i.e., each component of these two tensors is a function of the contravariant components
of the metric tensor only. For these tensors one finds the following symmetries in respect
to permutations of their indexes: eµν = eνµ and Eµνγσ = Eγσµν. Furthermore, as follows
directly from the formulas, Equation (10), the tensor eµν equals zero, if either index µ,
or index ν (or both) equals zero. Analogously, for the Dirac Eµνγσ tensor one finds that
E0νγσ = 0, Eµ0γσ = 0, Eµν0σ = 0 and Eµνγ0 = 0. Therefore, it is more productive to discuss
the space-like quantities emn and Emnpq only.

The space-like Epqkl quantity is, in fact, the space-like Dirac tensor of the fourth
rank. This space-like tensor Epqkl do not have components which are equal zero identically.
Furthermore, this space-like tensor Epqkl is a positively defined, invertible tensor. Its inverse
space-like tensor Imnpq is also positively defined and invertible space-like tensor of the
fourth rank which is written in the form [6]

Imnqp =
1

d− 2
gmngpq − gmpgnq . (11)
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The relation between space-like tensors Imnpq and Epqkl is written in the form
ImnpqEpqkl = gk

mgl
n = δk

mδl
n (see, Appendix A), where gα

β = δα
β is the substitution ten-

sor [4] and the symbol δα
β denotes the Kroneker delta (δα

α = 1 and δα
β = 0, if α 6= β). From

this definition one easily finds that δα
β = δ

β
α .

In general, for the B((γσ)0|µν0) coefficients in the formula, Equation (8) one finds from
Equations (9)–(11) two possible situations. First, for γ = p and σ = q these coefficients
are always different from zero. In this ‘regular’ case we obtain the following formula for
space-like contravariant components of the momentum tensor

πpq =
∂L

∂gpq,0
=

1
2
√
−gB((pq)0|µν0)gµν,0 +

1
2
√
−gB((pq)0|µνk)gµν,k

=
1
2
√
−gB((pq)0|mn0)gmn,0 +

1
2
√
−gB((pq)0|mnk)gmn,k (12)

for each pair of the spatial (pq)-indexes. In this case the (pq; mn)-matrix of the√−gB((pq)0|mn0) = g00Epqmn coefficients, which are located in front of the space-like gmn,0
velocities in the right-hand side of this equation, is invertible (see above). Therefore, in this
case the field-velocity gmn,0 can be expressed as the linear combination of the space-like
components πpq of momentum tensor, Equation (11):

gmn,0 =
1

g00

( 2√−g
Imnpqπpq − ImnpqB((pq)0|µνk)gµν,k

)
=

1
g00 Imnpq

( 2√−g
πpq

− B((pq)0|µνk)gµν,k

)
, (13)

where the Dirac tensor Imnpq is defined by Equation (11). As follows from Equations (12) and (13)
for all space-like components of the metric tensor gpq and corresponding momenta πmn one
essentially finds no principal difference with those systems in classical mechanics which
have Lagrangians written as quadratic functions of the velocities. Indeed, in metric gravity
all space-like components of momenta and velocities are always related to each other by
a few simple, linear equations, which however, take a multi-dimensional, or matrix form.
The method described above is the direct and transparent generalization of Legendre’s
dual transformation for the tensor fields.

In the second ‘singular’ case, when γ = 0 (or σ = 0) in Equation (8), the first term in
the right-hand side of each of these equations equals zero. Therefore, these equations take
the from of pure algebraic equations

π0σ =
∂L

∂g0σ,0
=

1
2
√
−gB((0σ)0|µνk)gµν,k , and πσ0 =

∂L
∂gσ0,0

=
1
2
√
−gB((σ0)0|µνk)gµν,k (14)

for σ = 0, 1, . . . , d − 1. From this equations one finds finds π0σ = πσ0. Note also that
these equations contain no velocities at all, i.e., we cannot express the g0σ,0 velocities in
terms of the momenta π0σ and vice versa. Each of the equations, Equation (14), directly
determines the momentum π0σ as a cubic polynomial of the contravariant components of
the metric tensor gαβ which is multiplied by an additional factor

√−ggµν,k. In other words,
the following d functions

φ0σ = π0σ − 1
2
√
−gB((0σ)0|µνk)gµν,k = φσ0 , (15)

where σ = 0, 1, . . . , d − 1, must be equal zero during actual physical motions (or time-
evolution) of the free gravitational field. In other words, during any actual motion (or
time-evolution) of the free gravitational field the d additional conditions (or constraints)
φ0σ = 0 must be obeyed for the Hamiltonian dynamical variables, since otherwise such a
motion is not possible. We have to emphasize that the equations φ0σ = 0 are correct only on
the true Hamiltonian trajectories (or curves) (x0, gαβ(x0), πµν(x0)) of the free gravitational
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field. Outside these trajectories, only some, or even none of these equations are satisfied.
In [1] Dirac proposed to write these additional conditions in the symbolic form φ0σ ≈ 0
(for σ = 0, 1, . . . , d− 1) with a different sign ≈ from the usual (=). These ‘weak’ equations
are the primary constraints of the given Hamiltonian formulation (see, e.g., [1,3]). In other
words, during time-evolution of the free gravitational field we always have d primary
constraints for the d(d + 1) Hamiltonian variables {gαβ, πµν} and this number d never
changes if one applies canonical transformations of the Hamiltonian dynamical variables
(see below). This is a partial case of the law of inertia for the first-class constraints which is
discussed below.

Now, by applying the Legendre transformation to the known Γ− Γ Lagrangian density
L, of the metric gravity, Equation (6), and excluding all space-like velocities gmn,0, we can
derive the explicit formulas for the total Ht and canonical HC Hamiltonians of the metric
GR. Formally, these quantities are the Hamiltonian densities, but in this study we try to
avoid any mention of Hamiltonian densities, since constant play with words ‘Hamiltonians’
and ‘Hamiltonian densities’ substantially complicates explanations and often leads to
various confusions. In particular, the total Hamiltonian Ht of the gravitational field in
metric gravity derived from the Γ− Γ Lagrangian density L, Equation (5), is written in
the form

Ht = gαβ,0παβ − L = gpq,0πpq + g0σ,0φ0σ − L = gpq,0πpq − L + g0σ,0φ0σ

= HC + g00,0φ00 + g0k,0φ0k + gk0,0φk0 = HC + g00,0φ00 + 2g0k,0φ0k, (16)

where φ0σ = π0σ − 1
2
√−gB((0σ)0|µνk)gµν,k are the primary constraints, while g0σ,0 are the σ

velocities (or temporal velocities) and HC is the canonical Hamiltonian of the metric gravity

HC =
1√−gg00 Imnpqπmnπpq − 1

g00 ImnpqπmnB(pq0|µνk)gµν,k (17)

+
1
4
√
−g
[ 1

g00 ImnpqB((mn)0|µνk)B(pq0|αβl) − Bµνkαβl
]

gµν,kgαβ,l ,

which does not contain any primary constraint φ0σ. The total Hamiltonian Ht = HC + g0σ,0φ0σ

is a scalar function, which is defined in the d(d + 1) even-dimensional phase space{
gαβ, πµν

}
, where all components of the metric gαβ and momentum πµν tensors have

been chosen as the basic Hamiltonian variables. The corresponding d(d + 1) dimensional
space of Hamiltonian variables must be endowed with a symplectic (or anti-symmetric)
bilinear form (Poisson brackets), which turns this space into a symplectic, even-dimensional
phase space. The definition of Poisson brackets between all basic dynamical variables, i.e.,
between coordinates gαβ and momenta πµν, is discussed in the next Section. At the same
time the spatial (covariant) components of the metric tensor gmn and spatial (contravariant)
components of momenta πpq form another d(d− 1) dimensional space, which is also trans-
formed (by the same Poisson brackets) into a symplectic, even-dimensional phase space of

the d(d− 1) space-like Hamiltonian variables
{

gmn, πpq
}

.

4. Poisson Brackets

In general, the Poisson brackets (or PB, for short) are the fundamental and crucially
important tools of any correct Hamiltonian theory. The correct definition of these Pois-
son brackets is the central part of numerous Hamiltonian formulations developed for
different physical systems of particles, fields and their combinations. As is well known
(see, e.g., [11–14]) the Poisson bracket is an antisymmetric, bi-linear form defined in the
2M-dimensional phase space which is, in fact, a cotangent space to an M-dimensional
manifold located in the position space. More accurate definition of the Poisson brackets
can be found, e.g., in [14]. For arbitrary vectors X, Y, Z from this phase space we can define
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the bi-linear form which is designated below as [X, Y] and it obeys the four following rules
(or axioms)

[X, Y] = −[Y, X] (antisymmetry) ,

[a1X1 + a2X2, Y] = a1[X1, Y] + a2[X2, Y] (linearity in either member) ,

[XY, Z] = [X, Z]Y + X[Y, Z] (the product law) ,

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 (Jacobi identity) ,

where each of the X, Y and Z vectors belongs to the 2M dimensional phase space. In metric
gravity the d(d + 1)-dimensional phase space includes the d(d+1)

2 generalized coordinates

gαβ and d(d+1)
2 momenta πµν, or contravariant components of the momentum tensor π. An

additional (or fifth) fundamental rule for the Poisson brackets, which is often called the
‘time-evolution’ of the Poisson bracket, is written in the form

∂

∂t
[X, Y] = [

∂X
∂t

, Y] + [X,
∂Y
∂t

] , and
∂

∂b
[X, Y] = [

∂X
∂b

, Y] + [X,
∂Y
∂b

]

where t is the temporal variable (or time, for short), while b is an arbitrary numerical
parameter.

In the Hamiltonian version of metric gravity the basic dynamical variables are the
generalized ‘coordinates’ gαβ and momenta πµν defined above. In respect to this the Poisson
brackets between the two functions of these dynamical variables are defined as follows:

[ f1, f2] =
∂ f1

∂gαβ

∂ f2

∂παβ
− ∂ f2

∂gαβ

∂ f1

∂παβ
=

∂ f1

∂gαβ

∂ f2

∂παβ
− ∂ f1

∂παβ

∂ f2

∂gαβ
. (18)

The Poisson brackets between the generalized coordinates and momenta have the
fundamental value for the purposes of this study. They are:

[gαβ, πµν] =
∂gαβ

∂gγσ

∂πµν

∂πγσ
−

∂gαβ

∂πγσ

∂πµν

∂gγσ
= ∆µν

αβ =
1
2

(
gµ

α gν
β + gν

αgµ
β

)
=

1
2

(
δ

µ
α δν

β + δν
αδ

µ
β

)
, (19)

where gµ
α = δ

µ
α (= δα

µ) is the substitution tensor [4] and symbol δ
µ
β is the Kronecker delta,

while the notation ∆µν
αβ stands for the gravitational (or tensor) delta-symbol. The three

following properties of this delta-symbol are obvious and very useful in calculations
of many Poisson brackets: (1) ‘horizontal’ index symmetry ∆µν

αβ = ∆νµ
αβ = ∆µν

βα = ∆νµ
βα,

(2) ‘vertical’ index symmetry ∆µν
αβ = ∆αν

µβ = ∆µα
νβ = . . . = ∆αβ

µν, and (3) the product property:

∆νµ
ρσ∆ρσ

αβ = ∆µν
αβ. By using these properties we can write that [gαβ, πµν] = ∆µν

αβ = ∆αβ
µν =

[gµν, παβ]. Note again that the total number of dynamical Hamiltonian variables in metric
gravity is always even and equals d(d + 1). The Poisson bracket, Equation (19), explains
why in some papers the gravitational momenta πµν are called and considered as conjugate
dynamical variables for the corresponding covariant components of metric tensor gµν

(our coordinates).
Other fundamental Poisson brackets between basic dynamical variables of the met-

ric gravity equal zero identically, i.e., [gαβ, gµν] = 0 and [παβ, πµν] = 0. In general,
our dynamical variables depend upon one temporal and (d − 1) spatial coordinates
x0, x1, . . . , xd−1 = (x0, x). In this case we have to apply the following definition of the
Poisson brackets, e.g.,

[gαβ(x̄, t), πµν(x̄′, t)] = ∆µν
αβδd−1(x̄− x̄′) , (20)

where δd−1(ȳ) is the usual delta-function in the position (d− 1)-space. Such a generalization
of the Poisson brackets is straightforward and simple, but in this study we do not want to
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complicate our system of notations. In respect to this, below we shall always deal with the
Poisson brackets of two quantities taken at the same spatial point.

The explicit form of the fundamental Poisson brackets, Equation (19), allows one to
derive the following formulas for slightly different Poisson brackets

[gαβ, πµν] = −1
2

(
gαµgβν + gανgβµ

)
= −gαγ∆µν

γσgβσ = −[πµν, gαβ] and [gαβ, gµν] = 0. (21)

which contain the contravariant components of the metric tensor gαβ. Now, by using the
Poisson brackets, Equations (19) and (21), defined above we can determine the Poisson
brackets of more complicated quantities and functions. As the first example we calculate
the following Poisson bracket

[gαβgλσ, πµν] = [gαβ, πµν]gλσ + gαβ[gλσ, πµν] = ∆µν
αβgλσ − 1

2
gαβ

(
gλµgσν + gλνgσµ

)
. (22)

Let us assume that in this formula λ = β. In this case gαβgβσ = gσ
α = δσ

α and it is clear
that [gσ

α , πµν] = 0. On the other hand, if λ = β, then for the right-hand side of Equation (22)
one finds:

∆µν
αβgβσ − 1

2
gαβ

(
gβµgσν + gβνgσµ

)
=

1
2

(
δ

µ
α gνσ + δν

αgµσ
)
− 1

2

(
δ

µ
α gνσ + δν

αgµσ
)
= 0 , (23)

which means that for λ = β the equation, Equation (22), is written in the form 0 = 0 and
we have no contradiction here. Now, consider the following Poisson bracket [gαβgαβ, πµν].
As is well known from tensor calculus (see, e.g., [4]) gαβgαβ = d, where d is the dimension
of tensor space. Therefore, this Poisson bracket is reduced to the equation

0 = [gαβ, πµν]gαβ + gαβ[gαβ, πµν] or ∆µν
αβgαβ − 1

2
gαβ

(
gαµgβν + gανgβν

)
= 0 ,

which is easily transformed to an obvious identity gµν − gνµ = 0. Analogously, it is
easy to find a number of remarkable relations between the Poisson brackets [gαβ, πµν]

and [gαβ, πµν], temporal derivatives of the covariant and contravariant components of the
metric tensor and Poisson brackets of these components with the canonical Hamiltonian
HC which directly follows from Equation (22) (see, also our ‘technical’ Appendix A):

[gσγ, πµν] = −gασ[gαβ, πµν]gβγ = −gασ∆µν
αβgβγ = −1

2

(
gσµgγν + gσνgγµ

)
, (24)

dgσγ

dt
= −gασ

(dgαβ

dt

)
gβγ , [gσγ, HC] = −gασ[gαβ, HC]gβγ . (25)

The second example is of great interest for analytical calculations of the Poisson
brackets between components of momenta and some functions of the coordinates only. Let
F(gµν, gλσ) be an arbitrary analytical function (or functional) of the co- and contravariant
components of the metric tensor. The Poisson bracket of this F(gµν, gλσ) function and
components of momentum tensor παβ takes the form

[παβ, F(gµν, gλσ)] = − ∂F
∂gµν

[gµν, παβ]− ∂F
∂gσλ

[gσλ, παβ]

=
1
2

( ∂F
∂gσλ

)(
gσαgλβ + gσβgλα

)
−
( ∂F

∂gµν

)
∆αβ

µν . (26)

In particular, for the F(gµν) function (or functional) of the covariant components of
the metric tensor only this Poisson bracket can be written in the form

[παβ, F(gµν)] = −
∂F

∂gµν
[gµν, παβ] = −

( ∂F
∂gµν

)
∆αβ

µν . (27)
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In the case when F = Φ(gµν)gρσ,k we obtain

[παβ, Φ(gµν)gρσ,k] = −
( ∂Φ

∂gµν

)
∆αβ

µνgρσ,k − ∆αβ
ρσ

(
Φ
)

,k
= −

( ∂Φ
∂gαβ

)
gρσ,k −

(
Φ
)

,k
∆αβ

ρσ (28)

Here we have applied the integration by parts (see, also discussion at the end of this
Section). The third example includes Poisson brackets between space-like components of
the momenta πmn and components of the Dirac space-like tensor epq and/or epq. They are

[πmn, epq] = −∆mn
pq , and [πmn, epq] =

1
2

(
gpmgqn + gpngqm

)
. (29)

As follows from the first PB in Equation (29) and two other groups of Poisson brackets:
[πmn, πpq] = 0, [emn, epq] = 0 these d(d− 1) variables emn and πpq are the canonical Hamil-
tonian variables in the d(d− 1)-dimensional subspace of space-like dynamical variables of
metric gravity. These PB play an important role in this study (see below).

