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Abstract: Black hole horizons interact with external fields when matter or energy falls through them.
Such non-stationary black hole horizons can be described using viscous fluid equations. This work
attempts to describe this process using effective field theory methods. Such a description can provide
important insights beyond classical black hole physics. In this work, we construct a low-energy
effective field theory description for the horizon-fluid of a 4-dimensional, asymptotically flat, Einstein
black hole. The effective field theory of the dynamical horizon has two ingredients: degrees of
freedom involved in the interaction with external fields and symmetry. The dual requirements of
incorporating near-horizon symmetries (S 1 diffeomorphism) and possessing length scales due to
external perturbations are naturally satisfied if the theory on the non-stationary black hole horizon
is a deformed Conformal Field Theory (CFT). For the homogeneous external perturbations, at the
lowest order, this leads to a (2 + 1)-dimensional massive scalar field where the mass is related
to the extent of the deformation of the CFT. We determine the mass by obtaining the correlation
function corresponding to the effective field and relating it to the bulk viscosity of the horizon-fluid.
Additionally, we show that the coefficient of bulk viscosity of the horizon-fluid determines the time
required for black holes to scramble. Furthermore, we argue that matter-field modes with energy
less than meff falling into the horizon thermalize more slowly. Finally, we construct a microscopic
toy model for the horizon-fluid that reduces to the effective field theory with a single scalar degree
of freedom. We then discuss the usefulness of the effective field model in understanding how
information escapes from a black hole at late times.

Keywords: black-hole thermodynamics; effective field theory; fluid–gravity correspondence

1. Introduction

There are deep interconnections between gravity, quantum theory, and thermody-
namics [1–3]. The laws of black-hole mechanics describe the entropy and temperature of
black holes, which are a consequence of quantum mechanics in the presence of strong
gravity [4–8]. Black-hole thermodynamics points to two issues: First, it demands a statis-
tical mechanical origin of entropy. It has been argued that most of a black hole’s degrees
of freedom (DOF) reside on the horizon, as the black hole entropy scales with area [1,9].
Second, it deals only with equilibrium states.

Due to gravity, the black hole horizon continually interacts with external fields (pertur-
bations) and is non-stationary. The interaction leads to an energy transfer from the external
fields to black hole degrees of freedom. Formally, the action for such a description is:

STotal = SBH + SExt + SInt[BH, Ext] (1)

where SExt(SBH) is the action corresponding to external fields (isolated black hole), and
SInt corresponds to the interaction. The interaction term leads to dissipative effects when
computing observables involving black holes. In classical black hole physics, this is ex-
plicitly seen by projecting the equations of motion of the fields and gravity on the black
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hole event horizon, leading to dissipative equations. In these scenarios, a fluid dynamics
description is helpful as only average quantities resulting from the interactions at the
microscopic level are observed on macroscopic scales [10]. Interestingly, it was shown that
the black hole horizon behaves like a viscous fluid and satisfies the Damour–Navier–Stokes
equation [11–13].

Ideally, one should describe this horizon-fluid starting from a fundamental theory
of quantum gravity. Unfortunately, the conceptual and technical obstacles in formulating
a consistent quantum theory of gravity are formidable. In this context, one of the issues
that arise is the full diffeoinvariance in the entire theory, also known as background inde-
pendence. General relativity is distinguished by its diffeomorphism or reparametrization
invariance. In our model, however, perturbative expansion around a background metric
breaks diffeomorphism invariance. However, a complete quantum gravity theory requires
nonperturbative techniques that explicitly ensure diffeomorphism invariance (For a more
detailed discussion, see Refs. [14,15]). For all the different lattice approaches, the challenge
consists of showing that a continuum limit exists for which the effective action for the
metric is one of the Einstein–Hilbert types (See, for instance, Refs. [16,17]).

It is generally thought that the quantum gravity effects are relevant close to the singu-
larity at the center of a black hole. Hence, black holes are used as theoretical laboratories
to test quantum gravity models. As mentioned above, most of the effort in the literature
has been to understand the microscopic origin of black hole entropy. However, black-hole
thermodynamics now has the problem of Universality [3]; at the leading order, several
approaches using completely different microscopic degrees of freedom lead to Bekenstein–
Hawking entropy [1]. It is currently impossible to identify the true degrees of freedom
responsible for the black hole entropy [2]. Therefore, other tests are key in distinguishing
such models. While reproducing the black hole entropy is only one test of a microscopic
model of quantum gravity, obtaining transport coefficients can help us choose between
various scenarios. To our understanding, deriving transport coefficients from quantum
gravity is only partially addressed.

Using a phenomenological approach, we determined the coefficient of bulk viscosity
for asymptotically flat black holes in general relativity [18,19]. In this work, we deduce the
coefficient of bulk-viscosity of the horizon-fluid from a low-energy effective field theory on
the dynamical horizon. See Section 2 for the detailed effective field theory description.

