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Abstract: Galactic cosmic rays are mostly made up of energetic nuclei, with less than 1% of electrons
(and positrons). Precise measurement of the electron and positron component requires a very
efficient method to reject the nuclei background, mainly protons. In this work, we develop an
unsupervised machine learning method to identify electrons and positrons from cosmic ray protons
for the Dark Matter Particle Explorer (DAMPE) experiment. Compared with the supervised learning
method used in the DAMPE experiment, this unsupervised method relies solely on real data except
for the background estimation process. As a result, it could effectively reduce the uncertainties
from simulations. For three energy ranges of electrons and positrons, 80–128 GeV, 350–700 GeV, and
2–5 TeV, the residual background fractions in the electron sample are found to be about (0.45 ± 0.02)%,
(0.52 ± 0.04)%, and (10.55 ± 1.80)%, and the background rejection power is about (6.21 ± 0.03) × 104,
(9.03 ± 0.05) × 104, and (3.06 ± 0.32) × 104, respectively. This method gives a higher background
rejection power in all energy ranges than the traditional morphological parameterization method
and reaches comparable background rejection performance compared with supervised machine
learning methods.

Keywords: DAMPE; machine learning; principal component analysis; particle identification; cosmic rays

1. Introduction

Electrons1 in cosmic rays (CR) are important probe of nearby CR accelerators due
to their short propagation distances in the Milky Way [1,2]. They are also widely used
to search for new physics, such as the particle dark matter [3,4]. The abundance of CR
electrons above GeV is significantly lower, by a factor of 10−3∼10−2, than that of CR pro-
tons. Therefore, it is challenging to precisely measure the spectrum of electrons. Currently,
the best measurements of the electron and/or positron spectra come from space (or bal-
loon) direct detection experiments, including the magnetic spectrometers and imaging
calorimeters [5–12]. The ground-based atmospheric imaging Cherenkov telescope arrays
also tried to measure the total electron plus positron spectra to higher energies, which,
however, are subject to large systematic uncertainties [13–16]. The spectra of electrons
were measured up to a few TeV, experiencing a softening around a few GeV, a hardening
around 50 GeV, and a softening around 0.9 TeV [2]. Those spectral features help establish
a three-component origin model of electrons and positrons, including primary electrons
from CR acceleration sources, secondary electrons and positrons from inelastic interactions
between CR nuclei and the interstellar medium, and additional electrons and positrons
relevant to the high-energy excesses [2].

The DArk Matter Particle Explorer (DAMPE) is a space high-energy charged CR and
gamma-ray detector optimized for precision detection of electrons with a very high energy
resolution and background rejection [17,18]. DAMPE is a calorimetric-type instrument,
which consists of four sub-detectors. The Plastic Scintillator Detector (PSD; [19]) on the
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top is used to measure the particle charge up to Z = 28, and serves as an anti-coincidence
detector for γ rays. The charge resolution of PSD was found to be about 0.137 (full width at
half maximum) for Z = 1 [20]. The Silicon Tungsten tracKer-converter (STK) is designed
for the trajectory measurement [21]. It can also measure the particle charge for Z < 8. The
Bi4Ge3O12 (BGO; [22]) calorimeter plays a crucial role in the energy measurement and the
electron–proton discrimination. The total thickness of the BGO calorimeter of DAMPE
reaches ∼32 radiation lengths and thus enables the calorimeter to contain electromagnetic
showers without remarkable leakage below ∼10 TeV, which ensures a very high energy
resolution (better than 1.5% for E > 10 GeV) and a high electron–proton discrimination
capability. The NeUtron Detector (NUD; [23]) at the bottom provides a further electron–
proton separation via the detection of secondary neutrons produced by interactions in the
calorimeter. All the detectors have operated stably in space since the launch of DAMPE
in December, 2015 [24,25]. Important progress in measuring the electron and CR nuclear
spectra has been achieved [11,26–29].

One of the most important elements for precise measurements of the electron spec-
trum is to “suppress” the proton background. For a calorimeter detector, this can be
achieved by means of the shower morphology differences between hadronic showers and
electromagnetic showers. Typically, an electromagnetic shower spreads less with a more
regular morphology than a hadronic shower with similar deposited energy. In Ref. [11], a
two-parameter representation of the shower morphology was developed, i.e., the lateral
spread and the longitudinal development. This method can effectively suppress the proton
background2, resulting in the level of background for electron energies a few percent below
TeV. However, for E > TeV, the background increases quickly for this traditional method.
An optimization of the electron–proton discrimination is necessary (e.g., [30,31]).