From the formula, Equation (27), one also finds

[παβ, F(gµν)] = −
( ∂F

∂gµν

)
∆αβ

µν = −
( ∂F

∂gαβ

)
∆µν

αβ = [πµν, F(gαβ)] , (30)

or simply [παβ, F(gµν)] = [πµν, F(gαβ)]. The principal moment here is the presence of tensor
∆-symbol in these Poisson brackets. This equality simplifies calculations of a large number
of Poisson brackets which are needed to show canonicity of different sets of Hamiltonian
dynamical variables. Moreover, by using the formula, Equation (27), we can determine
another group of important Poisson brackets between momenta and analytical functions
of the fundamental determinant g and its square root

√
g (or

√−g as it is designated in
the metric gravity). The general expression for the Poisson bracket between such a F(g)
function and παβ is derived as follows

[F(g), παβ] =
(∂F

∂g

)( ∂g
∂gµν

)
[gµν, παβ] =

(∂F
∂g

)
ggµν∆αβ

µν =
(∂F

∂g

)
ggαβ . (31)

or [παβ, F(g)] = −
(

∂F
∂g

)
ggαβ. Now, if F(g) = gx, then one finds [παβ, F(g)] = −xF(g)gαβ.

In particular, if F(g) =
√−g and F(g) = 1√−g we obtain from the last equation

[
√
−g, παβ] = − 1

2
√−g

ggαβ =
1
2
√
−ggαβ and [

1√−g
, παβ] = − 1

2
√−g

gαβ , (32)

respectively. Another Poisson bracket is often needed in operations with both primary and
secondary constraints:

[π0γ,
gσλ

g00 ] =
1

2g00

(
g0σgγλ + gγσg0λ − 2gσλg0γ

)
. (33)

If λ = 0 here, then one finds

[π0γ,
gσ0

g00 ] =
1

2g00

(
gγσg00 − g0σg0γ

)
. (34)

Now, if we assume that σ = 0 here, then this Poisson bracket equals zero identically
(as expected).

To conclude our discussion of the Poisson brackets let us make the two following
remarks. First, as it was shown in [6,15] in metric gravity the Poisson bracket(s) between two
primary constraints φ0σ and φ0γ, Equation (15), are always equal zero, i.e., [φ0σ, φ0γ] = 0.
In fact, the explicit derivation of this formula is very good and relatively simple exercise in
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calculations of Poisson brackets (see, also discussion below). Thus, in the metric gravity all
primary constraints commute with each other. This drastically simplifies many important
steps of our procedure which is described below. Second, we have to explain calculations
of the Poisson brackets between momenta and expressions which include some spatial
derivatives of the metric tensor such as Φ(gµν)gγλ,k, Φ(gµν)gγλ,kgρσ,m, gγλ,kgρσ,m, etc. These
and other similar expressions arise very often in actual Hamiltonian formulations, and
they can be found, e.g., in operations with both canonical and total Hamiltonians, primary
and secondary constraints and other expressions. Analytical calculations of such Poisson
brackets by using ‘integration by parts’ (see, the text around Equation (28)). To explain a
few hidden details of such calculations let us consider the following Poisson brackets

[παβ, Φ(gµν)gγλ,pgρσ,q] = −
∂Φ(gµν)

∂gµν
∆αβ

µνgγλ,pgρσ,q +
[
Φ(gµν)gρσ,q

]
,p

∆αβ
γλ +

[
Φ(gµν)gγλ,p

]
,q

∆αβ
ρσ

= − ∂Φ
∂gµν

gγλ,pgρσ,q∆αβ
µν + Φ,pgρσ,q∆αβ

γλ + Φgρσ,qp∆αβ
γλ + Φ,qgγλ,p∆αβ

ρσ + Φgγλ,pq∆αβ
ρσ , (35)

where Φ(x) is a scalar function of tensor argument(s). This formula can be simplified even
further, but our goal here is to illustrate analytical computations of the Poisson brackets of
momenta and some special functions and expressions which contain spatial derivatives
of the metric tensor. In particular, the formula, Equation (35), explains the presence of
second-order spatial derivatives of the metric tensor in some formulas below.

All Poisson brackets mentioned above are crucially important for the goals of this study,
since they define the unique symplectic structure which is closely related to our d(d + 1)-
dimensional (tensor) phase space {gαβ, πµν}, which is closely related to the original d-
dimensional Riemann space in the metric gravity. In other words, such a simplectic structure
is uniformly determined by the Poisson brackets between the covariant components of
the fundamental metric tensor gαβ and contravariant components πµν of the momentum
tensor. Finally, we have to note that there is an alternative approach to develop Hamiltonian
formulations of the metric gravity which is based on the use of covariant components of
momenta πµν. In some sense this new approach is simpler than the method discussed
above, but its applications lead to re-consideration of fundamental principles of the classical
Hamiltonian procedure, operations in the dual phase space and analysis of combinations
of both straight and dual phase spaces for the tensor fields. This alternative approach and
arising dual phase space are briefly considered below.

Covariant Components of Momenta—On the Dual Phase Space

In actual physical theories of tensor fields an arbitrary tensor can be represented either
by its covariant, or contravariant components. For an arbitrary Riemann space relations
between co- and contravariant components of the same vector, or tensor-like quantity are
determined by the co- and contravariant components of the fundamental metric tensor gαβ

and gαβ. Therefore, one can always represent the same tensor equations in both covariant
and contravariant forms. In general, many problems from tensor calculus can be simplified
(even substantially), if they are re-written in the contravariant components of the same
tensors and vice versa (some examples are considered in [4,5]). The metric gravity can be
one of such problems, since both canonical and total Hamiltonians, Equations (17) and (16),
contain multiple products of many contravariant components of the fundamental tensor
gαβ. Therefore, if we can properly define the covariant components of momenta πλσ, then
our original problem can drastically be simplified.

Let us define the covariant components of momenta by the relation πλσ = gλµπµνgνσ.
Note here that in any Hamiltonian formulation of the metric gravity, the role of fundamental
tensor gαβ is always twofold. First, it is traditionally used to raise and lower indices in
vector and tensor expressions. On the other hand, in all Hamiltonian formulations of the
metric gravity the components of the fundamental tensor gαβ are traditionally chosen as
the generalized coordinates, i.e., dynamical variables which are dynamically conjugate
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to the corresponding momenta πµν. Such a twofold role of the fundamental tensor gαβ

(and gαβ) in Hamiltonian metric gravity leads to an additional problem, since the momenta
πµν do not commute with the coordinates gαβ. In turn, this means that the following
definitions of covariant components of momenta: πλσ = gλµgνσπµν, πλσ = gλµπµνgνσ

and πλσ = πµνgλµgνσ are not equivalent to each other. Indeed, it is easy to show that

πλσ = gλµgνσπµν 6= gλµπµνgνσ, since [gνσ, πµν] = ∆µν
νσ = 1

2

(
δ

µ
ν δν

σ + δ
µ
σ

)
6= 0 in the

general case. To avoid repetitive discussions of similar problems in this study we shall
always define the covariant components of momenta by the relation: πλσ = gλµπµνgνσ

mentioned above.
By using this definition of covariant momenta we can determine the following

Poisson brackets

[gαβ, πµν] =
1
2

(
gαµgβν + gανgβµ

)
and [gαβ, πµν] = −

1
2

(
gα

µgβ
ν + gα

ν gβ
µ

)
= −∆αβ

µν (36)

and also [gαβ, gµν] = 0 and [gαβ, gµν] = 0. The formulas Equations (31), (32) and others can
be re-derived for the covariant components of momentum παβ:

[F(g), παβ] = −
( ∂F

∂g

)
ggαβ , [

√
−g, παβ] = −

1
2
√
−ggαβ , [

1√−g
, παβ] = −

1
2
√−g

gαβ . (37)

These Poisson brackets are also important to perform analytical calculations in the
Hamiltonian formulation of the metric gravity. As follows from these formulas the dy-
namical Hamiltonian variables {gαβ, πµν} form another set of Hamiltonian dynamical
variables which is often called the dual set of Hamiltonian (dynamical) variables. In gen-
eral, this dual set of Hamiltonian variables {gαβ, πµν} can also be used to develop another
Hamiltonian formulation of the metric gravity which is simpler than the approach de-
scribed above. Thus, for the tensor field in metric gravity we always have two sets of
canonical Hamiltonian variables: (a) straight (or natural) set {gαβ, πµν}, and (b) dual set
of dynamical variables {gαβ, πµν} [10]. Further analysis [10] shows that the two similar
sets of dynamical Hamiltonian variables (straight and dual sets) always arise and exist in
any Hamiltonian formulation of the tensor field theory and they are related to each other
by a special canonical transformation. Moreover, there is a beautiful formula [10] for the
Poisson brackets which unites both straight and dual sets of dynamical variables defined
for the same Hamiltonian system

[gαβ, πµν] = ∆µν
αβ = [παβ, gµν] . (38)

Another interesting Poisson bracket in the metric gravity is

[παβ, πµν] =
1
2

(
δ

µ
α πν

β + δν
απ

µ
β + δ

µ
β πν

α + δν
βπ

µ
α

)
= −[πµν, παβ] , (39)

where π
ρ
κ = gρλπλκ = gκλπλρ. The last equality means that the co- and contravariant

components of the momentum tensor do not commute with each other. On the other
hand, if they commuted, then the direct and dual sets of simplectic dynamical variables
in metric gravity would be equivalent to each other and there would be no real need
to keep these two sets of dynamical variables (straight and dual). Indeed, in this case
one can always express one set of dynamic variables in terms of another set and vice
versa. Such cases include all Hamiltonian theories developed for the truly scalar fields
and those fields which are represented by affine vectors and tensors. However, this is
not true for the metric gravity and for other theories developed for actual tensor fields in
multi-dimensional Riemann spaces of non-zero curvature. In general, to develop the truly
correct and covariant Hamiltonian formulation for many dynamical system of tensor fields
it is much better to deal with the mixed set of 2d(d + 1) Hamiltonian dynamical variables.
This big set is a unification of the two different d(d + 1)-dimensional sets of Hamiltonian
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dynamical variables: (a) the straight set {gαβ, πµν}, and (b) the corresponding dual set
{gαβ, πµν}. Applications of the two sets of dynamical variables makes our Hamiltonian
formulation complete, truly covariant and physically transparent. In addition to this, an
instant use of the direct and dual sets of Hamiltonian dynamical variables allows one to
write canonical transformations of the Hamiltonian dynamical variables in the most general
and powerful form.

5. Hamilton Equations of Motion

The main goal of any Hamiltonian formulation of some physical theory is to derive
the correct Hamilton equations of motion by following the well established and physically
transparent Hamilton procedure which has its internal logic based on Stokes’s theorem
in multi-dimensions. In general, the Hamilton method always provides a remarkable
simplicity and universality in applications to actual dynamical systems and fields. Each of
the Hamilton equations describes the complete time-evolution of one of the Hamiltonian
dynamical variables. These correct Hamilton equations (or canonical equations) for the
metric gravity are written in the following form

dgαβ

dx0 = [gαβ, Ht] and
dπµν

dx0 = [πµν, Ht] , (40)

where x0 is the temporal variables and expressions in the right-hand sides of both equations
are the Poisson brackets. In other words, the first-order time derivative of each of the
Hamiltonian variables is proportional to the corresponding Poisson bracket of this variable
with the total Hamiltonian Ht, Equation (16). The explicit form of these Hamiltonian
equations and their solutions are discussed in [10]. In particular, for space-like components
of the metric tensor gij one finds the following system of Hamilton equations [10]:

dgij

dx0 = [gij, Ht] = [gij, HC] =
2√−gg00 I(ij)pqπpq − 1

g00 I(ij)pqB(pq0|µνk)gµν,k (41)

=
2√−gg00 I(ij)pq

[
πpq − 1

2
√
−gB(pq0|µνk)gµν,k

]
,

where the notation I(ij)pq designates the (ij)-symmetrized value of the Iijpq tensor defined
in Equation (11), i.e.,

I(ij)pq =
1
2

(
Iijpq + Ijipq

)
=

1
d− 2

gijgpq −
1
2
(gipgjq + giqgjp) . (42)

Now, let us consider the Poisson brackets for the covariant components g0σ of the
fundamental tensor. It is clear that the Poisson bracket of any g0σ component with the
canonical Hamiltonian HC, Equation (17), equals zero identically. Therefore, the Hamilton
equations of motion for the covariant g0σ(= gσ0) components of the metric tensor take
the form

dg0σ

dx0
= [g0σ, Ht] = [g0σ, Ht − HC] = g0σ,0 (43)

and analogous equations for the gγ0 components. These formulas are, in fact, the definitions
of the σ-velocities, where σ = 0, 1, . . . , d− 1, which essentially coincide with the coefficients
in front of the primary constraints in the total Hamiltonian, Equation (16). As follows from
Equation (25) there is no need to derive and solve the equations of motion for the covariant
components of the metric tensor gαβ. Indeed, if we know the time evolution of all covariant
components gµν, then from Equation (25) one easily finds the exact description of time
evolution for each gαβ component.

In general, the Hamilton equations of motion for the contravariant components of
momenta παβ are significantly more complicated (see, e.g., [10]) than analogous equations
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for the gαβ components (our coordinates). However, all these complications are purely
technical and they are mainly related to a large number of Poisson brackets which must be
determined in order to describe the complete time-evolution of all momentum variables
πµν. To understand the scale of this problem let us present here the Hamiltonian equations
of motion for the contravariant space-like components of the momentum tensor πab:

dπab

dx0
= [πab, Ht] = [πab, HC] = −

1
g00

[ Imnpq√−g
, πab

]
πmnπpq

+
1

g00

[
Imnpq, πab

]
πmnB(pq0|µνk)gµν,k +

1
g00 Imnpqπmn

[
B(pq0|µνk), πab

]
gµν,k + . . . . (44)

This formula indicates clearly that in the Hamilton equations in metric gravity which
describe time-evolution of momenta are significantly more complicated than analogous
equations for time-evolution of the generalized coordinates gαβ. In general, the Poisson
bracket [πab, Ht] is determined term-by-term.

As follows from the Hamilton equations presented above the Hamilton method itself
has a number of problems when it is applied to the metric gravity, or other dynamical
systems with first-class constraints. First, we note that to write Hamilton equations of
actual motion we need only the canonical Hamiltonian HC (not the total Hamiltonian Ht).
Indeed, these equations are:

dgmn

dx0
= [gmn, HC] and

dπpq

dx0
= [πpq, HC] (45)

and there are d(d− 1) of these Hamilton equations of actual motion. Second, our Hamilton
equations mentioned above, Equation (45), do not contain temporal momenta π0µ and/or
πν0 at all. This means that in these frames we cannot describe time-evolution of the tempo-
ral components of metric tensor g0µ and gν0 (our coordinates). Moreover, it is not entirely
clear where we can obtain these equations, since all these temporal momenta are included
in our Hamiltonian formulation of the metric gravity only as primary constraints. Formally,
to solve this problem introduce in the new Hamilton equations either the total Hamiltonian
Ht, or the difference Ht − HC, which is a linear combination of the primary constraints
φ0γ, Equation (15). However, the coefficients in this linear combination are the σ-velocities,
which are, in fact, arbitrary parameters of the method, rather than its dynamical variables.
These arguments lead to an unambiguous conclusion that the Hamiltonian method itself
must substantially be modified, if we want to apply it successfully to constrained dynamical
systems, including the metric gravity. Such a modification was carried out by Dirac in his
papers [1–3] and will be analyzed in detail in Section 7, but here we just want to mention
its main steps.