As an offshoot of our approach, we obtain the thermalization rate of black holes as
matter energy falls into them. The black hole is perturbed when external matter energy falls
into a stationary black hole. When the black hole settles into a stationary state, the black
hole entropy increases, as given by the first law of black-hole mechanics with a different
temperature [1]. This can be interpreted as the thermalization of the infalling matter at
the event horizon for an outside observer. For the homogeneous perturbations of the event
horizon, we provide an understanding of the thermalization at the horizon by relating the
scrambling time [20] with the bulk viscosity of the horizon-fluid. Using the scaling relations
for the effective scalar degree of freedom, we explicitly show that the rate of thermalization
slows down as the perturbed black hole approaches the stationary point.

Finally, we propose a microscopic toy model for the horizon-fluid—a two-dimensional
integrable lattice model. Specifically, we consider the eight-vertex Baxter model [21–26] as
a model to explain the effective scalar degree of freedom. The eight-vertex Baxter model
reduces to an effective field theory with a single scalar degree of freedom in the continuum
limit. We demonstrate that this microscopic model incorporates all the features.

The rest of this article is organized as follows: In Section 2, we obtain the effective field
theory of the event horizon interacting with homogeneous external perturbations. Using
the mean-field theory description of horizon-fluid, we relate the scalar field ϕ with the
physical quantity associated with the horizon. In Section 3, we calculate the bulk viscosity
coefficient (ζ) of the horizon-fluid from the correlation functions of the effective field theory
Hamiltonian (2). We use Jeon’s procedure to calculate ζ of the horizon-fluid from the
correlations of the field’s energy-momentum tensor [27]. In Section 4, we show that the
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effective theory can be used to predict the thermalization rate of the infalling matter energy
to the black hole. In Section 5, we explicitly construct a microscopic model that satisfies
the requirements of symmetry and dynamical degrees of freedom of the effective field
theory. Moreover, we show that the microscopic model reduces to the effective field theory
Hamiltonian in the continuum limit. Finally, in Section 6, we discuss the implications of
our results. The three appendices contain the details of the calculations. In this work, we
use natural units; we set h̄ = c = G = kB = 1.

2. Effective Field Theory Description of the Dynamical Horizon

Like in any effective theory, the effective field theory of the dynamical horizon has
two ingredients [28,29]: degrees of freedom and symmetries. Since bulk viscosity appears
as a change in the cross-sectional area of the black hole horizon [18,19], the process can
be described by an effective scalar degree of freedom. To understand this, let us consider
the process of infalling matter energy into the black hole, which increases the black hole
area. This process can be viewed as an increase in entropy since the entropy of a black
hole is proportional to its area. Indeed, focusing on the homogeneous processes by which
matter energy falls into a black hole and using a phenomenological description, we showed
that the evolution equation for the event horizon of a black hole follows from a Langevin
equation [30,31]. Thus, the effective field theory describing the homogeneous process
involves only one effective scalar degree of freedom.

To constrain the form of effective action, we need to identify the symmetries. Stationary,
non-extremal black holes in 4-dimensional general relativity exhibit an infinite-dimensional
symmetry in the near-horizon region [32–40]. Thus, the near-horizon possesses infinite-
dimensional algebra, such as S 1 diffeomorphism [37,38] or (near) BMS [40–43]. It has
been argued that the Conformal Field Theory (CFT) on the black hole horizon can partly
incorporate the near-horizon symmetries.

The CFT describing a stationary black hole can incorporate the S 1 diffeosymmetry [37,38]
as it possesses a representation of the Virasoro algebra1 [38,44,45]. Hence, it is a natural
candidate for a low-energy effective theory of stationary black holes [32–38]. This is the
viewpoint we shall adopt in this work. We demonstrate that even a simple, effective
theory toy model constructed from this starting point can help us understand the transport
properties of the horizon-fluid. For our purposes here, this will be sufficient as the details
of the phase space of the theory on the horizon do not concern us.

A dynamical (non-stationary) black hole can be viewed as interacting with external
fields. Physically, we can view this process as a perturbed black hole relaxing to a stationary
black hole by emitting QNMs [46]. A horizon-fluid interacting with external fields leads to
conformal symmetry breaking. Thus, within the effective field theory approach, this means
adding interaction terms to stationary black holes described by CFT.

We proceed by incorporating the near-horizon symmetries for a perturbed CFT. The
perturbed CFT we choose possesses symmetries that lead to a representation of the Virasoro
algebra [47]. These are integrable field theories with an infinite number of conserved charges
corresponding to an infinite number of symmetries [48]. The crucial point that allows
us to model the black hole horizon-fluid by such a perturbed CFT is that one of the
representations of the Virasoro algebra corresponding to the perturbed CFT is also a
representation of the S 1 diffeomorphism symmetry [47]. Thus, the effective field theory
corresponding to the perturbed CFT has at least one length scale, and only a bare minimum
input from the black hole physics is required.

The physical picture is the following: As shown in Figure 1, we consider a collapsing
black hole. The black hole is stationary only at point P and is described by a CFT. A black
hole that relaxes (from any point on H +) to the stationary black hole is described by
deformed CFT. Thus, the effective field theory we use to model the dynamical black hole
horizon here satisfies two requirements: First, at point P, it is described by a CFT. Second,
the theory must reproduce the transport phenomena from any point on H + to P.
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Figure 1. Space-time diagram for the collapsing black hole. The shaded region is the exterior of a
collapsing star, and the r = 0 line at the top of the diagram is the singularity. H + denotes the event
horizon. P is the future time, such as infinity.