The Principal Component Analysis (PCA) is one of the most commonly used machine
learning methods for dimensionality reduction and feature extraction [32–35]. The working
principle of PCA is to express the original data in a new data space. Compared to other
machine learning methods, PCA is an unsupervised machine learning and thus does not
rely on simulated data. Therefore, it may avoid potential biases from models of simulation.
The disadvantage of the PCA method is that the limited data statistics at high energies may
result in relatively large statistical uncertainties.

This work develops an algorithm to separate electrons from protons using the PCA
method. In Section 2, we introduce the basic principle of the PCA method. In Section 3, we
present the detailed algorithm to separate electrons from protons applicable to the DAMPE
experiment. Section 4 gives the results of our method. Finally, we conclude this work in
Section 5.

2. The PCA Method

Generally speaking, the PCA method corresponds to a transform in a high-dimensional
(not necessarily orthogonal) parameter space through a rotation matrix to find a new
coordinate system, in which the variances of the data along the major axes of the new
coordinate are the largest. Larger variance means that the data are more discrete and
discriminative. Finding the coordinate axes corresponding to the maximum variance is
equivalent to determining the eigenvectors corresponding to the maximum eigenvalues
of the covariance matrix of the original data. The commonly used method to solve the
eigenvalues of the covariance matrix is the Singular Value Decomposition method [36–38].

In our analysis, we characterize the shower morphology as the energy deposition ratio
and the hit dispersion (see Section 3 for more details) in each BGO layer. A vector space is
formed by the linear combination of these variables, which are then transformed into a new
space through a linear transformation. In the new vector space, the first several principal
components retain most of the variance of the data sample. In this work, we keep only the
first three components and ignore the others. In summary, our analysis consists of 5 steps:

(1) Selecting the data with good reconstruction.
(2) Constructing characteristic variables carrying shower morphology information.
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(3) Finding the eigenvector and transformation matrix.
(4) Transforming the original data into the new space and finding the first three princi-

pal components.
(5) Rotating the previous three-dimensional space to obtain the final component to

discriminate electrons from protons.

3. Electron-Proton Separation
3.1. Data Selection

Six years of DAMPE flight data are used in this analysis. The instrument dead time
after trigger, the on-orbit calibration time, and the time when the satellite passes through
the South Atlantic Anomaly region are excluded. We first apply a pre-selection procedure
to select events with an accurate track reconstruction and a good shower containment in
the BGO calorimeter. This procedure consists of a few specific conditions as follows:

• The events should meet the High Energy Trigger (HET) [11] condition to ensure a
good shower development at the beginning of the BGO caloriment.

• The radial spread of the shower development, defined as the Root Mean Square (RMS)
of the distances between the hit BGO bars and the shower axis,
RMSr =

√
∑N

j=1 Ej × D2
j /Etotal, should be smaller than 40 mm. The Ej is energy de-

posited in j-th BGO bar, and Dj is the distance between the corresponding BGO bar
and track of the particle. This cut could eliminate a large fraction of nuclei because the
hadronic shower is typically wider than the electromagnetic one.

• The max energy bar of the BGO should not be on the edge of the detector.
• The max energy ratio of each layer, e.g., the ratio of the max energy of a single BGO

bar over the total energy of that layer, should be less than 0.35. The cut can eliminate
those particles coming from the side of the detector.

• The reconstructed track should pass through the top and bottom surfaces of the BGO.
• Events with PSD charge should be smaller than 2 to remove heavy nuclei.

We show the efficiency of these pre-selection conditions in Figure 1. The results are
obtained from the Monte Carlo (MC) simulation for an isotropic source distribution with
1 m radius and E−1 spectrum. The spectrum is then re-weighted to E−2.7 for protons and
E−3.1 for electrons. We see that the pre-selection procedure can be able to suppress protons
by a factor of 10∼103, mainly due to the HET requirement. Furthermore, since the CR
proton spectrum is approximately proportional to E−2.7, the different energy deposition
fractions in the calorimeter of protons (30∼50%) and electrons (>90%) would contribute to
the suppression factor by about 3∼7 for a given reconstructed energy window [39].