First of all, Dirac accepted all Hamilton equations from Equations (45) as the equations
which correctly describe the actual motions in our dynamical system. Thus, these d(d− 1)
Hamilton equations have been incorporated in the new Dirac’s modification of the classical
Hamilton method. At the second step, Dirac rejected the d equations, Equation (43), that
are formally correct but practically useless. Instead, these equations have been replaced by
an equal number of equations which describe time-evolution of the primary constraints φ0σ

and define the new secondary constraints χ0σ, i.e., dφ0σ

dx0
= [φ0σ, Ht] = [φ0σ, HC] = χ0σ. Here

we apply the fact that all primary constraints commute with each other, i.e., [φ0σ, φ0γ] = 0
(see above). At the next (third) step Dirac explicitly derived the Hamilton equations

which describe time-evolution of all d secondary constraints χ0σ: dχ0σ

dx0
= [χ0σ, Ht] =

[χ0σ, HC] = Dσ
c = aα

µ(g)χ0µ + bα
µ(g)

(
f k(g)χ0µ

)
,k

, where the function (or functional) Dσ
c

is the σ-component of Dirac closure which is a quasi-linear combination of the same
secondary constraints and total spatial derivatives of expressions which contain the same
secondary constraints. All other temporal derivatives of the Dirac closure will produce
only similar quasi-linear combinations of secondary constraints and a few total spatial
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derivatives of them. The process of time-evolution is formally closed, since we will never
see anything new in this chain. Briefly, this means that in Dirac’s modification of the
classical Hamiltonian method all d primary and d secondary constraints are considered
as the new Hamiltonian dynamical variables. Note that the equations which describe the
time-evolution of these new dynamical variables are written in a manifestly Hamilton form.

Let us show how this procedure works in the case of metric gravity. The Poisson
brackets between the primary constraints φ0σ and canonical Hamiltonian are [6]:

[ φ0σ, HC] = −
g0σ

2
√−gg00 Imnpqπmnπpq +

g0σ

2g00 ImnpqπmnU(pq0|µνk)gµν,k +
[
πσk

,k +
(

πpkeqσ

− 1
2

πpqekσ)gpq,k

]
−
√−g

8

( g0σ

g00 ImnpqB((mn)0|µνk)B(pq0|αβt) − g0σBµνkαβt
)

gµν,kgαβ,t

+

√−g
4g00 ImnpqB((mn)0|µνk)gµν,kgαβ,t

[
gσt
(

g00gpαgqβ + gpqg0αg0β − 2gαqg0pg0β
)

− gσp
(

2g00gqαgtβ − g00gαβgqt + gαβg0qg0t − 2gqαg0βg0t − 2gtαg0βg0q + 2gqtg0αg0β
)

+ g0σ(2gβtgαpg0q − 2gpαgqβg0t − 2gpqgtβg0α + 2gptgqβg0α + gpqgαβg0t − gtpgαβg0q)
]

−
√−g

4
gµν,kgαβ,t

[
gσt(gαµgβνg0k + gµνgαtg0β − 2gµαgkνg0β)

+ g0σ(2gαtgβµgνk − 3gtµgνkgαβ − 2gµαgνβgkt + gµνgktgαβ + 2gµtgνβgkα)

+ gσµ
(
(gαβgνt − 2gναgtβ)g0k + 2(gβνgkt − gβkgtν)g0α + (2gkβgαt − gαβgkt)g0ν

)]
−
√−gg00

2
Epqtσ

( 1
g00 ImnpqB((mn)0|µνk)gµν,k

)
,t
−
√−g

2
B((σ0)k|αβt)gαβ,kt , (46)

where U(pq0|µνk) is the symmetrized form of the following expression

Uαβ0µνk = B(αβ0|µνk) − g0kEαβµν + 2g0µEαβkν (47)

and σ = 0, 1, . . . , d− 1. Thus, the corresponding Poisson brackets of the primary constraints
with the canonical Hamiltonians HC are the new functions of generalized coordinates gαβ

(or gσγ) and momenta πµν. In respect to the original terminology introduced by Dirac (see,
e.g., [3]) these χ0σ functions are the secondary constraints of this Hamiltonian formulation.
Briefly, the definition of secondary constraints is written in the form: χ0σ = [φ0σ, HC],
where σ = 0, 1, . . . , d− 1. This means that in metric gravity we always have d secondary
constraints χ0σ (= χσ0). On actual Hamiltonian trajectories (and only on these trajectories) of
the free gravitational field these secondary constraints must be equal zero, i.e., we can write
the following weak equations χ0σ ≈ 0 for σ = 0, 1, . . . , d− 1. Note also that the Poisson
brackets between the primary and secondary constraints are [φ0γ, χ0σ] = 1

2 gγσχ00 [10]. It
can also be shown that all primary φ0λ and secondary constraints χ0σ which arise during
this Hamiltonian formulation of the metric gravity are the first-class constraints [3].

At the next step of the original Dirac procedure [1–3] we have to determine the

temporal derivatives of all secondary constraints, i.e., dχ0σ

dx0
= [χ0σ, Ht] = [χ0σ, HC] +

[χ0σ, g00,0φ00 + 2g0k,0φ0k]. The first Poisson brackets is

dχ0σ

dx0
= [χ0σ, HC] = −

2√−g
Imnpqπmn

( gσq

g00

)
χ0p +

1
2

gσkg00,kχ00 + δσ
0 χ0k

,k

+
[
−2

1√−g
Imnpkπmn gσp

g00 + Imkpq

( gσm

g00

)
U(pq)0µνl gµν,l

]
χ0k

−
[

g0σg00,k + 2gnσg0n,k +
gnσg0m

g00 (gmn,k + gkm,n − gkn,m)
]
χ0k = Dσ

c , (48)
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where Dσ
c is the σ-component of the Dirac closure, U(pq)0µνk is the quantity Upq0µνk from

Equation (47) which is symmetrized upon all p ↔ q permutations. The second Poisson

bracket in the original expression for dχ0σ

dx0
takes the form

[χ0σ, g00,0φ00 + 2g0k,0φ0k] = −1
2

g0σg00,0χ00 − g0kg0k,0χ00 = −1
2

(
g0σg00,0 + 2g0kg0k,0

)
χ00 (49)

and it is proportional to the secondary constraint χ00. Thus, the Poisson brackets [χ0σ, Ht]
and [χ0σ, HC] are written as a linear combinations with field-dependent coefficients (we
call them quasi-linear combinations) of the secondary constraints χ0γ only. The [χ0σ, HC]
Poisson bracket is called the σ-component of Dirac closure Dσ

c , or the Dirac σ-closure for
the Hamiltonian formulation of metric gravity. In some old papers the Dirac closure has
been defined as the [χ0σ, Ht] Poisson bracket. The difference between these two definitions
is proportional to the secondary constraint χ00 (see, Equation (49)), and we do not have
any principal contradiction between these two definitions of Dirac’s closure. Furthermore,
note that this expression for Dirac closure, Equation (48), written in terms of secondary
constraints only, is one of three possible results in the original Dirac procedure [2,3]. Briefly,
this means that our Hamiltonian formulation of metric gravity does not lead either to any
constraints of higher order, e.g., tertiary constraints, or to any inconsistency which can be
fatal for the whole theory based on the Γ− Γ Lagrangian, Equation (5) [3]. Finally, we need
to say that in metric gravity the Dirac closure is a d-vector-like quantity in contrast with the
Maxwell d-dimensional electrodynamics of the free EM-field, where the Dirac closure is a
scalar which equals zero for the free EM-field [3,16].

Thus, in the metric gravity each primary constraint generates one secondary constraint
and the Dirac’s chain of first-class constraints ends at the secondary constraints. Finally, we
have d primary and d secondary first-class constraints, i.e., the total number of the first-class
constraints in metric gravity equals 2d. In this sense there is an obvious similarity between
the Hamiltonian approach for the Maxwell theory of multi-dimensional electromagnetic
field (see, e.g., [3,16]) and Hamiltonian formulation of the metric gravity. Furthermore,
all Hamiltonian formulations of different physical fields, which contain equal numbers
of the primary and secondary first-class constraints, are quite similar to each other. The
source of such a similarity can be traced back to the fact that the original Lagrangian density
(LΓ−Γ, Equation (5), in our case) is written as a quadratic-linear combination of velocities
(or field-velocities).

In conclusion we want to note that there is a direct relation which allows one to
express the canonical Hamiltonian HC in terms of the secondary constraints χ0σ and total
spatial derivatives

HC = −2g0σχ0σ +
(

2g0mπmk
)

,k
+
[√
−g
(

g0γB((0γ)k|αβm) − g0nB((nk)0|αβm)
)

gαβ,m

]
,k

. (50)

This formula relates the canonical Hamiltonian HC which depends upon the space-
like momenta πmn (they belong to the pure dynamical d(d− 1)-dimensional space) and
secondary first-class constraints χ0σ which belong to the pure constraint, or non-dynamical
2d dimensional subspace (see below). From this point of view the equation, Equation (50),
is the ‘additionality’ relation between the dynamical and constraint parts of the total
Hamiltonian of the metric gravity.

6. Canonical Transformations

One of the main advantages of the Hamiltonian formulation(s) of any physical theory
is a possibility to apply various canonical transformations of the Hamiltonian dynamical
variables. In general, such canonical transformations can be used to simplify either the
canonical Hamiltonian HC, or to reduce this Hamiltonian to some special forms, e.g., to
its natural form [10]. In the Hamiltonian formulations of metric gravity the canonical
transformations of Hamiltonian dynamical variables are often used to simplify the explicit
form of secondary constraints. Indeed, the secondary constraints derived above in the
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form of Equation (46) are very complex. Applications and even simple operations with
secondary constraints written in such a form are very difficult. For instance, calculations
of the Poisson brackets between primary and secondary constraints, of between any pair
of secondary constraints produce formulas which are extremely cumbersome. For the
first time, this has been noticed by Dirac in his fundamental paper [1]. To resolve these
issues he used some canonical transformation of the original (Hamiltonian) dynamical
variables which were originally introduced in [15]. At that time nobody performed similar
transformations in metric gravity. This explains why Dirac in [1] started his transformations
from the original Γ− Γ Lagrangian density, Equation (5), which is also an ultimate source
of the Hamiltonian theory. As is well known in classical mechanics we can always add
the total temporal derivative to our original Lagrangian density without any change in
the Lagrange equations of motion. The same rule is true in the general relativity and
metric gravity, where we have also to take care about general covariance of all our formulas
and expressions.

Briefly, the relation between the Dirac Lagrangian density introduced in [1] and our
LΓ−Γ Lagrangian density, Equation (5), is written in the form LD = LΓ−Γ − L? [17], where
the additional Lagrangian density L? takes the manifestly covariant form

L? =
[(√

−gg00
)

,α

g0α

g00

]
,0
−
[(√

−gg00
)

,0

g0α

g00

]
,α
=
[(√

−gg00
)

,k

g0k

g00

]
,0
−
[(√

−gg00
)

,0

g0k

g00

]
,k

. (51)

This equation is reduced to the form

L? =
1
2
√
−gAαβ0µνkgαβ,0gµν,k =

1
2
√
−g
(

eαβekµg0ν − eµνekαg0β + ekα g0µg0νg0β

g00

− ekµ g0αg0νg0β

g00

)
gαβ,0gµν,k . (52)

The Aαβ0µνk coefficients defined in this equation have a few following symmetries.
First, these coefficients are symmetric upon the αβ ↔ βα and µν ↔ νµ permutations.
Second, the important property of the Aαβ0µνk coefficients is their anti-symmetry with
respect to interchange of the two pairs of Greek indices, i.e., Aαβ0µνk = −Aµν0αβk. Third,
these coefficients are linearly related with the coefficients B(αβ0|µνk) and Dirac tensor Eαβγσ

(both defined in Section 3). The explicit form of this relation is

Aαβ0µνk = B(αβ0|µνk) − g0kEαβµν + 2g0µEαβkν . (53)

Finally, the relation between the Dirac’s Lagrangian LD and our original LΓ−Γ La-
grangian of the metric gravity (see above) is written in the form [17]

LD = LΓ−Γ − L? = LΓ−Γ −
1
2
√
−gAαβ0µνkgαβ,0gµν,k , where L? =

1
2
√
−gAαβ0µνkgαβ,0gµν,k . (54)

From this equation one easily finds the following expression for the momenta pγσ in
the Dirac Hamiltonian formulation of the metric gravity

∂LD
∂gγσ,0

=
∂LΓ−Γ

∂gγσ,0
− ∂L?

∂gγσ,0
, or pγσ = πγσ − 1

2
√
−gA(γσ)0µνkgµν,k , (55)

where pγσ are the new momenta (or Dirac’s momenta), while πγσ are the old momenta de-
fined above in Section 3. The last equation in Equation (55) is, in fact, the explicit definition
of the Dirac’s momenta which is conveniently to write in the two following forms:

ppq = πpq − 1
2
√
−gA(pq)0µνkgµν,k and p0σ = π0σ − 1

2
√
−gA(0σ)0µνkgµν,k , (56)



Universe 2022, 8, 533 18 of 41

where A(0σ)0µνkgµν,k = 1
2

(
B(αβ0|µνk) + B(βα0|µνk)

)
and p0σ = pσ0. Thus, we have the two

sets of Hamiltonian dynamical variables for the two different Hamiltonian formulations
of the metric gravity: {gαβ, πµν} (the old set) and {gαβ, pµν} (the new set). Since these
two sets of dynamical variables are related to each other by a canonical transformation,
then the three following conditions for the Poisson brackets must be obeyed: [gαβ, gµν] =

0, [gαβ, pµν] = ∆µν
αβ and [pαβ, pµν] = 0, where all new variables are written in terms of

the old variables. For old variables we already know that the following equations are
true: [gαβ, gµν] = 0, [gαβ, πµν] = ∆µν

αβ and [παβ, πµν] = 0. In reality, applications of these
canonicity conditions needs some additional explanations, since for all Hamiltonian systems
such conditions are always derived and formulated in a different form which is based on
the ‘alternative’ Laplace (not Poisson!) brackets. Here we have to make one step aside and
discuss the general canonicity conditions for an arbitrary transformation of the Hamiltonian
dynamical variables.

6.1. General Conditions of Canonicity for Transformations of the Dynamical Variables

Let us assume that some Hamiltonian system is described by the 2n independent
dynamical variables {qk, pk}, where k = 1, . . . , n. In general, it is possible to replace these
‘old’ dynamical variables by the new dynamical variables {q̃i, p̃i}, where i = 1, . . . , n:

q̃i = φi(t, qk, pk) p̃i = ψi(t, qk, pk) , (57)

but after such a transformation of variables we want to be sure that the new Hamiltonian
system will be ‘dynamically equivalent’ to our original Hamiltonian system. Transforma-
tions of the dynamical variables each of which transforms one Hamiltonian system into
another Hamiltonian system, which is completely and unambiguously ‘dynamically equiv-
alent’ to the original system, are defined as the canonical transformations. In general, all
canonical transformations of any Hamiltonian system form the closed algebraic structure,
or group, for short (see, e.g., [10,11]). It was shown (by Jacobi) that for any time-dependent
canonical transformation of the dynamical variables, Equation (57), the following canonicity
condition (below, the main canonicity condition) must be obeyed

n

∑
k=1

p̃kdq̃k − H̃δt = c
( n

∑
k=1

pkdqk − H
)

δt− δF(t, qk, pk) , (58)

where c( 6= 0) is some real number which does not depend upon the time t. The function
F(t, qk, pk) is the Jacobi generating function, i.e., the function which generates this canonical
transformation. Vice versa, one can easily show that, if Equation (58) holds for some
transformation of the dynamical variables, then this transformation is canonical. For better
understanding of equations from this subsection we use the explicit sign of summation.