The simplest theory with a single scalar degree of freedom that is a deformed CFT and
incorporates a representation of the S 1 diffeosymmetry is the free massive scalar field theory.
The corresponding Hamiltonian is

Heff(ϕ) =
∫

dA
[

1
2

π2
ϕ +

1
2
(
∇ϕ
)2

+
m2∗
2

ϕ2
]

, (2)

where πϕ = ∂ϕ/∂t. The above Hamiltonian is the minimal effective Hamiltonian regarding
which we want to mention the following points: First, this is the Hamiltonian of the free
scalar field (ϕ) in (2 + 1)-dimensional Minkowski space-time where m∗ is the mass of the
excitations of the field ϕ and the integral is over the area of the horizon. Interestingly,
when the black hole becomes stationary, the effective scalar degree of freedom corresponds
to a massless scalar field theory, and the theory becomes a CFT. Second, m∗ is related to
the extent of the deformation of the CFT. Thus, m∗ contains all the information about the
interaction between the isolated black hole and external fields in Equation (1).

To obtain m∗, we need to identify the scalar degree of freedom (ϕ) with a physical
quantity associated with the horizon. Once we identify ϕ, we can use the above Hamil-
tonian to derive the bulk viscosity and thermalization rate. In the rest of this section, we
use Ginzburg–Landau formalism to identify the scalar field (ϕ) with a physical quantity
associated with the horizon. We achieve this by varying the Ginzburg–Landau entropy
functional to determine the maximum value of entropy corresponding to the equilibrium
state by carrying out the following steps:

1. Associate the process of the perturbed black hole to a stationary black hole as a critical
phenomenon.

2. Use the Ginzburg–Landau formalism to phenomenologically describe this process.
3. Associate the Ginzburg–Landau functional to the entropy function of the horizon-

fluid [18,19]
4. Identify the function with the effective scalar field Hamiltonian (2).

2.1. Associate the Process with Critical Phenomena

As mentioned above, at the stationary point (P in Figure 1), the black hole horizon is
described by a CFT. In this framework, P is the critical point, and the effective scalar field
(ϕ) is massless (m∗ = 0). At any point on H + in Figure 1, m∗ is non-zero and is related
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to the extent of the deformation of the CFT. Thus, as the non-stationary black hole settles
down to the stationary state, m∗ flows from a non-zero value to zero at the critical point.
Although other higher-order terms corresponding to a deformed CFT can be present, m2∗ϕ2

should always be present in any effective scalar field theory representing a deformed CFT.
Thus, the effective scalar field (ϕ) is associated with a phenomenological order parameter.

2.2. Phenomenological Description of the Process Using Ginzburg–Landau Formalism

Within the Ginzburg–Landau formalism, for many physical systems close to a crit-
ical point, it is possible to establish a phenomenological explanation for the increase
in area/entropy caused by homogeneous perturbations [49]. Identifying the Ginzburg–
Landau functional with the scalar field Hamiltonian (2) will allow us to connect the effective
scalar field ϕ explicitly with a black hole parameter.

For the homogeneous perturbations of the black hole horizon, the Ginzburg–Landau
functional can be written in terms of a single scalar-order parameter (η). A natural choice
for the Ginzburg–Landau functional is the Z2 symmetry-breaking terms. Since the ho-
mogeneous perturbations change the area of the black hole, it is natural to relate this
scalar-order parameter to the black hole horizon area. Like in phase-field models, we use
entropy functional instead of energy functional, the negative of which always decreases on
solution paths [49]. There are two main factors: First, we investigate a scenario in which the
black hole (of horizon area A) interacts with its surroundings, resulting in an energy flow.
Therefore, we require a framework in which the energy density and the order parameter
are treated on the same footing. As demonstrated in Ref. [49], the relevant thermodynamic
potential is entropy functional and not free-energy functional. The stationary state of the
black hole, indicated by point P in Figure 1, corresponds to the thermodynamic equilibrium
state of the black hole with maximum entropy. The deformed CFT corresponds to the
quasi-stationary black hole (a point on H + other than P). Second, as we demonstrate, the
analysis eliminates the arbitrariness in introducing the infrared cutoff [18].