Reconstructed Energy[GeV]

210 310 410

sr
]

2
P

re
-s

el
ec

tio
n 

A
cc

ep
ta

nc
e 

[m

-410

-310

-210

-110

Electron

Proton

Figure 1. The pre-selection acceptance of electrons and protons.
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3.2. Construction of Characteristic Variables

The BGO calorimeter is composed of 14 layers, and each layer consists of 22 BGO
crystals placed in a hodoscopic configuration [22]. With the hit information from those 308
BGO crystals, we characterize the shower morphology from longitudinal and lateral views,
respectively. The longitudinal shower development is characterized by the energy ratio in
each BGO layer, Fi = Ei/Etotal, where Ei is the deposited energy of the i-th layer and Etotal
is the total deposited energy in the calorimeter. The lateral spread, on the other hand, is
described by the RMS of the energy deposits in each layer,

RMSi =

√√√√∑22
j=1 Eij × (dij − dcog

i )2

∑22
j=1 Eij

, i = 0, . . . , 13, (1)

where Eij is the deposited energy of the j-th bar in the i-th layer, dij − dcog
i is the distance

from the j-th bar in the i-th layer to the “center of gravity” of the i-th layer, defined as

dcog
i =

22

∑
j=1

Eij ×
dij

Ei
. (2)

Based on these 28 basic variables, Fi and RMSi, we further construct higher-order
variables to achieve a better particle discrimination. The simplest way is to randomly
weight RMSi and Fi to form a new set of variables and to search for optimal weighting
coefficients. We define the new variables as

RMS′i = RMSi × (cos θ)γ × αi

F′i = Fi × βi, (3)

where θ is the angle between the reconstructed incident direction and the vertical direction
of an event, and αi, βi, γ are random numbers between 0 and 1, which will be determined
by the PCA.

3.3. Finding the Principal Components

The major task of the PCA analysis is to find the optimal weighting coefficients of the
variables, i.e., αi, βi and γ. We first generate tens of millions of random sets of weighting pa-
rameters. For a set of random weights, there is a new vector {RMS′i, F′i } for an event. Then,
a covariance matrix can be obtained for a data sample. The direction of the first principal
component is the direction of the eigenvector corresponding to the largest eigenvalue of the
covariance matrix. Mathematically, this is to solve the eigenvectors and eigenvalues of the
covariance matrix. The eigenvectors, placed in descending order of eigenvalues, form the
transformation matrix. Multiplied by this transformation matrix, the vector {RMS′i, F′i } is
transformed to a new one {X, Y, Z, . . .}, which gives the principal components in descend-
ing order of their capabilities to distinguish particles. We find the transformation matrix
using the python package sci-kit (https://scikit-learn.org/, accessed on 20 September
2022) and calculate the proton rejection power. The optimal condition is to ensure that the
ratio between the peak of the distribution of electron candidates and the valley is as large
as possible.

The output of the PCA is a vector group with an orthogonal rank reduction. The first
principal component with the largest variance, however, may not be able to effectively
distinguish electrons from protons by itself. We therefore keep the first three principal
components. For simplicity, we choose the energy range of 350.0–700.0 GeV for illustration
in this section. The scattering plots of the first three most informative dimensions of the
PCA components for reconstructed energies of 350.0–700.0 GeV are shown in Figure 2. We
use X, Y, and Z to illustrate the first, second, and third principal components. It shows
that the X component gives the relative better discrimination power of the electrons and

https://scikit-learn.org/
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protons. For the Z component, the two groups of events are almost indistinguishable. The
corresponding parameters found for reconstructed energy of 350.0–700.0 GeV are shown in
Table 1.
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Y

4 2 0 2 4 6
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3 2 1 0 1 2 3 4
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0
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Figure 2. The scattering plots of the first three principal components in the 350.0–700.0 GeV recon-
structed energy range.

Table 1. The parameters found in the energy range of 350 to 700 GeV by the PCA method.

α β γ

0.3539 0.4676
0.9451 1.535
0.9551 1.723
1.2974 0.2088
0.06981 0.06027

1.054 0.7731
1.946 0.5759

0.8407 0.07682 0.3755
1.280 1.109
1.414 1.695
1.509 0.2808
1.987 0.4533
1.890 1.241

0.7533 1.745

For the convenience of use of the PCA results, we further rotate the vector space of the
first three components to find a new principal direction, which distinguishes electrons from
protons most effectively. This is equivalent to seeking a rotation from (X, Y, Z) to a new set
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of basis (X′, Y′, Z′), such that the single X′ is enough to discriminate electrons from protons
well. After a proper rotation, we obtain a clearer separation of electrons and protons using
the new variable X′, as shown in Figure 3.
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Figure 3. The distribution of the X′, Y′ in the 350.0–700.0 GeV reconstructed energy range.

4. Results

Using the PCA method, we reduce the 28-dimensional parameter space to three major
principal components to form a new vector space. The three-dimensional vector space
is then further rotated to form a new principal axis, which separates the electrons from
protons most effectively. In order to estimate the performance of the electron–proton
discrimination, we use the MC simulation samples of electrons and protons as templates to
fit the flight data. Note that the transformation matrix is obtained directly from the flight
data, which makes our method distinct from the supervised machine learning.