Moreover, since the valence c( 6= 0) does not depend upon the time, then by estab-
lishing the criteria of canonicity, we can always restrict ourselves (for more details, see,
e.g., [11]) to the time-independent canonical transformations only, i.e.,

q̃i = φi(qk, pk) p̃i = ψi(qk, pk) . (59)

For a canonical time-independent transformation the main condition, Equation (58), is
written in the form

n

∑
k=1

p̃kdq̃k = c
n

∑
k=1

pkdqk − δK(qk, pk) , (60)

where q̃k, p̃k (k = 1, . . . , n) are the new generalized coordinates and momenta, while qi, pi
(i = 1, . . . , n) are the old coordinates and momenta (old dynamical variables). Moreover,
in this equation K(qk, pk) = F(t, qk, pk), i.e., it is a short Jacobi generating function of
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the coordinates and momenta only, which coincides with the Jacobi generating function
F(t, qk, pk) taken at some fixed time t = t. The variation of K(qk, pk) is written in the form

δK = −
n

∑
i=1

(
Φiδqi + Ψiδpi

)
. (61)

On the other hand, by using the formula δq̃k = ∂q̃k
∂qi

δqi +
∂q̃k
∂pi

δpi in Equation (60) one
finds the following expression for the δK(qk, pk) variation:

δK = −
n

∑
i=1

[ n

∑
k=1

(
p̃k

∂q̃k
∂qi

)
−cpi

]
δqi −

n

∑
i=1

[ n

∑
k=1

(
pk

∂q̃k
∂pi

)]
δpi . (62)

By comparing Equations (61) and (62) one finds

Φi =
n

∑
k=1

p̃k
∂q̃k
∂qi
− cpi and Ψi =

n

∑
k=1

pk
∂q̃k
∂pi

. (63)

For canonical transformation(s) the expression in the left side of Equation (61) must be
a total differential. From here one finds three following conditions:

∂Φi
∂qj

=
∂Φj

∂qi
,

∂Ψi
∂pj

=
∂Ψj

∂pi
,

∂Φi
∂pj

=
∂Ψj

∂qi
, . (64)

By substituting the functions Φi and Ψi in these equations by their expressions from
Equation (63) one finds after a few additional and simple transformations:

n

∑
k=1

(∂q̃k
∂qi

∂ p̃k
∂qj
− ∂q̃k

∂qi

∂q̃k
∂qj

)
= 0 , or {qi, qj} = 0 , (65)

n

∑
k=1

(∂q̃k
∂pi

∂ p̃k
∂pj
− ∂q̃k

∂pi

∂q̃k
∂pj

)
= 0 , or {pi, pj} = 0 , (66)

n

∑
k=1

(∂q̃k
∂qi

∂ p̃k
∂pj
− ∂q̃k

∂pi

∂q̃k
∂qj

)
= cδij , or {qi, pj} = cδij , (67)

where δij is the Kronecker symbol and c is some numerical constant. The constructions
(or sums) which appear in these three equations are the Laplace brackets which are well
known in classical mechanics (see, e.g., [11,12]). The standard notation for the Laplace
brackets (see, e.g., [11,12]) is {, }. Each of these sums includes 2n functions (q̃k and p̃k) and
two variables only, e.g., either qi, qj, or pi, pj, or qi, pj. As follows from Equations (65)–(67)
some transformation of the dynamical variables will be canonical if (and only if) the three
groups of following conditions are obeyed: {qi, qj} = 0, {pi, pj} = 0 and {qi, pj} = cδij,
where c 6= 0 and (i, j) = 1, . . . , n, for all 2n new dynamical variables q̃k, p̃k (k = 1, . . . , n).

In reality, the original Laplace brackets are not convenient in applications. However,
as follows from the Appendix B these brackets can be replaced by the Poisson brackets,
each of which is the adjoint to the corresponding Laplace bracket. In terms of the Poisson
brackets the same criteria of canonicity are written in a different form (for more details,
see our Appendix B): [q̃i, q̃j] = 0 , [ p̃i, p̃j] = 0 , [q̃i, p̃j] = cδij, where (i, j) = 1, . . . , n and
c is the valence of this canonical transformation. These numerical values of the Poisson
brackets taken for c = 1 are used below as the criteria of canonicity for the transformation
of dynamical variables. To simplify the text below we shall call these brackets by the
canonical, univalent set of the Poisson brackets, or CUSPB, for short.

6.2. Applications to the Metric Gravity

Let us apply the formulas derived above to the metric gravity by considering a transfor-
mation from the old set of dynamical variables {gαβ, πµν} to the new set of such variables
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{gαβ, pµν}. First, we note that the generalized coordinates gαβ are identical in both sets.
For the brackets defined in the previous subsection this means that {gαβ, gγρ} = 0 and
[gαβ, gγρ] = 0. Furthermore, for the univalent (c = 1) transformations of dynamical vari-
ables we have for the new momenta pµν = πµν + f µν(gγρ), where f µν(gγρ) is a tensor func-
tion of generalized coordinates only. From here one finds that [gαβ, pµν] = [gαβ, πµν] = ∆µν

αβ.
In other words, the first and last Poisson brackets from CUSPB are obeyed automatically for
our transformation of the Hamiltonian dynamical variables. The only non-trivial bracket in
CUSPB (see, Equation (A17) in the Appendix B) is the second Poisson bracket between two
new momenta which takes the following form in our tensor notations:

[pαβ, pµν] = 0 , or [παβ − 1
2
√
−gA(αβ)0σρkgσρ,k, πµν − 1

2
√
−gA(µν)0λκkgλκ,k] = 0 , (68)

which is instantly reduced to the equation

[παβ,
√
−gA(µν)0σρmgσρ,m] = [πµν,

√
−gA(αβ)0σρmgσρ,m] . (69)

The transformation of dynamical variables will be canonical, if (and only if) this
equation is obeyed. To prove the validity of this equation one has to perform direct
calculations of the Poisson brackets in both sides of Equation (69). In reality, both sides of
Equation (69) are compared with each other and identical terms (in both sides) are cancelled.
Finally, this equation is reduced to the form of identity such as 0 = 0.

In those cases when either α = 0, or β = 0 (or both) one obtains from Equations (53)
and (54) the following equation:

p0γ = π0γ − 1
2
√
−gB((0γ)0|µνk)gµν,k, (70)

which defines the momenta with one (or two) temporal component(s), or primary con-
straints p0γ ≈ 0 in the Dirac’s Hamiltonian formulation of the metric gravity. For these
momenta the canonicity conditions, Equation (68), must also be obeyed. After a few simple
transformations the essential canonicity conditions for the p0γ and p0σ momenta take one
of the following forms

[p0γ, p0σ] = 0 , or [π0γ,
√
−gB((0σ)0|µνk)gµν,k] = [π0σ,

√
−gB((0γ)0|µνk)gµν,k] , (71)

which simply means that all primary constraints in the Dirac’s Hamiltonian formulations
commute with each other. The same statement is true for the original Hamiltonian for-
mulation of metric GR [6] discussed above. This fact has been checked in [15]. On the
other hand, we have to note that the fact that all primary constraints in the metric gravity
commute with each other follows directly from the canonicity of the complete Dirac’s set of
Hamiltonian dynamical variables.

At this point it is very convenient to introduce the universal notation φµν for the
momenta, or for contravariant components of the momenta. In Dirac’s Hamiltonian for-
mulation these momenta are φµν = pµν, while in the Hamiltonian formulation from [6]
these momenta are φµν = πµν − 1

2
√−gA(µν)0αβkgαβ,k. In this notation the canonical Hamil-

tonians HC in both formulations of metric gravity are represented in the same ‘universal’
form [17]

HC =
1√−gg00 Imnpqφmnφpq − 1

g00 φmn
(

g0l gmn,l − 2g0αgαn,m

)
(72)

+
1
4
√
−g
[ 1

g00

(
g0kE(mn)µν − 2g0µE(mn)kν

)(
g0l gα

mgβ
n − 2g0αgl

mgβ
n

)
− Bµνkαβl

]
gµν,kgαβ,l ,
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where gα
β = δα

β is the substitution tensor defined above. In both formulations the primary

constraints commute with each other, i.e., [φ0γ, φ0σ] = 0. The knowledge of the canonical
Hamiltonian HC and all primary constraints allows one to restore the total Hamiltonian Ht:

Ht = HC + g00,0φ00 + 2g0k,0φ0k = HC + g00,0 p00 + 2g0k,0 p0k . (73)

In particular, in the Dirac’s Hamiltonian formulation we obtain Ht = HC + g00,0 p00 +
2g0k,0 p0k. It appears that the total Hamiltonian Ht does not change during canonical trans-
formations of the dynamical variables, i.e., HK&K

t (gαβ, πµν) = HDir
t (gαβ, pµν) [17]. In other

words, the total Hamiltonian is an obvious and unique invariant of this theory. In respect
to this, the Hamilton equations do not change its form during canonical transformations
and we can write, e.g.,

gαβ,0 = [gαβ, HK&K
t ] , π

µν
,0 = [πµν, HK&K

t ] ⇔ gαβ,0 = [gαβ, HDir
t ] , pµν

,0 = [pµν, HDir
t ] (74)

i.e., these two sets of Hamilton equations are equivalent to each other. In other words, the
Hamilton equations conserve their form during canonical transformation of the dynamical
variables. In fact, this was the first definition (or criterion) of canonicity for the transforma-
tions of dynamical variables which has been formulated by Sir William R. Hamilton himself
in 1834 and 1835. We have shown that his criterion works for the Hamiltonian approach
to the metric gravity. However, the metric gravity is a dynamical system with constraints.
It is clear that the Hamilton criterion, as well as other criteria of canonicity known for
the transformations of dynamical variables in classical mechanics, must be supplemented
by some statement(s) about the algebra of constraints (see below). Therefore, we need to
derive the explicit expressions for the secondary constraints, their Poisson brackets with
the canonical and/or total Hamiltonians, primary constraints, etc.

All secondary constraints in the Dirac’s Hamiltonian formulation are derived from the
equations χ0σ = [φ0σ, Ht] = [φ0σ, HC]. The explicit expressions are

χ0σ = − g0σ

2
√−gg00 Imnpqφmnφpq + gσ

m

[
(φmk),k +

(
φpkeqm − 1

2
φpqekm

)
gpq,k

]
+

1
2
√
−gg0σ

[
−gmn,klEmnkl +

1
4

gmn,kgpq,l

(
−Emnpqekl + 2Eklpnemq + Epqnlemk

)]
. (75)

This formula is very compact and contains only two lines (compare with the formula,
Equation (46)). It indicates clearly that Dirac’s idea to apply canonical transformations of
the Hamiltonian dynamical variables in order to simplify secondary first-class constraints
works perfectly. Now, by using the explicit form of the primary φ0γ = p0γ and secondary
χ0σ constraints in Dirac’s formulation one finds

[φ0γ, χ0σ]Dirac = [p0γ, χ0σ]Dirac =
1
2

gγσχ00
Dirac , (76)

i.e., the formula which exactly coincides (by its form) with the formula [φ0γ, χ0σ]K&K =
1
2 gγσ

(
χ00
)

K&K
mentioned above. It is very interesting, since the explicit forms of all

primary and secondary constraints are substantially different in these two formulations.
This and other similar facts directly follow from the canonicity of our transformation of the
Hamiltonian dynamical variables. The time-evolution of the secondary constraints leads to
the following formula

dχ0σ

dx0
= χ0σ

,0 = [χ0σ, HC] = −
[ 2√−gg00 Ipqmkgσmφpq + g0σg00,k + 2gσpg0p,k

+
( gσpg0q

g00

) (
gpq,k + gqk,p − gpk,q

)]
χ0k − gσ

0 (χ0k),k +
1
2

gσkg00,kχ00 = Dσ
c , (77)
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where Dσ
c is the σ-component of the Dirac closure derived in the Dirac’s Hamiltonian

formulation of the metric gravity. All components of the Dirac closure are quasi-linear
combination of secondary constraints and some total spatial derivatives of these secondary
constraints. Again, this formula is very compact and transparent. Finally, we want to
present the formula, which allows one to express the canonical Hamiltonian HC in terms
of secondary constraints and some (total) spatial derivatives, Equation (50), can also be
derived in the Dirac Hamiltonian formulation. The formula takes the form, which is slightly
different from Equation (50) above:

HC = −2g0λχ0λ +
(

2g0mφmk
)

,k
−
[√
−gEmnpqgmn,q

−
√
−ggµν,k

( g0µ

g00

) (
gνpg0k − gνkg0p

)]
,p

(78)

This formula also represents the canonical Hamiltonian HC (in the Dirac formulation)
written as a quasi-linear combination of the secondary constraints χ0σ and a few total
spatial derivatives of some expressions which include the same secondary constraints.

Now, we can complete our discussion of canonical transformations in the metric grav-
ity. There are three general rules which regulate changes in the primary and secondary
constraints during such transformations. The first rule is simple and it is called the law
of inertia for the first-class constraints. Indeed, by performing a number of canonical
transformations between different sets of dynamical variables we have found that the total
number of the primary φ0σ constraints Np never changes during such transformations. The
same statement is true for the total number of secondary χ0σ constraints Ns and for the
sum Np + Ns. We have to emphasize here that all primary and secondary constraints which
arise in the Hamiltonian formulations of metric gravity are first-class. The second rule of
‘form-invariance’ is even simpler: the internal structure of all first-class constraints must
be conserved during canonical transformations of the Hamiltonian dynamical variables.
The preservation of form-invariance for all first-class constraints is crucial to prove that
any two Hamiltonian formulations developed for the same constrained dynamical system
are equivalent to each other. The third rule essentially follows from the second rule: all
Poisson brackets between the first-class constraints and canonical/total Hamiltonians, other
constraints, etc, must also be form-invariant during canonical transformations. For simple
Poisson brackets, e.g., for the [φ0σ, χ0γ] brackets, this rule leads to the exact coincidence
of corresponding expressions. The three rules mentioned here essentially mean preser-
vation of the algebra of first-class constraints. Thus, the canonical transformations in the
metric gravity must guarantee a complete preservation of the form-invariance for the total
Hamiltonian Ht and for the algebra of first-class constraints.

The formulas derived in this Section allow one to apply the Dirac’s Hamiltonian
formulation of metric gravity to analyze and solve various gravitational problems. In some
cases, however, one needs to know analytical expressions for other Poisson brackets, e.g.,
the Poisson bracket between two secondary constraints [χ0γ, χ0σ] is of great interest, but
it has never been obtained in previous papers. This Poisson bracket is determined in our
‘technical’ Appendix A. In general, calculations of this and other Poisson brackets can be
performed with the use of our formulas and method described in Section 4.

7. Dirac’s Modifications of the Classical Hamilton Method

In this Section we want to reconsider modifications which were made by Dirac in the
classical Hamilton method [1–3]. This will eventually lead us to the new universal criterion
of canonicity for Hamiltonian formulations of metric gravity. First, we note again that in
any Hamiltonian formulation of metric gravity we always have d(d+1)

2 generalized coordi-

nates gαβ and d(d+1)
2 momenta pµν. These coordinates and momenta are the Hamiltonian

dynamical variables of our problem (metric gravity). The total number of these variables
equals d(d + 1) which is an even number for any d-dimensional Riemann space-time. Note
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also that our original Lagrangian LΓ−Γ, Equation (6), is a quadratic function upon velocities
of the space-like components of the metric tensor gmn, i.e., upon gmn,0. On the other hand,
the same LΓ−Γ Lagrangian is a linear function of the d remaining g0γ,0 (= gγ0,0) velocities
which are also called the temporal velocities.