2.3. Associate the Ginzburg–Landau Functional to the Entropy Functional of the Horizon-Fluid

Using the phenomenological approach, the current authors have shown that modeling
the horizon-fluid as a critical system can provide a way to understand the black hole
micro-states from the microscopic degrees of freedom of the horizon-fluid [18,19,50,51].
More specifically, the local minimum value (or maximum value in the case of the entropy
functional) corresponds to the equilibrium value of the entropy of the stationary black hole.
Specifically, using the Ginzburg–Landau formalism, it was shown that the order parameter
of the homogeneous horizon-fluid is [18,19]:

η = C
√

A , (3)

where C is a dimensionless constant whose value can be fixed by relating to a macroscopic
quantity, and A is a macroscopically small but finite element of the black hole horizon
area that satisfies the condition A /A� 1. While the phenomenological approach allows
us to construct an entropy functional, it is challenging to interpret the order parameter
physically. However, once we identify the phenomenological energy functional with the
effective Hamiltonian, the effective scalar field ϕ can be interpreted as an order parameter.
The entropy functional (S ) of this elemental area of the horizon-fluid about (T, A ) is [49]:

S = S0(T, A )− a η2 − b η4, (4)

where a and b are constants. SQS (SS) represents the value of the entropy functional S
in the quasi-stationary state (stationary state). SS represents the global maximum for the
entropy functional S . Assuming the transition from SQS to SS is a slow physical process,
equilibrium thermodynamics can be used to characterize the quasi-stationary state. For
the effective field theory (2), this corresponds to the ground state of the deformed CFT
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steadily transitioning to the CFT state. Due to slow evolution, the deformed CFT vacuum
is expected to possess some of the symmetries of a CFT state.

Rewriting (4) in terms of the horizon area at equilibrium and using Equation (3),
we get,

Smax =
Amax

4
= S0 − a C2Amax − b C4A 2

max where a = − 1
4C2 ; S0 − b C4 A 2 = 0. (5)

The change in the entropy functional is related to the difference in the energy density
of the horizon-fluid:

δH (δη) = −T δS =
T

2C2 δη2. (6)

where we have set kB = 1. Expansion around the maxima implies that the terms propor-
tional to δη cancel, leading to the condition 2bη2

max = −a. Substituting this in quadratic
terms into δη, (i.e., (a + 2bη2

max)δη2) leads to the above expression. (The deviation of the
variable from equilibrium is prefixed as δ.)

2.4. Identify the Functional with the Effective Scalar Field Hamiltonian

Associating the change in the energy density of the horizon-fluid [δH (δη)] with
Heff(ϕ) (2) leads to: ∫

dA δH ≡ δH = δHeff. (7)

The above relationship provides one easy route to relate the order parameter (η) with
the effective scalar field (ϕ), thus providing a way to understand horizon dynamics. Using
the above relationship, we can express the scalar field ϕ in terms of the order parameter:

ϕ =
√

T
δη√
A
≡
√

T ϕ̃ (8)

Physically, δη/
√

A corresponds to the excess entropy density. Hence, ϕ̃ can be viewed
as an order parameter for the entropy functional (S ). For the homogeneous process, we
can ignore the spatial gradient terms. Likewise, the kinetic term can be ignored since the
field varies slowly. Thus, the change in the effective Hamiltonian (2) for this process is:

δHeff =
T
2

∫
dA m2

∗ ϕ̃2 , where m∗ =
1

`Pl C
(9)

where `Pl is the Planck length, which we set to unity, and C is a dimensionless constant
defined in (3). Thus, we have related the effective scalar field Hamiltonian (2) with black
holes via the horizon-fluid. All the essential horizon physics are encoded in the Hamiltonian
(2) and the scalar field (8). With this, we can now evaluate the correlation for this process
from the correlation of the energy-momentum tensor of the effective field [27,52].

3. Bulk Viscosity from Effective Field Theory

In the previous section, we argued that (2 + 1)-dimensional massive free scalar field is
the minimal effective field theory to describe the dynamical horizon with the mass (m∗)
determining the extent of the deformation of the CFT. Using the relationship between the
effective field theory Hamiltonian (2) and the horizon-fluid energy density, we associated
ϕ with the order parameter δη. In this section, we calculate the bulk viscosity coefficient (ζ)
of the horizon-fluid from the correlation functions of the Hamiltonian (2). The fluctuation–
dissipation theorem applies to these perturbations in the linear regime [53]. We use Jeon’s
procedure to calculate the ζ of the horizon-fluid from the correlations of the field’s energy-
momentum tensor [27]. However, we need to make suitable changes in the formulation in
Ref. [27] to apply to the horizon-fluid. To do this, we carry out the following steps:

1. Obtain the energy-momentum tensor for the effective scalar field ϕ.
2. Modify Jeon’s procedure [27] for the horizon-fluid.
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3. Obtain the correlation function corresponding to the homogeneous perturbations.
4. Fix the constant by mapping to macroscopic physics [11].

3.1. Obtain Energy-Momentum-Stress Tensor for the Effective Scalar Field Action

The Lagrangian density corresponding to the effective Hamiltonian (2) is,

Leff =
1
2

[
ϕ̇2 − (∇ϕ)2

]
− 1

2
m2
∗ϕ2 =

1
2
(
∂µ ϕ∂µ ϕ−m2

∗ϕ2). (10)

The energy-momentum tensor (Tµν) of the effective scalar field (ϕ) is:

Tµν =
∂Leff

∂(∂µ ϕ)
∂ν ϕ− ηµνLeff. (11)

The non-zero components of the energy-momentum tensor are:

Tii =
1
2
[ϕ̇2 + 2(∂i ϕ)

2 − δkl∂k ϕ∂l ϕ−m2
∗ϕ2], T00 =

1
2
[ϕ̇2 + (∇ϕ)2 + m2

∗ϕ2]. (12)

Here, i takes values 1 and 2. Thus, the trace of the spatial part is

Ti
i = ϕ̇2 −m2

∗ ϕ2.