Specifically, we choose three typical reconstructed energy ranges, representing low,
middle and high energies, to show the distribution and background estimation. Comparisons
between the simulation and flight data are shown in the left panels of Figure 4 for the three
energy bands. The right panels of Figure 4 show the relative efficiencies of protons ( fB) and
electrons ( fS) for different cuts of the X′. From the template fitting results, we can estimate the
residual background fractions given signal efficiencies. If we set 90% electron efficiency, the
proton contamination is found to be (0.45 ± 0.02)%, (0.52 ± 0.04)%, and (10.55 ± 1.80)% for
reconstructed energies 80.0–127.5 GeV, 350.0–700.0 GeV, and 2.0–5.0 TeV, respectively.
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Figure 4. Left: The distributions of the rotated first principal component of the flight data and
fitting results of the MC templates (left panels). Right: The residual background fractions versus
signal efficiencies.

The background fraction of protons as a function of reconstructed event energy is
shown in Figure 5 (left axis). And for the highest energy range of a few TeVs, it is still
well controlled in our method while keeping a relatively high electron efficiency. As a
comparison, the electron efficiency decreases significantly above TeV in order to suppress
the proton background to a level of (10∼20)% when using the traditional method [11].

Finally, we obtain the rejection power of protons of the PCA algorithm. The pro-
ton rejection power is defined as Q = f−1

p × φp/φe, where fp is the residual proton
fraction in the electron sample, and φp and φe are the primary fluxes of protons and
electrons. The rejection power is calculated with the reconstructed energy for selected
samples and with the primary energy for primary fluxes, respectively. Note that the
reconstructed energy corresponds to the primary energy for electrons with a tiny disper-
sion of ∼1%. For the proton and electron fluxes, we use the fitting results as φp(E) =

7.58× 10−5(E/TeV)−2.772[1 + (E/0.48 TeV)5]0.173/5 GeV−1 m−2 s−1 sr−1 [26], and φe(E) =
1.62× 10−4(E/0.1 TeV)−3.09[1 + (E/0.91 TeV)8.3]−0.1 GeV−1 m−2 s−1 sr−1 [11]. The pro-
ton rejection power as a function of reconstructed event energy is shown in Figure 5
(right axis). For the selected three energy bands in Figure 4, the proton rejection power is
(6.21± 0.03)× 104, (9.03± 0.05)× 104, and (3.06± 0.32)× 104.
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Figure 5. The background fraction is shown by red points (left axis) and a rejection power of protons
by blue points with a line (right axis).

5. Conclusions

The machine learning methods are more and more widely used in astroparticle physics.
Significant improvements have been achieved in the efficiency and accuracy of particular
problems such as classifications, pattern recognitions, and nonlinear inverting problems.
Supervised machine learning relies on training, which is based on the simulation data.
The advantage is that it is not limited by the statistics of the real data, and a very good
training of the model can be achieved. However, this method requires a good match
between simulation data and real data. As a consequence, the training results are highly
model-dependent. Unsupervised machine learning, on the other hand, avoids such a model
dependence but is subjected to statistical uncertainties of the experimental data.

Using an unsupervised machine learning method, the PCA, we discriminate electrons
from protons for the DAMPE experiment. We use the six-year flight data of DAMPE to
search for effective parameters to distinguish those particles. We find that the PCA method
performs well in the electron identification. The residual proton contamination fraction is
estimated to be (0.45± 0.02)%, (0.52± 0.04)%, and (10.55± 1.80)% for electron energies of
80.0–127.5 GeV, 350.0–700.0 GeV, and 2.0–5.0 TeV. Compared with the traditional method
used in Ref. [11], the PCA method improves the whole energy range. For the same electron
efficiency, the proton background from the PCA method is lower by a factor of two to three.
Compared with the supervised machine learning method, our approach has a comparable
background suppression ability [30].
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Abbreviations
The following abbreviations are used in this manuscript:

DAMPE Dark Matter Particle Explorer
CR Cosmic Rays
PSD Plastic Scintillator Detector
STK Silicon Tungsten tracKer-converter
BGO Bi4Ge3O12
NUD NeUtron Detector
PCA Principal Component Analysis
MC Monte Carlo
HET High Energy Trigger
RMS Root Mean Square

Notes
1 (Throughout this paper, we use electrons to represent electrons and positrons without discriminating them unless specified otherwise.)
2 (note that heavier nuclei can be highly suppressed by the charge measurement, leaving protons as the main background)
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