By using the standard Legendre transformation (see Section 3) one can pass from the
Lagrangian LΓ−Γ to the Hamiltonian HC which is quadratic function of space-like momenta
πmn. This Hamiltonian is called the canonical Hamiltonian, and it is an explicit function of
the space-like dynamical {gmn, ppq} variables (there are d(d− 1) of such variables) and d
‘temporal’ coordinates g0σ only. The Hamiltonian HC is of great interest for the whole metric
gravity, since it describes the actual motions of a free gravitational field. However, we have
to note that this Hamiltonian HC does not depend upon any of the temporal momenta,
i.e., it does not include any of the p0σ (or pσ0) momenta. This means that all Poisson
brackets such as [g0σ, HC] = 0 and [gσ0, HC] = 0 equal zero identically, and canonical
Hamiltonian HC does not describe time-evolution of the temporal coordinates g0σ and/or
gσ0 coordinates, in principle. Briefly, we can say that in the canonical Hamiltonian HC these
temporal coordinates g0µ (and gµ0) are rather parameters than actual dynamical variables.

For normal applications of the Hamilton method we must have a Hamiltonian that
contains all momenta, including temporal ones. Such a complete, or total Hamiltonian Ht
will describe time-evolution of all d(d + 1) dynamical variables of the problem {gαβ, pµν}
and all functions of these variables, including the canonical Hamiltonian HC, new coor-
dinates and momenta, which can be introduced by some canonical transformations, etc.
Formally, this total Hamiltonian can be derived from our quadratic-linear Lagrangian LΓ−Γ
by using the Legendre transform which is described in detail in Section 3. However, for our
quadratic-linear Lagrangian LΓ−Γ, Equation (6), the Legendre transform works with some
singularities. The two main singularities must be mentioned here, since they play crucial
roles in Dirac’s modification of the classical Hamilton method. First, as follows from the
definition of momenta and from the general technique of Legendre transformations, we
cannot obtain, in principle, the explicit expressions of the velocities vγ(= g0γ,0) written in
terms of momenta p0γ and vice versa. Instead, we obtain the following algebraic equations:
p0γ ≈ f (gαβ, g0γ), or φ0γ = p0γ − f (gαβ, g0γ) ≈ 0 which are called the primary constraints
(see, e.g., [3] and references therein). Second, in respect to the procedure of Legendre
transformation, this moment must be multiplied by the corresponding velocity g0γ,0(= vγ),
which is not a dynamical variable of our Hamiltonian method. This velocity is rather a
parameter (arbitrary parameter) of the updated Legendre procedure.

Thus, we have derived the total Hamiltonian Ht, Equation (16), which is written as
the sum of the canonical Hamiltonian HC and primary constraints φ0α. The coefficients in
front of the primary constraints equal to the corresponding velocities vα, i.e., Ht = HC +
g00,0φ00 + 2g0k,0φ0k = HC + vαφ0α. Now, the time-evolution of any dynamical variable, or
any function/functional, or quantity, which depends upon the complete set of dynamical
variables {gαβ, pµν}, are determined by the Poisson bracket of this variable (or function)
with the total Hamiltonian Ht, e.g., gαβ,0 = [gαβ, Ht]. Note that this new (total) Hamiltonian
of the metric gravity acts in the d(d + 1) dimensional space of the dynamical variables,
in contrast with the canonical Hamiltonian HC which formally operates in the d(d− 1)
dimensional space of the space-like dynamical variables. In general, introduction of the
new Hamiltonian Ht always brings some new motions that did not exist in the original
Hamiltonian system with the canonical Hamiltonian HC.

Immediately, the two following questions arise: (1) what is the sense of these ‘ad-
ditional’ motions, and (2) how can they affect the actual motions of our field, which are
determined by the canonical Hamiltonian HC. To understand this and answer the ques-
tions raised, let us consider the time-evolution of the canonical Hamiltonian HC. First
of all, we can write the following general formula which describes time-evolution of the
canonical Hamiltonian

HC(t + ∆) = HC(t) +
∆
1!

(dHC
dt

)
+

∆2

2!

(d2HC
dt2

)
+

∆3

3!

(d3HC
dt3

)
+ . . . , (79)



Universe 2022, 8, 533 24 of 41

where ∆ is a small time interval. In this equation the first-order time derivative of HC is
written in the form:

dHC
dt

= [HC, Ht] = [HC, HC + vαφ0α] = vα[HC, φ0α] = −vα χ0α , (80)

where φ0α and χ0α are the primary and secondary first-class constraints, respectively. The
explicit formulas for the φ0α and χ0α constraints are presented above (see, Equations (70)
and (75)). Moreover, in this equation and everywhere below the notation vα(= g0α,0) is
an arbitrary, in principle, velocity of the temporal (0α)-component of the metric tensor.
In Dirac’s theory this and other similar velocities, e.g., vβ(= g0β,0), vγ(= g0γ,0), etc, are
considered as arbitrary parameters of the method.

The second time-derivative of the canonical Hamiltonian HC is

d2HC
dt2 =

[dHC
dt

, Ht] = [−vαχ0α, HC + vβφ0β] = −vαDα
c −

1
2

vαvβ gαβχ00 (81)

where Dα
c is the α component of the Dirac closure (see, Equation (77)), while χ00 is the

secondary constraint defined above (see, Equation (75)). The third time-derivative of the
canonical Hamiltonian takes the form

d3HC
dt3 = [

d2HC
dt2 , Ht] = −vα[Dα

c , HC] +
1
2

vαvβ[gαβχ00, HC] +
1
2

vαvβvγ[gαβχ00, φ0γ]

− vαvγ[Dα
c , φ0γ] . (82)

In principle, such a chain of time derivatives dn HC
dtn is infinite (in contrast with the n-

dimensional Maxwell electrodynamics [16]), but we have to note that all values in the
right-hand sides of these equations are always represented as finite, linear (or quasi-linear)
combinations of the secondary, first-class constraints only. Furthermore, the coefficients
in front of each term in these expressions depends upon the vα, vβ, vγ and other similar
velocities, which “are completely arbitrary and at our disposal” [3]. In other words, these
velocities are arbitrary parameters in the Dirac’s modification of the classical Hamilton
method. It is clear that similar transformations which depend upon arbitrary parameters
cannot affect the actual (Hamiltonian) motion of the original dynamical system, e.g., a free
gravitational field, in our case. Instead, they produce some changes in the Hamiltonian
dynamical variables, which do not correspond to a change of physical state. Generators of
such ‘fictional’ transformations are the secondary first-class constraints (as Dirac predicted
in [3]). This follows directly from Equations (80)–(82) and other similar equations for higher-
order derivatives in that chain. In field theory similar transformations of the dynamical
variables are well known, and in earlier papers they were called gauge transformations, or
simply gauges. Dirac could obtain and write (see, e.g., [3]) all essential equations for the
actual motion and for the corresponding gauge generators in the united form of Hamilton
equations. This explains the overall significance of Dirac’s modification of the classical
Hamilton method.

In Dirac method the complete system of Hamiltonian equations for the metric gravity
is written in the form

dgpq

dt
= gpq,0 = [gpq, HC] and

dpmn

dt
=
(

pmm
)

,0
= [ppq, HC] . (83)

These d(d− 1) Hamilton equations describe the actual motion of a free gravitational
field. Solutions of these equations cannot become v-dependent at any moment of time-
evolution (see discussion above). In addition to these equations we also have d Hamilton
equations which describe time-evolution of the primary constraints:

dφ0α

dt
= [φ0α, HC] = χ0α , (84)
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where χ0α are the secondary constraints. The following group of d Hamilton equations
describe time-evolution of the secondary constraints:

dχ0α

dt
= [χ0α, HC] = Dα

c , (85)

where Dα
c = aα

µ(g)χ0µ + bα
µ(g)

(
f k(g)χ0µ

)
,k

is the α-component of the Dirac closure, which

is a quasi-linear combination of the secondary constraints χ0σ and some total spatial
derivatives of expressions which also include the same secondary constraints. All classical
theory of the free gravitational field (in metric gravity) is summed up in these Dirac’s
equations, Equations (83)–(85), written here in a manifestly Hamiltonian form. Note also
that there is a simple procedure which allows one to simplify (drastically) the explicit form
of Dirac closure in the metric gravity. Indeed, in metric gravity on the shell of primary
constraints we can always determine d field-dependent coefficients Cα

β(g) for which the
following equations are satisfied:

[χ0α + Cα
βφ0β, HC] = Λαχ0α , (86)

where α = 0, 1, . . . , d− 1, β = 0, 1, . . . , d− 1 and Λα(g) are some algebraic, field-dependent
expressions, which are often called ‘eigenvalues’ (or factor-eigenvalues) of the Dirac closure.
Derivation of equations for the unknown Cα

β(g) coefficients in Equation (86) is straightfor-
ward. In this procedure the Dirac closure becomes ‘diagonal’ and each component of Dirac
closure, e.g., Dα

c always contains only one secondary constraint, e.g., χ0α in Equation (86).
All secondary constraints in this procedure are uniquely determined as factor-eigenvectors
which are defined on the shell of primary constraints. In this version of Dirac’s approach
we do not need to say many words to describe the internal structure of Dirac closure.

It is also important to remember that in metric gravity we always have [φ0α, φ0β] = 0,
which means the pair-wise commutativity of the primary constraints. These generalized
Hamilton equations, Equations (83)–(85), form a complete and unambiguous set of equa-
tions, which govern the behaviour of a free gravitational field in the d(d + 1)-dimensional
space of dynamical variables, or in the original d-dimensional Riemann space. The Hamil-
tonian equations from the first group, Equation (83), are the canonical Hamilton equations
of actual motion for true dynamical variables. Analogous equations from the second group,
Equations (84) and (85), are the Hamilton equations for gauge generators. These equations
determine the actual gauge generators for the given dynamical system, i.e., for the free
gravitational field in our case. All equations from the second group describe certain changes
in the dynamical variables, i.e., coordinates and momenta, which do not affect the real
physical state.

Thus, our original d(d + 1)-dimensional space of dynamical variables in the metric
gravity splits into the d(d− 1)-dimensional space of dynamical variables, which describe
actual motions, and 2 d-dimensional space of variables, which are transformed in some
way with time, but this does not make any changes in the real physical state. Formally,
we can write this in the form: S[d(d + 1)] = S[d(d − 1)] ⊕ S[2 d], where all spaces are
even-dimensional. If an additional temporal variable t is introduced in our analysis, then
all these three spaces become odd-dimensional and Hamilton method works perfectly in
each of these spaces. Note that the Hamilton equations in the form of Equations (83)–(85)
are more useful and informative for the field people, than the equivalent original system of
the d(d + 1) Hamilton equations:

dgαβ

dt
= gαβ,0 = [gαβ, Ht] and

dpµν

dt
=
(

pµν
)

,0
= [pµν, Ht] . (87)

The replacement of this system of Hamilton equations by much more useful system of
slightly different Hamilton equations, Equations (83)–(85), is the main advantage of the
Dirac’s modifications made in the classical Hamilton method. Another advantage follows
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from the fact that the governing equations for all gauge generators are also written in the
form of Hamilton equations. The third advantage is obvious: from now on all calculations
in the metric gravity are reduced to analytical calculations of the Poisson brackets only.

Finally, we can formulate the complete and pure formal criterion of canonicity for some
transformation between any two equivalent Hamiltonian formulations of the metric gravity.
Based on arguments and equations presented in this and previous Sections, the universal
criterion of canonicity for the metric gravity can be formulated in the following form. Some
transformation of the dynamical Hamilton variables in metric gravity is canonical if (and
only if) it transforms our original system of Hamilton equations, Equations (83)–(85), into a
new system of similar Hamilton equations:

dg̃pq

dt
= g̃pq,0 = [g̃pq, H̃C] and

dp̃mn

dt
=
(

p̃mm
)

,0
= [ p̃pq, H̃C] , (88)

dφ̃0α

dt
= [φ̃0α, H̃C] = χ̃0α and

dχ̃0α

dt
= [χ̃0α, H̃C] = D̃α

c , (89)

where the sign ˜ means the new variable and/or function, while all new functions H̃C, χ̃0α

and D̃α
c = ãα

µ(g̃)χ̃0µ + b̃α
µ(g̃)

(
f̃ k(g)χ̃0µ

)
,k

, which appear in these equations, must have the

same structure as the old functions HC, χ0α and Dα
c in Equations (83)–(85). This new system

of equations represents the form-invariance of the Hamilton equations derived by Dirac for
the metric gravity, which is a constrained dynamical system with the first-class constraints
only. Furthermore, for the true canonical transformation in the metric gravity the following
equations for the Poisson brackets must be obeyed:

[g̃αβ, g̃µν] = 0 , [g̃αβ, p̃mn] = ∆mn
αβ , [ p̃mn, p̃pq] = 0 , [φ̃0γ, φ̃0σ] = 0

[g̃µν, φ̃0σ] = ∆0σ
µν , [ p̃mn, φ̃0σ] = 0 . (90)

This criterion of canonicity can be generalized to other Hamiltonian dynamical systems
with first-class constraints.

Note also that in this Section we discuss only one version of the complete Dirac’s
approach [1], which has been developed to deal with a free gravitational field in the metric
gravity. Generalization of this procedure to other fields with non-trivial gauge invariance
is also possible. For instance, the same approach works perfectly for a free electromagnetic
field even in multi-dimensions (see, e.g., [3,7,16]). Our preliminary results indicate clearly
that the quantum version of this approach is applicable (with some changes) to the modern
united electroweak theory.

On Complete Reverse Recovery of the Original Field Equations

In the previous Sections, we have carefully derived the Hamiltonian equations for
a free gravitational field and all primary and secondary first-class constraints. The main
purpose of our analysis was to obtain the correct equations of motion (or time-evolution)
of a free gravitational field and obtain all important gauge conditions. Here the following
question immediately arises: what are these correct Hamiltonian equations of motion?
Where and how was the criterion of correctness established? The answer is clear, and we
have to recognize as correct only such Hamiltonian equations and first-class constraints
which uniformly lead us back to the original (or maternal) equations of motion already
known for our field. For a free gravitational field the maternal field equations are the
Einstein’s equations Gαβ = 0 (or Rαβ = 0) mentioned in Section 2. For a free electromagnetic
field (or EM-field, for short) the maternal equations are the Maxwell equations in vacuum.
Therefore, any correct Hamiltonian approach for EM-field must be able to produce the
governing Maxwell equations at any spatial point x and at any moment of time t. To
explain how this works, let us consider the Hamiltonian formulation for the Maxwell
electromagnetic field in the (n + 1)-dimensional (flat) space-time.
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We can start directly form the explicit form of the corresponding EM-Hamiltonian
(all missing details, definitions and notations can be found in [3,16]). Moreover, form the
definition of momenta Bµ = Fµ0 to this point we already have one primary constraint φ =
B0 ≈ 0, since both Fµν and Fµν tensors are always antisymmetric. The fundamental Poisson
brackets are: [Aµ(x), Bν(x′)] = gν

µδn(x− x′), [Aµ(x), Aν(x′)] = 0 and [Bµ(x), Bν(x′)] = 0.
The Hamiltonian of a free electromagnetic field in the (n + 1)-dimensional space-time is
written in the form [3,16]:

H =
∫ (1

4
FpqFpq −

1
2

Fp0Fp0 + Fq0 A0,q

)
dnx =

∫ (1
4

FpqFpq +
1
2

BpBp − A0Bp
,p

)
dnx , (91)

where all notations are exactly the same as in [3,10]. The corresponding Hamiltonian
density takes the form

H =
1
4

FpqFpq +
1
2

BpBp − A0Bp
,p . (92)

Integration by parts of the first term in the Hamiltonian, Equation (91), leads to the
following expression for the Hamiltonian density Equation (92):

H = −1
2

(
Fpq
)

q
Ap +

1
2

BpBp − A0Bp
,p =

1
2

( ∂2 Aq

∂xp∂xq
−

∂2 Ap

∂xq∂xq

)
Ap +

1
2

BpBp − A0Bp
,p , (93)

where p = 1, 2, . . . , n and q = 1, 2, . . . , n, i.e., all these indexes are space-like. First of
all, by determining the Poisson bracket [B0,H] = Bp

,p one finds the secondary constraint

χ = Bp
,p ≈ 0. In standard notation this means that ∂

∂t

(
∂Ap
∂xp

)
≈ 0, or ∂Ap

∂xp
= C, where C is a

numerical constant which does not depend upon x and/or t. This secondary constraints χ
commute with the Hamiltonian densityH and Dirac closure equals zero identically.