3.2. Modify Jeon’s Procedure for the Horizon-Fluid

Unlike the normal fluid, the stress tensor of the horizon-fluid vanishes as the infalling
matter energy reaches the horizon, and the horizon becomes quasi-stationary [11–13]. More
specifically, when the matter reaches an equilibrium at a given temperature, the stress
tensor of the horizon-fluid is zero. Thus, the field-theoretic description of the horizon-fluid
corresponds to the deviation of the energy-momentum tensor of the field (TH

µν) from its
average at the thermal state, which we denote as 〈TH

µν〉S. In other words,

δTH
µν = TH

µν − 〈TH
µν〉S.

Physically, this corresponds to the state when the expectation value of the stress-energy
tensor of the perturbed CFT on the horizon is the thermal average. We can determine δTµν

by tracking the deviation of the field ϕ from its average value at the equilibrium state, i.e.,

ϕ = 〈ϕ〉S + δϕ (13)

where 〈〉S ≡ ϕS denotes the ensemble average of the density matrix. The equilibrium value
of a physical quantity is determined by the thermal density matrix at temperature T. Using
the standard field theory techniques, we obtain:

ϕ2
S =

∑ e−βH ϕ2

∑ e−βH =

∫
D ϕ ϕ2e−

β
2
∫

m2∗ϕ2d2x∫
D ϕe−

β
2
∫

m2∗ϕ2d2x
=

1
2m2∗

. (14)

3.3. Obtain the Correlation Function Corresponding to the Homogeneous Perturbations

Following Ref. [27], the coefficient of bulk-viscosity (ζ) of the horizon-fluid is:

ζ =
β

2
lim
ω→0

lim
q→0

σP̄P̄, (15)
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where

P̄(t, x) = P(t, x)− v2
Sρ(t, x) =

1
2

Ti
i (xµ)− v2

ST00(xµ), (16)

σP̄P̄(ω, q) =
1

2πA

∫
d2x

∫ ∞

−∞
dte−iq.x+iωt〈P̄(t, x)P̄(0)〉, (17)

2πA is the normalization constant for the spatial part, A is the area normalization, and vS
is the sound speed of the field, which is c. Hence, it is set to unity. As mentioned above, in
the case of horizon-fluid, the relevant quantities are deviations of the energy-momentum
tensor. Hence, the relevant quantity corresponding to the horizon-fluid in Equation (16) is
δP̄. Thus, for the horizon-fluid, Equations (16) and (17) reduce to:

δ ¯P(t, x) =
1
2

δTi
i (xµ)− δT00(xµ) (18)

σδP̄,δP̄(ω, q) =
1

2πA

∫
d2x

∫ ∞

−∞
dte−iq·x+iωt〈δP̄(t, x)δP̄(0)〉S. (19)

From Equation (16), we have,

P̄ = −1
2
(∇ϕ)2 −m2

∗ϕ2. (20)

In the case of homogeneous perturbations responsible for the bulk viscosity, we
can ignore contributions from the (∇ϕ) term. Physically, this corresponds to ignoring
the contribution from the pole at q = 0. Thus, P̄ = −m2∗ϕ2. Rewriting ϕ = ϕS + δϕ,
Equation (20) becomes:

δP̄ = −2m2
∗ϕSδϕ = −2

m∗√
2

δϕ =
√

2m∗δϕ =

√
2

C
δϕ, (21)

where we have used the relationship form Equation (14). From the first-order time-
dependent perturbation theory, the spectral density (ρδP̄ δP̄) is given by [27]:

ρδP̄δP̄ =
∫

d3xe−ik.x+iωt〈
[
ÂδP̄(t, x), ÂδP̄(0)

]
〉S, (22)

where ÂδP̄ is the linear-response operator in the interaction picture. Due to the interaction,
the ensemble average here is defined via the interaction Hamiltonian:

ĤI =
∫

d2xFδP̄(t, x)ÂδP̄(t, x) , (23)

where FδP̄(t, x) is the generalized external force. Due to the teleological nature of the
horizon [12,18], we consider a process in which the external field is held constant for an
extended period in the future (such that the system re-equilibrates in the presence of the
external field):

FδP̄(t, x) = FδP̄(x)e
εtθ(−t) ,

where ε is an infinitesimal quantity and θ(−t) enforces the anti-casual nature of the hori-
zon [12,18]. For details about the teleological condition, see Appendix B. For the above
external field, the spectral density is given by [27]:

ρδP̄δP̄(ω, q) = (1− e−βω)σδP̄δP̄(ω, q). (24)

Substituting the above expression into Equation (15), we have:

ζ =
β

2
lim
ω→0

lim
q→0

1
1− e−βω

ρδP̄δP̄(ω, q) , (25)
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which, on substitution into Equation (22), leads to:

ζ =
1
2

lim
q→0

lim
ω→0

1
ω

∫
d3xe−iq.x+iωt〈

[
ÂδP̄(t, x), ÂδP̄(0)

]
〉S. (26)