By using the Hamiltonian densityH, Equation (93), we obtain the following system of
canonical Hamilton equations

dAp

dt
= [Ap,H] =

∂H
∂Bp =

1
2
(2Bp) = Bp (94)

and

dBp

dt
= [Bp,H] = − ∂H

∂Ap
= −1

2

[
2
( ∂2 Aq

∂xq∂xp
−

∂2 Ap

∂xq∂xq

)]
=

∂2 Ap

∂xq∂xq
−

∂2 Aq

∂xq∂xp
. (95)

Combination of these two equations one finds

d2 Ap

dt2 =
∂2 Ap

∂xq∂xq
−

∂2 Aq

∂xq∂xp
. (96)

Now, taking into account the condition which follows from secondary constraint:
∂Aq
∂xq

= C, we can reduce this equation to the form of n-dimensional wave equation:

∂2 Ap

∂t2 −
∂2 Ap

∂xq∂xq
= 0 , or

∂2A
∂t2 − ∆A = 0 , (97)

where A = (A1, A2, . . . , An) is the n-dimensional vector potential of the EM-field. This is
the Maxwell equations for a free electromagnetic field in the (n + 1)-dimensional space-
time. The n-dimensional Laplace operator ∆ in this equation is ∆ = ∂2

∂xq∂xq
. Thus, we have

recovered all Maxwell equations of the free radiation field. Note here that if someone does
not recognize any constraints at all, or these constraints were determined with mistakes,
then such a Hamiltonian formulation of the electromagnetic theory does not allow one to
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recover the corresponding Maxwell equations. Formally, in this case any relation with the
original Maxwell theory of radiation will be lost. In reality, this means that our Hamiltonian,
Equation (91), does not describe the Maxwell EM-field in vacuum, or this Hamiltonian
formulation is not valid for the Maxwell electromagnetic field and cannot be used in
applications to this field. This is the principle of complete reverse recovery of the original
field equations in application to the Maxwell theory of EM-field.

Now, consider the Hamiltonian formulation of the metric gravity which has been
developed by Dirac in [1]. In contrast with a free Maxwell EM-field, for a free gravitational
field, everything becomes significantly more complicated, but our principle of the complete
reverse recovery works in this case too. Recently, we have shown that the equations
for the second-order temporal derivatives of the space-like co-variant components gmn
of the metric tensor, which follow from the Hamilton equations obtained in the Dirac
Hamiltonian formulation of the metric gravity, essentially coincide with the corresponding
Einstein’s equations for the same components. However, at that time this article was
already completed and it was not possible to add a few new chapters into it. In addition to
this, it takes a long time to transform a set of difficult formulas into a logically perfect text.
Therefore, our results in this direction will be published some time later and elsewhere.
Here we just want to present a few important details of the procedure used.

Note that there are three peculiarities in the Einstein’s equations for a free gravitational
field (Rαβ = 0 plus d additional conditions Rγ

α,γ = 1
2

∂R
∂xα ), which are crucially important

for our present purposes. First, these Einstein’s equations are written as a system of
differential equations which contains the first- the second-order temporal derivatives of
the metric tensor gαβ. Second, all second-order temporal derivatives from the g0β and
gβ0 components of metric tensor cancel out from these Einstein’s equations. Third, the
temporal second-order derivatives of the spatial components of metric tensor are explicitly

included in the Einstein’s equations. In fact, each second-order derivative d2gmn
dt2 = d2gmn

dx2
0

,

arises in Einstein’s equations only from the R0m0n components of the Riemann curvature

tensor. From here it is easy to find that all these second-order temporal derivatives d2gmn
dt2

are included in Einstein’s equations only as separated terms, and each of these terms
has the same numerical coefficient − 1

2 in front. As follows from here one can reduce the

Einstein’s equations for the gmn components to the form d2gmn
dt2 = Q(gpq, dgpq

dt , g0α, dg0α
dt ).

These equations must coincide (or be equivalent) with the analogous equations for the
d2gmn

dt2 derivatives which follow from the Hamilton equations in the Dirac formulation of

the Hamiltonian metric gravity. In fact, we have to calculate the Poisson bracket d2gmn
dt2 =

[[gmn, Ht], Ht] = [[gmn, HC], Ht] and exclude all momenta by using the Hamilton equations,
primary and secondary first-class constraints derived in the Dirac Hamiltonian formulation
(see above). Such calculations are quite complex, extremely time-consuming and very
sensitive, since any mistake made either in the Hamiltonian, or in one of the first-class
constraints substantially complicates further calculations. After such a mistake one can
lose any relation with the original (or maternal) theory and cannot move forward, until
this mistake is found and corrected. Nevertheless, after many weeks of calculations, we
are happy to report that Hamiltonian formulation of the metric gravity, which has been
developed by Dirac in [1], successfully passed this our test of recovery (at least partially).
Now, by using this Hamiltonian formulation we are able to recover the original field
equations for all covariant space-like components gmn of the metric tensor. An alternative
Hamiltonian formulation of metric gravity which obviously fails this test is mentioned in
Section 9.

To conclude this discussion we have to note that any correct Hamiltonian formulation
of an arbitrary, in principle, field theory must reproduce (exactly and unambiguously) the
original governing equations of this field. The correct Hamilton equations of motions and
explicit form of all first-class constraints are crucially important to reach this goal. If this
is not the case, then such a Hamiltonian theory is wrong and has nothing to do with the
maternal field theory.
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8. Invariant Integrals of the Metric Gravity

This Section is a central part of our study, since here we define a number of integral
invariants of the metric gravity, i.e., we reach an absolute top of the classical Hamilton
mechanics. Obviously, in one Section we cannot even outline the main problems which
exist in the theory of integral invariants and its applications to the Hamiltonian metric
gravity. Therefore, the following presentation of this theory will be very brief. Moreover,
here we restrict ourselves only to a description of the extension of integral invariants for
dynamical (Hamiltonian) systems with constraints. More details of the theory of integral
invariants and its applications to the Hamiltonian formulations of metric gravity will be
presented in our next article [18].

First of all we need to define the one-dimensional, or line integrals in the metric gravity.
In general, the one-dimensional integral in multi-dimensional Riemann spaces is defined
as follows ∫

παβ dgαβ =
∫

παβ
(∂gαβ

∂xβ

)
dxβ =

∫
παβ

(
Γα,βγ + Γβ,αγ

)
dxγ

=
∫

παβ
(

gαλΓλ
βγ + gβλΓλ

αγ

)
dxγ , (98)

where Γα,βγ are the Cristoffel symbols of the first kind, while Γα
βγ are the Cristoffel symbols

of the second kind (see, e.g., [4]). The integrand in this integral is not a tensor. This means
that the line (or one-dimensional) integral substantially depends on the curve along which
it is calculated and also on the initial and final points chosen on this curve. If the start
and end points coincide with each other, then such an integral is called a closed loop
integral, or an integral taken along a closed loop. Below, similar closed loop integrals are
designated by the sign

∮
. In general, the complete theory of line (or one-dimensional)

integrals in multi-dimensional Riemann spaces is very complex. However, for our current
analysis of the integral invariants in the Hamiltonian formulations of metric gravity we
do need to use the formula, Equation (98). In fact, all line integrals can be considered in
the d(d+1)

2 -dimensional pseudo-Euclidean (orthogonal) space, which is formally identical
(or isomorphic) to our original d-dimensional Riemann space-time (for more details, see,
e.g., [4,5]).

This is very good news, since all integrals and integral forms defined in multi-
dimensional pseudo-Euclidean spaces can be handled in a familiar way (see, e.g., [19,20]). In
particular, by applying the usual definition of the closed loop integrals in pseudo-Euclidean
spaces we can consider the two following integrals in the d(d−1)

2 -dimensional space:

I =
∮ [

πmn dgmn − HCdt
]

and IP =
∮

πmn dgmn , (99)

where πmn are the space-like components of momenta, while HC is the canonical Hamilto-
nian which has been defined in Section 3. For now we restrict ourselves to the consideration
of the space-like components of momenta πmn and coordinates gmn. In other words,
below we shall deal with the d(d−1)

2 dimensional Euclidean position space (and d(d− 1)-
dimensional phase space) instead of the original (d − 1)-dimensional sub-space in our
original d-dimensional Riemann space-time. The coordinates in this position space coincide
with the covariant components of the fundamental space-like tensor gmn. The first integral
in Equation (99) is called the Poincare–Cartan integral invariant, while the second integral
is the Poincare integral invariant [21,22] which is often called the main integral invariant
of mechanics (or Hamiltonian mechanics). This Poincare integral invariant has a funda-
mental value for the Hamiltonian formulation of metric gravity as well as for the general
theory of canonical transformations in metric gravity and for analysis and solution of other
gravitational problems. Indeed, it is relatively easy to prove the following statement. If for



Universe 2022, 8, 533 30 of 41

some system of first-order differential equations written for the space-like components of
the metric tensor gmn and momenta πmn:

dgmn

dt
= Qmn(t, gab, πpq) ,

dπmn

dt
= Pmn(t, gab, πpq) (100)

the Poincare integral IP, Equation (99), is invariant, then this system of equations, Equa-
tion (100), is Hamiltonian in the moment of time t which is located between t− δ and t + δ,
where δ is a very small positive number. This term ‘Hamiltonian’ means here that the
functions Qmn(t, gab, πpq) and Pmn(t, gab, πpq) from the right-hand side of Equations (100)
are represented as the partial derivatives (or Poisson brackets) of some scalar function
H, i.e.,

Qmn(t, gab, πpq) =
∂H

∂πmn = [gmn, H] , Pmn(t, gab, πpq) = − ∂H
∂gmn

= [πmn, H] , (101)

where the notation [a, b] stands for the Poisson bracket defined by Equation (18). A uniform
reconstruction of the explicit form of this function H (or Hamiltonian) is not an easy task,
but if we know that the Poincare–Cartan integral is also an integral invariant, then the
unknown Hamiltonian exactly coincides [21] with the canonical Hamiltonian HC mentioned
in the first integral from Equation (99).

Let us discuss the following fundamental question. We shall assume that the integral I,
Equation (99), is an integral invariant for our dynamical system and HC is our Hamiltonian
which describes the actual motion of this system, i.e., the equations of time-evolution
take the form of Hamilton equations, Equation (83), for our d(d− 1) dynamical variables
{gmn, πpq}, where [gmn, gpq] = 0, [πmn, πpq] = 0 and [gmn, πpq] = ∆pq

mn. Now, we want
to extend our phase space by adding a set of 2d new dynamical variables {g0γ, π0γ}.
Here we assume the usual permutation symmetry for all ‘additional’ coordinates and
momenta: g0γ = gγ0 and π0γ = πγ0. The total dimension of this new phase space will
be d(d + 1), which corresponds to the d-dimensional Riemann space-time, and it is the
main working space for the general relativity and metric gravity. We require that in this
new extended phase space the integral defined by the last expression in Equation (102)
must also be an integral invariant with the new Hamiltonian Ht. Furthermore, the new
‘extended’ Hamiltonian Ht must be closely related with the canonical Hamiltonian HC from
Equation (99).

Based on the formulas derived in Section 3 we can transform the Poincare–Cartan
integral invariant from Equation (99) into the following form

I =
∮ [

πmn dgmn − HCdt
]
=
∮ {[

πmn dgmn + π0γ
(dg0γ

dt

)
dt
]
−
[

HC + π0γ
(dg0γ

dt

)]
dt
}

=
∮ [

παβ dgαβ −
(

HC + vγπ0γ
)

dt
]
=
∮ [

παβ dgαβ − Htdt
]

, (102)

where Ht = HC + vγπ0γ = HC + g0γ,0π0γ and g0γ,0 = vγ (γ = 0, 1, . . . , d − 1) are the
corresponding velocities, while π0γ are the temporal momenta which must be equal
zero along each Hamilton trajectory of the actual motion. In other words, we have
d primary constraints π0γ ≈ 0 in the metric gravity. Otherwise, i.e., if π0γ 6= 0 for
some γ, then Equation (102) does not hold. Another crucial fact which has been used
to transform, Equation (102), follows from the formulas for canonical Hamiltonian HC,
Equations (17) and (72), which do not contain any of the temporal momenta π0γ, but it
may include some of the g0µ and/or gµ0 coordinates. If these conditions are obeyed, then
from Equation (102) we can derive the following equality:∮ [

πmn dgmn − HCdt
]
= I =

∮ [
παβ dgαβ − Htdt

]
, (103)
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which means that both of these integrals, i.e., integrals on the left and right sides of
this equation, are the true integral invariants and their numerical values equal to each
other. In other words, these two integral invariants coincide with each other, i.e., they are
not independent, and for constrained dynamical systems we always have to deal with
this complication.

The formula, Equation (103), has a number of consequences for Hamiltonian for-
mulations of the metric gravity, but here we consider just one of them. First, as follows
from the left-hand side of Equation (103) the set of dynamical variables {gmn, πpq} will be
canonical, if the Poisson brackets between these dynamical variables coincide with CUSPB,
i.e., [gmn, gpq] = 0, [gmn, πpq] = ∆pq

mn, [πmn, πpq] = 0 for all possible (mn)- and (pq)-pairs.
In other words, it is a necessary and sufficient condition of canonicity in this case. However,
if we apply the same arguments to the integral in right-hand side of Equation (103) we can
only say that the exact coincidence of the Poisson brackets between dynamical variables
[gαβ, gµν] = 0, [gαβ, πµν] = ∆µν

αβ, [παβ, πµν] = 0 with the standard CUSPB values is only
necessary (but not sufficient!) condition of canonicity. In order to obtain the sufficient
conditions of canonicity we must also guarantee that all temporal momenta π0γ and/or
πγ0 do not change with time t along the true Hamilton trajectories. This means that all
time-derivatives of the temporal momenta must be equal zero at all times, i.e., we have a
number of additional equations such as π0γ ≈ 0, [π0γ, Ht] ≈ 0, [[π0γ, Ht], Ht] ≈ 0, etc. To
obey all these equations for the primary, secondary and other constraints we have to follow
Dirac’s modifications made in the classical Hamilton method for constrained dynamical
systems (see above). Otherwise, if some of these conditions do not hold, then the numerical
value of the integral in the right-hand side of Equation (103) will be different from I, i.e.,
this integral is not invariant in this case and we have an obvious contradiction here. This
explains why the criteria of canonicity derived for constrained dynamical systems always
include two parts: (a) coincidence of the Poisson brackets between dynamical variables with
the standard CUSPB values, and (b) conservation of the algebra of first-class constraints.
This presumes the form-invariance of all first-class constraints and Poisson brackets of
these constraints with each other, and with the canonical/total Hamiltonians and other
essential functions of dynamical variables.

9. Conclusions

Thus, we have investigated the two different Hamiltonian formulations [1,6] of the
metric gravity in d-dimensional Riemann space, where d ≥ 3. These two Hamiltonian
formulations are related to each other by a canonical transformation of dynamical variables
in the d(d+ 1)-dimensional phase space and each of them allows one to restore the complete
d-dimensional diffeomorphism as the correct (and well-known) gauge invariance of the
free gravitational field in the metric gravity. By using the known canonical transformation
between these two Hamiltonian formulations of the metric gravity we have investigated the
basic properties of other similar canonical transformations and derived some useful criteria
of canonicity for an arbitrary transformation of the Hamiltonian dynamical variables in
the d(d + 1)-dimensional phase space. The results of our study are important in numerous
applications, since in metric gravity canonical transformations of Hamiltonian dynamical
variables are often used to simplify either the canonical HC and/or total Hamiltonian(s) Ht,
or secondary constraints, or to reduce the canonical Hamiltonian HC to some special form,
e.g., to its normal form, which is well known in classical mechanics.