Note that the relationship between ÂδP̄ and δP̄ is still unknown. We can establish the
relationship using Equation (19). Specifically, multiplying Equation (19) with (1− e−βω)
and using the anti-casual, teleological nature of the horizon, we have:

(1− e−βω)σδP̄δP̄ = Im
[

1
i
(1− e−βω)

∫
d2xdte−iq.x+iωt〈δP̄(t, x)δP̄(0)〉

]
. (27)

Following Kubo [53], the fluctuation–dissipation theorem allows us to express the
RHS of the above equation as:

Im
[

1
i
(1− e−βω)

∫
d2xdte−iq.x+iωt〈δP̄(t, x)δP̄(0)〉

]
=

Im
[ ∫

d2x
∫ ∞

−∞
dt〈
[
δP̄(t, x), δP̄(0)

]
〉e−iq.x+iωt

]
. (28)

Substituting the above expression into Equation (24), we have:

ρδP̄δP̄(ω, q) =
∫ ∫

d2xdte−iq.x+iωt〈
[
δP̄(t, x), δP̄(0)

]
〉. (29)

Comparing Equations (22) and (29), we identify ÂδP̄ with δP̄(t, x). Thus, Equation (26)
becomes:

ζ =
1

4πA
lim
q→0

lim
ω→0

1
ω

∫
d3xe−iq.x+iωt〈

[
δP̄(t, x), δP̄(0)

]
〉. (30)

Using the integral representation of the Theta function,

θ(−t) = − lim
ε→0

1
2πi

∫ ∞

−∞

e−ikx

x− iε
dx ε > 0, (31)

Equation (30) can be expressed as an advanced Green’s function, i.e.,

ζ = 2π Im

[
1

4πA
lim
q→0

lim
ω→0

∫
d3xe−iq.x+iωt〈

[
δP̄(t, x), δP̄(0)

]
〉θ(−t)

]
. (32)

Substituting Equation (21) into Equation (32), one gets,

ζ = 2π Im

[
lim
q→0

lim
ω→m∗

1
C2

∫
d3xe−iq.x+iωt〈

[
δϕ̂(t, x), δϕ̂(0)〉 θ(−t)

]
. (33)

〈
[
δϕ̂(t, x), δϕ̂(0)

]
〉θ(−t) is the advanced Green’s function for the perturbed scalar field

around its equilibrium. For homogeneous perturbations, the above expression reduces to:

ζ = Im
[

lim
ω→m∗

1
C2

∫ ∞

−∞
dteiωt〈

[
δϕ̂(t), δϕ̂(0)

]
〉θ(−t)

]
. (34)

Using the canonical quantization formalism discussed in Appendix C, we get:

ζ[ωIR] = Im

[
− i

4C2
ωIR

Eβ(ωIR)
〈ϕ̂2

ωIR
(0)〉

]
. (35)
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where Eβ(ωIR) is the average energy of excitation in the mode with frequency ωIR at
temperature T and is given by Equation (A25). In Appendix A, we obtain ζ from Kubo’s
Linear Response Theory [53]. Comparing the above expression with Equation (A14), it is
clear that both approaches lead to identical ζ. The negative sign of a transport coefficient
results from the presence of θ(−t) in the response function of the black hole horizon [18].

3.4. Fix the Constant by Mapping to the Macroscopic Physics

From Equation (14), we have:

〈ϕ̂2
ωH

(0)〉 = 1
2m2∗

=
C2

2
. (36)

Substituting the above expression into Equation (35), we get:

ζ[ωIR] = −
1
8

ωIR

Eβ(ωIR)
. (37)

In the hydrodynamic limit (k∗ → 0), Equation (A22) reduces to

ωIR =
1
C

(38)

Substituting this into Equation (37) and using Equation (A25), we have:

ζ[ωIR] = −
1
4

tanh
1

2C
. (39)

We can determine the value of C by demanding that the above expression matches
with the expression derived by Damour [11]:

ζ = − 1
16π

. (40)

This leads to the following:

tanh
1

2C
=

1
4π

=⇒ 1
C

= ln
(

4π + 1
4π − 1

)
. (41)

Thus, we have C ' 6.2699 or m∗ ' 0.1595. This implies that the lowest energy
excitation in the horizon-fluid is approximately 0.1595 T. Given that δHeff = −TδS, the
smallest possible change in entropy is 0.32072, implying that entropy is quantized. It is
worth noting that entropy quantization does not occur unless there is a mass gap in the
spectrum. Within our approach, if the black hole horizon evolves slowly, one can assume
the energy spectrum of the system to be dominated by low-energy excitations, as in the
case of the adiabatic quantization of entropy [54].

4. Thermalization Rate from Effective Field Theory

In the previous section, we showed that the effective field theory Hamiltonian (2) could
provide the transport coefficient of the horizon-fluid. In this section, we show that the
effective theory can be used to predict the thermalization rate of the infalling matter energy
to the black hole. We perform this in two steps. First, we show that the rate of thermalization
follows from the horizon-fluid description [11–13]. Second, we use the effective field theory
and obtain the scrambling time corresponding to the homogeneous perturbations.