In general, all criteria of canonicity for transformations of dynamical variables in the
metric gravity require the exact coincidence of the Poisson (or Laplace) brackets for the
new and old dynamical (Hamiltonian) variables. Briefly, if the Poisson brackets of the
new dynamical variables (expressed in the old dynamical variables) do not coincide with
their canonical values, then such a transformation is not canonical. This is the universal
criterion of canonicity which is known from classical mechanics of Hamiltonian dynamical
systems. However, in all Hamiltonian formulations of metric gravity we always deal
with the constrained dynamical systems. Therefore, all criteria of canonicity, which are
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valid for such systems, must contain the second part which deals with the algebra of
first-class constraints, form-invariance of the canonical/total Hamiltonian(s) and/or form-
invariance of the Hamilton equations. For instance, the true canonical transformation in the
metric gravity must keep form-invariance of the Hamilton equations derived in the Dirac’s
modification of the classical Hamilton method. It can be illustrated by the transformation
of Equations (83)–(85) into Equations (88) and (89) during our canonical transformation of
the Hamiltonian dynamical variables. This is the first criterion of canonicity in the metric
which is relatively simple and ready to be applied to actual problems. The second similar
criterion [17] requires the exact coincidence of the total Hamiltonian Ht and preservation
of the algebra of constraints for both (old and new) Hamiltonian formulations of the
metric gravity.

We have also reconsidered modifications made by Dirac [1–3] in the classical Hamilton
approach. It is shown that these modifications are crucial to improve overall efficiency of
the new Hamiltonian method for dynamical systems with constraints, including various
physical fields with additional gauge conditions, or gauges, for short. The main advantage
of the new Dirac’s approach is a possibility to write all governing equations in the united,
manifestly Hamilton form (see Equations (83)–(85) and Equations (88) and (89) above).
The original Dirac’s idea that all motions in Hamiltonian dynamical systems with first-
class constraints can always be separated into actual motions and special motions along
constraints (or gauge-consistent motions) was extremely productive. Now, by using this
Dirac’s modification of the classical Hamilton method we can describe time-evolution
of a large number of actual and model fields. Furthermore, we can make a conjecture
that the free fields which represents all currently known fundamental interactions can
unambiguously be described by the this version of Hamiltonian method, which was
originally developed and later modified by Dirac.

In this study we have also considered the method of integral invariants and applied
it to investigate canonical transformations between different Hamiltonian formulations
of the metric gravity. This method was originally proposed and developed by Poincare
and Cartan [21]. Since then it was transformed into a very powerful approach, which
currently is an absolute tool in the Hamilton classical mechanics. In reality, the invariance
of the Poincare–Cartan integral can be chosen as a foundation of the whole Hamiltonian
mechanics. Indeed, if this integral is invariant for some dynamical system, then such
a system is Hamiltonian and its time-evolution is described by a system of Hamilton
equations. For Hamiltonian dynamical systems with constraints the general theory of
integral invariants must be modified, but its overall power still remains outstanding.

Unfortunately, the limited space of this article did not allow us to discuss other
important directions of the Hamiltonian formulations of metric gravity. In particular, we
could not consider the explicit derivation of the gauge generators which are defined by
chain of the first-class constraints [6,23] (see also [10]). Moreover, in this study, we did
not even mention various non-canonical quasi-Hamiltonian formulations of the metric
gravity. However, we can make a reference to an excellent review article [24] which
contains a detailed analysis of this problem and a large number of references to papers
published up to the beginning of 2011. Here we want to note that any of these non-canonical
Hamiltonian formulations uses a set of dynamical ADM-variables, which were introduced
in [25]. This fact has been noticed and criticized by Bergmann, Dirac and many others.
Our calculations of the corresponding Poisson brackets can be found in [10,17]. However,
since early 1960’s there were no explanations of this remarkable fact and its consequences
neither from ADM people, nor from their followers (see, e.g., [26–28]). Then, in 1985 it
was suddenly detected that ADM formulation of the Hamiltonian metric gravity cannot
restore, in principle, the total four-dimensional diffeomorphism [29] which is the correct
and well-known gauge symmetry of a free gravitational field in four-dimensional space-
time. Recently, we have found another crucial problem for ADM gravity and similar
non-canonical ‘Hamiltonian’ formulations. Indeed, in Dirac’s Hamiltonian formulation, we
could restore the original Einstein’s equations for a free gravitational field. Analogous ADM
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Hamiltonian formulation uses, in part, the same dynamical variables (12 of 20 variables),
but there are some fundamental mistakes in all secondary constraints. Therefore, the extra
terms which present in the restored field equations for ADM formulation do not cancel
each other (as they do in Dirac’s formulation), but remain and even multiply. Finally,
in Dirac’s Hamiltonian formulation we obtain the maternal Einstein equations with no
additional terms, while for ADM Hamiltonian formulation we have similar equations with
many extra terms in them. As follows from this fact the ADM Hamiltonian formulation
either describes some different (i.e., non-Einstein’s) field, or it is an absolutely wrong
theoretical construction which does not represent and real and/or model field (if the arising
system of extended Einstein-like equations is not closed). In the future, under better
circumstances, we plan to discuss these (and other) issues which currently exist in the
Hamiltonian formulations of the metric gravity.
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Appendix A. Some Useful Relations in the Hamiltonian Version of Metric Gravity

In this ‘pure technical’ Appendix we derive a few equations and relations which are
crucially important for our Hamiltonian formulation of the metric gravity. First, let us
define the space-like tensor Imnpq by the equation Imnpq = agmngpq − gmpgnq, Here we
want to show that ImnpqEpqkl = δk

mδl
n in the case when a = 1

d−2 . First of all, we note that
gαβgαβ = d, where d is the total dimension of our Riemann space. From here one finds

gαβeαβ = gαβgαβ − gαβ
g0αg0β

g00 = d− g0
α

g0α

g00 = d− 1 . (A1)

On the other hand, since e0β = 0, eα0 = 0 and e00 = 0, we can write the last equality in
a different form

d− 1 = gαβeαβ = gpqepq + gp0ep0 + g0qe0q + g00e00 = gpqepq . (A2)

In other words, we obtain gpqepq = d− 1 = gαβeαβ. Furthermore, one can derive a
similar rule to lower the index in the eαβ tensor: gαβeβγ = eγ

α = gpqeqm = em
p = gm

p = δm
p .

Now, we can prove the statement formulated above. The formula for the ImnpqEpqkl

product takes the form

ImnpqEpqkl = (agmngpq − gmpgnq)
(
epqekl − epkeql

)
= a(d− 1)gmnekl − gmpδ

p
nekl

− agmnepkδl
p + δk

mδl
n = [a(d− 1)− 1− a]gmnekl + δk

mδl
n . (A3)

From here one finds that if a(d− 2) = 1 (or a = 1
d−2 ), then the first term in the last

equation equals zero identically and ImnpqEpqkl = δk
mδl

n.
Another important relation which we want to prove here is the connection between

the [gαβ, πµν] and [gαβ, πµν] Poisson brackets. Formally, the covariant components of the
metric tensor gαβ are the only generalized coordinates in the metric gravity. However,
there is an obvious relation between covariant and contravariant components of the metric
tensor: gαβgβγ = gγ

α = δ
γ
α . From here one finds the following relation between the two

Poisson brackets

[πµν, gαβ]gβγ + gαβ[π
µν, gβγ] = 0 or [gαβ, πµν]gβγ = −gαβ[gβγ, πµν] . (A4)
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By multiplying both sides of this equation by the tensor gασ we obtain the
following relation

gασ[gαβ, πµν]gβγ = −gαβgασ[gβγ, πµν] = −gσ
β[g

βγ, πµν] = −[gγσ, πµν] , (A5)

or

[gγσ, πµν] = −gασ ∆µν
αβ gβγ = −1

2

(
gµσgνγ + gµγgνσ

)
= −[πµν, gγσ] , (A6)

i.e., the result which exactly coincides with the formulas, Equations (21) and (24), from
the main text. The derivation of two other formulas from Equations (25) is absolutely
analogous.

The last formula, which we want to derive in this Appendix, is the Poisson brackets
between two secondary, fist-class constraints of the metric gravity, i.e., [χ0σ, χ0γ]. This
formula is needed to complete our Hamiltonian formulation of the metric gravity. Further-
more, it is of great interest in a number of gravitational problems. This formula has never
been produced in earlier studies, since its direct derivation is not an easy task. Below, we
apply a different approach [10] which is based on the Jacobi identity:

[ χ0σ, χ0γ] = [χ0σ, [φ0γ, HC]] = −[φ0γ, [HC, χ0σ]]− [HC, [χ0σ, φ0γ]]

= [φ0γ, [χ0σ, HC]] + [HC, [φ0γ, χ0σ]] = [φ0γ, Dσ
C]−

1
2
[gγσ, HC] , (A7)

where Dσ
C is the σ-component of the Dirac’s closure, Equation (77), while HC is the canonical

Hamiltonian of the metric gravity, Equation (72). Here we apply the expressions derived in
the Dirac’s Hamiltonian formulation of metric gravity.

Analytical calculations of both terms in the last equation from Equation (A7) are
relatively easy, since only a few Poisson brackets really contribute. Here we just present the
final result for the second term in Equation (A7):

−1
2
[gγσ, HC] =

1
4
√−gg00 Imnpq

[(
gγmgσn + gγngσm

)
φpq + φmn

(
gγpgσq + gγqgσp

)]
− 1

4g00

(
gγmgσn + gγngσm

)(
g0kgmn,k − 2g0αgαn,m

)
. (A8)

This expression can be simplified, e.g., by using the identities such as gmngmγ =
gαngαγ − g0ng0γ = gγ

n − g0ng0γ, but here we do not want to make similar simplifications.
In order to determine the first Poisson bracket in Equation (A7) we note that the

σ-component of the Dirac closure can be written in the compact form of quasi-linear
combination of secondary first-class constraints Dσ

C = Vσ
λ χ0λ = Vσ

k χ0k + Vσ
0 χ00, where

Vσ
λ = Vσ

λ (gpq, φmn, g0µ) is the structure functions (or functional) [17]. Therefore, for the
Poisson bracket in Equation (A8) we can write [φ0γ, Dσ

C] = [φ0γ, Vσ
λ ] χ0λ + Vσ

λ [φ0γ, χ0λ],
where λ = (0, k). In these notations the explicit formula for the second term is written in
the form:

Vσ
λ [φ

0γ, χ0λ] = −
[ gσm
√−gg00 Ipqmkφpq +

1
2

gσ0g00,k + gσpg0p,k +
gσpg0q

2g00

(
gpq,k + gqk,p

− gpk,q

)]
gγkχ00 − 1

2
gσ

0 (gγkχ00),k +
1
2

g0γgσkg00,kχ00 , (A9)
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where gα
β = δα

β is the substitution tensor. An analogous formula for the first term is

derived either by applying the following expression [φ0γ, Vσ
λ ] = −

∂Vσ
λ

∂g0γ
, or directly. The

final expression takes the form

[φ0γ, Vσ
λ ]χ

0λ =
[ 1√−gg00

(
g0σgγm + gγσg0m − 3g0γgσm

)
Ipqmkφpq

]
χ0k

− δ
γ
0

(
g0σχ0k

)
,k
− δ

γ
p

(
gσpχ0k

)
,k
+

1
2

δ
γ
0

(
gσkχ0k

)
,k

(A10)

The complete formula for the [χ0σ, χ0γ] Poisson bracket is the algebraic sum of three
expressions from Equations (A8)–(A10).

Appendix B. On Canonicity of the Hamiltonian Dynamical Variables

Let us briefly discuss the criteria of canonicity for the different sets of dynamical
variables which describe the same Hamiltonian system. In almost all applications of similar
criteria in classical mechanics it is important to know that the new set of dynamical variables
will be canonical, if the old set of dynamical variables was canonical. For simplicity, below
the new dynamical variables q̃i and p̃j are designated by the upper signs ˜ , while old
dynamical variables are denoted as qi and pj. Now, we can define the following 2n× 2n
Jacobi matrix M̂ of some transformation of the dynamical variables:

M̂ =



∂q̃1
∂q1

. . . ∂q̃1
∂qn

∂q̃1
∂p1

. . . ∂q̃1
∂pn

. . . . . . . . . . . . . . . . . .
∂q̃n
∂qn

. . . ∂q̃n
∂qn

∂q̃n
∂p1

. . . ∂q̃n
∂pn

∂ p̃1
∂q1

. . . ∂ p̃1
∂qn

∂ p̃1
∂p1

. . . ∂ p̃1
∂pn

. . . . . . . . . . . . . . . . . .
∂ p̃n
∂qn

. . . ∂ p̃n
∂qn

∂ p̃n
∂p1

. . . ∂ p̃n
∂pn


=

(
∂q̃
∂q

∂q̃
∂p

∂p̃
∂q

∂p̃
∂p

)
. (A11)

where ∂q̃
∂q , ∂q̃

∂p , ∂p̃
∂q and ∂p̃

∂p are the n× n matrices. Another matrix which we need here is the

unit simplectic 2n× 2n matrix Ĵ:

Ĵ =



0 . . . 0 −1 . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . 0 0 . . . −1
1 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . .
0 . . . 1 0 . . . 0

 =

(
0 −E
E 0

)
. (A12)

where E is the n × n unit matrix. It easy to show that the matrix Ĵ is invertable and it
obeys the following equation: Ĵ2 = − Ĵ Ĵ−1, or Ĵ−1 = − Ĵ. This fundamental property of the
unit simplectic matrix Ĵ substantially determines many known properties of the canonical
transformations and predicts a number of necessary steps in the Hamilton method. As
follows from Equation (A12) the matrix Ĵ is not self-adjoint, but its product with the
imaginary unit ı, i.e., the matrix ı Ĵ is a truly self-adjoint matrix. This fact is crucial for
correct definition of the Poisson brackets in quantum mechanics (see below).

It can be shown that for the matrix M̂, which represents some canonical transformation
of the Hamilton dynamical variables, the following condition is always obeyed: M̂′ Ĵ M̂ =
cĴ, where c( 6= 0) is a real and/or complex number which is called the valence of this
transformation. Additionally, in this equation Ĵ is the unit simplectic matrix and M̂′ is
the matrix adjoint to the original matrix M̂. Vice versa, if some matrix of differential
transformation of variables M̂ obeys the equation M̂′ Ĵ M̂ = cĴ, then such a differential
transformation of dynamical variables, which is represented by the matrix M̂, is canonical
with the valence c. Thus, we have formulated the criterion of canonicity in terms of the
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Jacobi matrix which is easily determined for an arbitrary transformation of the Hamiltonian
dynamical variables. Let us discuss this matrix criterion with some additional details. First
of all, by using the properties of the Ĵ matrix mentioned above it is possible to show (in
two steps) that the two following equations (or conditions) follow from each other

M̂′ Ĵ M̂ = cĴ ⇐⇒ M̂ĴM̂′ = cĴ . (A13)

which means that these two equations are equivalent to each other. Indeed, at the first
step we multiply both sides of the equation M̂′ Ĵ M̂ = cĴ by the [M̂′]−1 matrix from the
left and by the [M̂]−1 matrix from the right. These operations lead to the new equa-
tion 1

c Ĵ = [M̂′]−1 Ĵ[M̂]−1. At the second step we just need to reverse both sides of this
equation. By taking into account that Ĵ−1 = − Ĵ, [M̂−1]−1 = M̂ and {[M̂′]−1}−1 = M̂′,
we find the equality: cĴ = M̂ĴM̂′, which exactly coincides with the second equation in
Equations (A13). On the other hand it is easy to check that, if we start from the second
equation in Equations (A13), then the two analogous and simple steps allow one to derive
the first equation in Equations (A13).