The phenomenon of rapid delocalization of quantum information in thermal states is
referred to as scrambling [20]. The typical time scale of these phenomena is referred to as
scrambling time [20]. For black holes, the scrambling time can be thought of as the time
taken by the information content of the infalling matter energy to be spread into the black
hole system. Since most black hole DOFs are expected to exist on its horizon, the scrambling
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time is defined as the time taken for this information to travel across the entire horizon area
or, more precisely, the entire Hilbert space, representing the black hole horizon [55].

4.1. Thermalization Follows from the Horizon-Fluid

Even in weakly interacting systems, the thermalization process is complex. In addition,
thermalization is complicated for the event horizon. We consider an analogous model to
break this complicated process into simple steps. As we show, using the analogous model
makes the discussion more transparent.

We consider the interaction between a large container of hot gas and a small box of
identical gas molecules at a considerably lower temperature. At first, there are only a
few gas molecules with relatively low energy. As a result, the energy distribution of the
gas molecules deviates from the distribution in thermal equilibrium. However, when the
energy of the cold-gas molecules grows, the entire gas relaxes to thermal equilibrium. We
can approximate this process with two steps:

1. After mixing, the entire gas system moves to a state away from the thermal equilib-
rium.

2. After some time, the entire gas system thermalizes to a new thermal equilibrium with
a lower temperature.

We repeat this process many times such that

A Cold gas is brought into contact with hot gas in many uniform steps. At each step,
only a minimal amount of cold gas gets mixed into the gas system.

B This small amount of cold gas is allowed to thermalize with the gas system at each
step. Further, let us impose the condition that more cold gas only comes in contact
with the part of the preceding cold gas thermalized in the last step 2.

Two physical inputs are required to quantify the process: (i) Since the amount of cold
gas is tiny, the thermalization process is stochastic, and (ii) the mean free route of the gas
molecules in the gas system does not vary much as a result of mixing. Let N represent
the total number of hot gas molecules thermalized, equal to N = N0 + δN, where N0
represents the initial number of hot gas molecules, and δN represents the number of cold
gas molecules thermalized upon mixing. Then the rate of thermalization for this gas system
is given by the Langevin equation [53]:

d2N
dt2 = Γ

dN
dt

+ NNoise, (42)

where Γ is the damping coefficient that depends on the gas properties, and NNoise is stochastic.
We now apply this physical process for the black hole event horizon. For a distant

observer, the extreme red-shifting of the modes results in the average energy of the external-
field modes colliding with the black hole being significantly less than the black hole
temperature [31]. The quantum fluctuations smear the horizon on an invariant distance
of order 3

√
M [56,57], which acts as a cut-off [31]. Thus, the event horizon is analogous to

a big container of hot gas with large entropy (SH) [31]. Like the gas system, any matter
energy falling into the black hole can be modeled as a perturbation with small entropy, i.e.,
∆SH � SH . Notably, we have not used any of the event horizon’s properties except that of
high redshift up to this point.

For an outside observer, the matter falling into the horizon appears to be spread out
on the horizon [13]. Any additional matter falling thermalizes due to an interaction with
this already fallen matter energy layer. One can formally write the following Hamiltonian
of the interaction of the event horizon with external matter fields:

HTotal = HIsolated event−horizon + HExternal matter + HInteraction. (43)
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The physical content is identical to action (1). Like in the previous section, we focus on the
macroscopic homogeneous perturbations of the event horizon and use the effective Hamiltonian
(2) to describe the evolution of the dynamical horizon.

The first step toward understanding black hole horizon thermalization is to obtain a
rate equation, such as the Langevin Equation (42). This is achieved by first expressing the
Raychaudhury equation’s homogeneous part in terms of the area expansion coefficient (θH):

dθH
dt

= gH θH −
1
2

θH
2 − 8πTαβξαξβ. (44)

where gH(= 2πT) is the surface gravity on the horizon. Since the above equation is non-
linear in θH , it is difficult to identify terms that dominate under different physical situations.
Rewriting in terms of the order parameter η ∝

√
A , we have,

θH =
d
dt
(ln A ) ;

dθH
dt

=
1
A

d2

dt2 (A )− 1
(A )2 (

dA

dt
)2. (45)

where A is the area of the cross-section of the null congruence on the event horizon.
Though Equation (44) is exact, in what follows, we shall also assume θH to be small.
Writing A = A0 + ∆A , where ∆A ∝ ∆SH is the change in this area over some constant
base value A0 ∝ S0. Thus, the Raychaudhuri Equation (44) reduces to [30]

d2∆SH

dt2 − γ
d∆SH

dt
= SNoise. (46)

where γ = gH = 2πT, and SNoise is the stochastic term. In Ref. [30], the authors derived
the Raychaudhuri Equation (44) from the Langevin equation by retaining quadratic terms.