The matrix M̂ (and/or M̂′) which obeys any of these equations, Equations (A13), is
called the true simplectic matrix with numerical valence c. In general, all even-dimensional
(non-singular) simplectic matrices form the closed simplectic group Sp(k, R) (or Sp(k, C)),
where k = 2n. Finally, we arrive to the following theorem: some non-singular transforma-
tion of Hamilton dynamical variables q̃i = q̃i(t, qi, pi), p̃i = p̃i(t, qi, pi), where i = 1, . . . , n,
will be canonical, if (and only if) its Jacobi matrix M̂, Equation (A11), is the true symplectic
matrix with the valence c. In this case the condition, Equation (A13), must be obeyed
identically for all old dynamical variables and time t.

Further investigation shows that the matrix elements of the M̂′ Ĵ M̂ matrix coincide
with the corresponding Lagrange brackets written in old coordinates and momenta, while
the matrix elements of the M̂ĴM̂′ matrix coincide with the corresponding Poisson brackets
which are also written in old coordinates and momenta. Thus, we have an obvious duality
between the Lagrange and Poisson brackets, which can be illustrated by a simple rule
which is applied to form the (ij)-matrix elements of the adjoint matrix M̂′ (from M̂) and
vice versa. This rule is simple: in each partial derivative, which is included in the Jacobi
matrix of the canonical transformation (or its adjoint), the letters and indices at the top
and bottom are swapped, while the symbol ˜ always stays at the top. Let us consider the
following example. As mentioned above the matrix equation M̂′ Ĵ M̂ = cĴ for the canonical
transformation is equivalent to the following system of equations:

{qi, qj} = 0 , {pi, pj} = 0 , {qi, pj} = cδij , (A14)

where the notation {a, b} means the Laplace bracket defined in the main text. In other
words, the matrix elements of the M̂′ Ĵ M̂ matrix always coincide with the corresponding
Laplace brackets, while numerical values of these brackets are determined from the matrix
equation M̂′ Ĵ M̂ = cĴ. Now, by taking adjoint of Equation (A14) one finds the following
matrix equation: M̂ĴM̂′ = cĴ, which leads to the three group of equalities for the adjoint
Laplace brackets:

{qi, qj}? = 0 , {pi, pj}? = 0 , {qi, pj}? = cδij , (A15)

where the sign ‘?’ means that inside of Lagrange brackets we have to apply our ‘swap of
variables’ described above. By using the explicit formulas for the Lagrange brackets and
our recipes to construct the adjoint matrix we can write

{qi, qj}? =
[ n

∑
k=1

(∂q̃k
∂qi

∂ p̃k
∂qj
− ∂q̃k

∂qj

∂ p̃k
∂qi

)]?
=

n

∑
k=1

( ∂q̃i
∂qk

∂q̃j

∂pk
−

∂q̃j

∂qk

∂q̃i
∂pk

)
= [q̃i, q̃j] (A16)
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where the notation [a, b] stands for the ‘regular’ Poisson bracket. Analogous expres-
sions can be derived for other fundamental Lagrange brackets {qi, pj}? = [q̃i, p̃j] and
{pi, pj}? = [ p̃i, p̃j], where all Poisson brackets are calculated in the old dynamical variables.
These formulas indicate clear that the adjoint of the Laplace bracket equals (remarkably
and unambiguously) to the corresponding Poisson bracket. Briefly, this means that we
have reduced calculations of the adjoints of the Laplace brackets to computations of the
corresponding Poisson brackets. Note also that the right-hand sides of Equations (A15) do
not change during the ? procedure and we obtain the following numerical values for the
fundamental Poisson brackets

[q̃i, q̃j] = 0 , [ p̃i, p̃j] = 0 , [q̃i, p̃j] = cδij , (A17)

which coincide with the expected numerical values. Thus, we have shown that the Poisson
brackets coincide with the adjoints of the corresponding Laplace brackets (and vice versa).
In other words, these two systems of brackets are closely related to each other and each
of these brackets can equally be used to check and prove the canonicity of some new set
of Hamilton dynamical variables. Based on these facts it is relatively easy (for simplicity,
we choose c = 1 here) to prove the following theorem [12]: if u1, u2, . . . , u2n are the 2n
independent functions of the variables q1, . . . , qn, p1, . . . , pn, then the two equations

2n

∑
k=1
{uk, ui}[uk, uj] =

2n

∑
k=1
{ui, uk}[uj, uk] = δij , (A18)

are always obeyed for these functions. This equation(s) explicitly shows a very close
relation between the Laplace and Poisson brackets and they essentially follow from the
definitions of these two brackets.

The last remark, which we want to make here, describes the main difference which
arises in definitions of the canonical transformations in the classical and quantum mechan-
ics. The Jacobi matrix M̂, which describes the canonical transformation of the Hamiltonian
dynamical variables, can also be defined (with a few additional tricks) in quantum mechan-
ics. However, the governing equation Equation (A11) for the Jacobi M̂ matrix in quantum
mechanics includes the self-adjoint unit matrix ı Ĵ, which is not the unit simplectic Ĵ matrix
as it was in classical mechanics. This means that in quantum mechanics both newly-defined
Poisson brackets and their numerical values will always include (explicitly) the imaginary
unit ı. In the fundamental Poisson bracket we can introduce the ‘new’ momenta in the
coordinate representation by including ı in its definition. On the other hand, the numerical
value of the corresponding Poisson bracket must also include the imaginary unit ı. Let
us consider the following example. Suppose we have a point non-relativistic particle
with the mass m which is located at the point with the Cartesian coordinates (x, y, z) and
has the velocity (vx, vy, vz). One can introduce the momenta for this particle pi = mvi,
where i = (x, y, z). In classical mechanics we have three fundamental Poisson brackets:
[xi, pj] = δij, [xi, xj] = 0 and [pi, pj] = 0. The same momenta and numerical values of all
non-zero Poisson brackets in quantum mechanics are defined as follows: pk = −ıh̄ ∂

∂xk
and

[pi, xj] = −ıh̄δij, respectively [30]. Here (i, j) = (x, y, z) and h̄ = h
2π ≈ 1.054571817 · 10−34

J · sec is the reduced Planck constant which is also called the Dirac constant. An addi-
tional trick in this case is the explicit form of the coordinate operator xk in momentum
representation: xk = −ıh̄ ∂

∂pk
, or ∂

∂pk
= ı

h̄ xk, where k = x, y, z.
Note that both quantum momenta and numerical values of the Poisson brackets con-

tain the imaginary unit ı. Actual presence of the self-adjoint matrix ı Ĵ in the governing
equation M̂′(ı Ĵ)M̂ = ı Ĵ for the quantum Jacobi matrix M̂ allows one to define the canonical
transformations in quantum mechanics as the unitary transformations. In other words,
canonical transformations of the Hamiltonian dynamical variables in quantum mechanics
are represented by the unitary matrices M̂ and M̂′ only. Thus, we have found the following
relation between the classical and quantum Poisson brackets [ f , g]class =

ı
h̄ [ f̂ , ĝ]quant. This
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relation can be considered as a canonical transformation between the classical and quantum
mechanics with the imaginary valence c = ı

h̄ . The imaginary valence of this canonical trans-
formation means that all dynamical variables in quantum mechanics must be represented
by self-adjoint operators and canonical transformations between different sets of dynamical
variables in quantum mechanics are always performed by the unitary matrices, which
differ from the simplectic matrices used for the same purposes in classical mechanics.

Appendix C. Variational Derivation of Integral Invariants for Hamiltonian Systems

As is well known, the Hamilton method has a number of significant advantages over
other methods which are used to solve the same problems in classical mechanics, e.g., over
the Lagrange method. One of these advantages is the method of integral invariants which
is a ‘hidden’ part of any true Hamilton approach. The method of integral invariants allows
one to analyze and solve many problems in mechanics. Here we describe a variational
derivation of integral invariants for arbitrary, in principle, Hamiltonian dynamical systems.
First, let us consider variations of the two following actions (or action integrals) WL and WH :

WL =
∫ t1

t0

L
(

t, qi(t, α), q̇i(t, α)
)

dt and WH =
∫ t1(α)

t0(α)
L
(

t, qi(t, α), q̇i(t, α)
)

dt , (A19)

where the notation α stands for the parameter. All coordinates qi(t, α) and velocities q̇i(t, α)
in these two actions depend on this parameter. In the second action (WH) the lower and
upper limits in the time-integral also depend upon this parameter α. During variations of
these two integrals we can always interchange the sings of variations δ and time derivative
d
dt , since we can write

δq̇i = δ
( d

dt
qi(t, α)

)
=

∂

∂α

[ d
dt

qi(t, α)
]
δα =

d
dt

[ ∂

∂α
qi(t, α)δα

]
=

d
dt

δqi(t, α) (A20)

By using this equation we can derive the following formulas for variations of these
two actions WL and WH :

δWL =
∫ t1

t0

n

∑
i=1

[ ∂L
∂qi
− d

dt

( ∂L
∂q̇i

)]
δqidt (A21)

and

δWH =
{ n

∑
i=1

( ∂L
∂q̇i

)
δqi −

[ n

∑
i=1

( ∂L
∂q̇i

)
q̇i − L

]
δt
}∣∣∣∣∣

t1(α)

t0(α)

+
∫ t1(α)

t0(α)

n

∑
i=1

[ ∂L
∂qi
− d

dt

( ∂L
∂q̇i

)]
δqidt . (A22)

Now, by introducing the following notations: ∂L
∂q̇i

= pi and ∑n
i=1

(
∂L
∂q̇i

)
q̇i − L = H we

can re-write the last expression in the form:

δWH =
[ n

∑
i=1

piδqi − Hδt
]∣∣∣∣∣

t1(α)

t0(α)

+
∫ t1(α)

t0(α)

n

∑
i=1

[ ∂L
∂qi
− d

dt

( ∂L
∂q̇i

)]
δqidt , (A23)

where the function H is Hamiltonian of the system, while pi (i = 1, . . . , n) are the momenta.
Let us define the optimal (or shortest) path between two spatial points M0 and M1.

The optimal path satisfies the Lagrange equation ∂L
∂qi
− d

dt

(
∂L
∂q̇i

)
= 0 and variation of the

Lagrange action WL is always equal zero for the shortest path. It is clear that in this
case the optimal path does not depend upon the parameter α, i.e., for this path we can
write the equation qi = qi(t), where i = 1, . . . , n and all qi(t) functions do not depend
on the parameter α. If we consider the variation of the Hamilton action WH , then the
corresponding optimal path is also determined by the Lagrange equation. However, since
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in this case t0 = t0(α) and t1 = t1(α), then we obtain the whole α-dependent family of
optimal paths qi = qi(t, α), where i = 1, . . . , n. On each of these optimal α-dependent paths,
the variation of WH is written in the form

δWH(α) = δ
∫ t1(α)

t0(α)
L
(

t, qi(t, α), q̇i(t, α)
)

dt =
(∂WH(α)

∂α

)
δα =

[ n

∑
i=1

piδqi − Hδt
]∣∣∣∣∣

t1(α)

t0(α)

. (A24)

A different derivation of this formula can be found, e.g., [31]. For actual (or optimal)
motion of the Hamiltonian system the variation of WH must be equal zero, i.e., δWH(α) = 0.

Instead of the extended (n + 1)-dimensional coordinate space {qi(α), t(α)}, let us
introduce the extended (2n + 1)-dimensional phase space of the generalized coordinates qi,
momenta pi and time t which we shall designate as the {qi(α), pi(α), t(α)} space. In this
phase space, we choose an arbitrary closed curve C0, which is described by the equations:
qi(0) = qi(t0, α), pi(0) = pi(t0, α), t = t0(α), where i = 1, . . . , n and 0 ≤ α ≤ `. Note that
for α = 0 and for α = ` we have the same point on the curve. This means that qi(0) = qi(`)
and pi(0) = pi(`). At the next step, from each point of this closed curve C0, as from the
initial point, we draw the corresponding optimal path. Such an optimal path is uniquely
determined (after we set the initial point on the curve C0) from the system of Hamiltonian
canonical equations. By choosing different initial points on the closed curve C0 we obtain a
tube of optimal (or shortest) paths each of which is also α-dependent. The explicit equations
for this tube of optimal paths are: qi = qi(t, α), pi = pi(t, α), where i = 1, . . . , n, 0 ≤ α ≤ `
and also qi(t, 0) = qi(t, `) and pi(t, 0) = pi(t, `) for i = 1, . . . , n. Formally, each optimal
path on the surface of this tube can be considered as some generatrix of the tube.

On this tube, we select the second closed curve C1, which also covers the tube and
has only one common point with each generatrix. The equations of this closed curve C1
are written in the form: qi(1) = qi(t1, α), pi(1) = pi(t1, α), t = t1(α), where i = 1, . . . , n and
0 ≤ α ≤ `. Now, by integrating the equation δWH(α) = 0 over the parameter α in the range
from α = 0 to α = `, one finds

0 = WH(`)−WH(0) =
∫ `

0

[ n

∑
i=1

piδqi − Hδt
]∣∣∣∣∣

t1

t0

=
∫ `

0

[ n

∑
i=1

p1
i δq1

i − H1δt1

]
−

∫ `

0

[ n

∑
i=1

p0
i δq0

i − H0δt0

]
=
∮

C1

[ n

∑
i=1

piδqi − Hδt
]
−
∮

C0

[ n

∑
i=1

piδqi − Hδt
]

. (A25)

or ∮
C1

[ n

∑
i=1

piδqi − Hδt
]
=
∮

C0

[ n

∑
i=1

piδqi − Hδt
]

. (A26)

This means that the closed loop integral I =
∮ [

∑n
i=1 piδqi − Hδt

]
taken along an

arbitrary closed contour does not change its value during an arbitrary displacement along
the tube of straight paths. In other words, this integral I is invariant, which is called
the integral invariant of Poincare–Cartan (see, Equation (99), in the main text) for the
Hamiltonian dynamical system with the Hamiltonian H.

In pure mathematical language we have created and investigated the rotor tube for
the differential form ω1 = p dq − Hdt, where p = (p1, . . . , pn) and q = (q1, . . . , qn).
The rotor lines, each of which is the generatrix of this tube, are uniformly determined by
the canonical Hamiltonian equations. In other words, the true Hamiltonian trajectories
(or integral curves of the canonical Hamilton equations) are the generatrixes of the rotor
tube for the differential form ω1 = p dq− Hdt. Note that about integral invariants for
Hamiltonian systems it is possible to talk endlessly, but for now it is better to stop here.
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The last thing which we want to present in this Appendix is the explicit formula for the
differential of the ω1 form, which is the 2-form dω1 [20]:

dω1 =
n

∑
i=1

(
dpi ∧ dqi −

∂H
∂pi

dpi ∧ dt− ∂H
∂qi

dqi ∧ dt
)
= 0 , (A27)

where ∧ is the standard notation of exterior product [19,20]. The matrix Â of this 2-form
dω1 in the (2n + 1)-dimensional phase space is:

Â =

 0 −E ∂H
∂p

E 0 ∂H
∂q

− ∂H
∂p − ∂H

∂q 0

 , where
(

0 −E
E 0

)
= Ĵ (A28)

and Ĵ is the unit simplectic 2n× 2n matrix which has been defined and discussed in the
Appendix B. The rank of this matrix Â equals 2n (the rank of Ĵ matrix), i.e., it has one zero-
eigenvalue. The corresponding eigenvector is (− ∂H

∂q , ∂H
∂p , 1) and it determines the direction

of rotor lines for the differential form ω1 = p dq− Hdt. More about the uniqueness of
integral invariants, their classification and integral invariants of higher orders can be found,
e.g., in [32].
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