Equation (46) is a crucial relation, and we stress the following points: To begin by
comparing Equations (42) and (46), we can see that the number of degrees of freedom on
the event horizon is equivalent to the number of molecules. Since the number of degrees of
freedom on the event horizon is directly related to black hole entropy, the above equation is
the rate equation of thermalization for the perturbed black hole (∆SH). Second, the negative
damping coefficient implies that this process continues forever due to the one-way nature of
the event horizon. This provides another way to understand the exponential increase in the
black hole entropy. Third, the equation provides a way to calculate how fast the black hole
and the external matter get thermalized. Due to the negative coefficient, thermalization
occurs rapidly [58]. Lastly, the time required for the external matter energy information to
become inaccessible is ln(SH)/T [20,59,60]. Thus, the horizon-fluid provides another way
of understanding the scrambling time for black holes.

4.2. Thermalization Rate and Bulk-Viscosity

In this subsection, using Equation (46), we use the perturbed CFT model of the horizon-
fluid to relate the thermalization rate to bulk viscosity. To do so within the effective field
theory framework, we rewrite the two-step process for the classical gas system:

|Initial equilibrium state〉hot gas + |Thermal state〉cold gas

Step 1−−−→ |Out of equilibrium〉hot gas
Step 2−−−→ |Final equilibrium state〉hot gas

The second step, which is our focus, describes the relaxation of classical gas from an out-of-
equilibrium distribution to thermal distribution. The thermalization rate can be quantified
as follows: On average, the lower the energy of the colder gas molecule compared to the
hotter gas temperature, the longer it takes for the molecule to be thermalized. Thus, the
thermalization rate is related to the difference in the energy of molecules.
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Similarly, the thermalization of external matter energy falling into the black hole is
described as:

|Initial ground state〉horizon + |Excited state〉matter field
Step 1−−−→ |Excited state〉horizon

+ |Ground state〉matter field
Step 2−−−→ |Final ground state〉horizon + |Ground state〉matter field.

While the overall process of thermalization of the black hole horizon is similar to
the classical gas system, there are subtle differences in the final configuration for the
two cases. While the gas system is assumed to be classical, the black hole is intrinsi-
cally quantum. In quantum field theoretic language, the zero particle state is denoted by
|Ground state〉matter field. Classically, the second step describes the dynamical evolution
of the perturbed black holes. This evolution is similar to the dynamics of the viscous
fluid [11,13,18,19,50]. Like in the gas system, the difference in energy governs the thermal-
ization rate.

The effective Hamiltonian (2) of the scalar field theory, as opposed to the Langevin
dynamics (46), provides two crucial features about the thermalization of the external matter
fields: First, not all modes (ω) get thermalized at the same rate. The presence of non-zero
m∗ implies that ω ≥ m∗ and ω < m∗ behave differently. Since the exchange of modes,
ω ≥ m∗ with the event horizon is allowed, these modes thermalize with the event horizon.
However, this is not the case for ω < m∗ modes. Second, Equation (43) implies that
energy conservation holds for all modes. More precisely, creating a low-energy mode
of the horizon-fluid should be possible via the annihilation of a low-energy mode of the
infalling matter field. Therefore, what happens to these modes? For the stationary black
hole, the event horizon is described by a pure CFT [32–40], and all modes are thermalized.
Hence, the low-energy modes get thermalized or scrambled at a much slower rate as the
horizon-fluid evolves from a perturbed CFT to a pure CFT.

Now, we present a quantitative estimate of the thermalization rate. Given that the
effective scalar field (ϕ) is related to the order parameter (η) for the homogeneous process
(cf. (7)), the Langevin equation for the black hole horizon (46) can be rewritten as

d2 ϕ

dt2 = γ
dϕ

dt
+ noise term. (47)

Using the Green–Kubo relationship for a thermal bath at temperature T, γ is given
by [53]

γ ∼ 1
T

∫ ∞

0
dt〈∂t ϕ(t)∂t ϕ(0)〉, (48)

where 〈∂t ϕ(t)∂t ϕ(0)〉 is the two-point auto-correlation function of ∂t ϕ. Since ϕ is propor-
tional to the excess-entropy density, ∂t ϕ corresponds to the excess-entropy current density.
Physically, the RHS of the above expression corresponds to the correlation of the excess
entropy current density of the horizon-fluid3.

From Hamiltonian (2), the equation of motion of ϕ is ∂µ∂µ ϕ = m2
eff ϕ. As mentioned

above, at the critical point, meff = 0, leading to ∂µ∂µ ϕ = 0, which is the conservation
of excess entropy current density (∂µ Jµ

S = 0). This supports the initial assumption that
thermalization stops at the critical point. (For a related discussion on electrical resistivity
from current-current correlation, see Ref. [61].)

Away from the critical point, 〈∂t ϕ(t)∂t ϕ(0)〉 is a marginal operator with scaling di-
mension ∆ = 3 + 2γϕ [52], i.e.,

〈∂t ϕ(t)∂t ϕ(0)〉 ∼ 1
|t|∆ ∼ m∆

eff ,

where γϕ is a tiny positive number near the critical point and exactly zero at the critical
point. The second scaling arises because the only relevant energy scale in the model is
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meff = Tm∗. As discussed in the previous section, meff is proportional to the infrared cutoff
ωIR (as shown in Equation (38)). Substituting the above relationship into Equation (48),
we have:

γ ∼ m
(2+2γϕ)

eff
T

∼ T1+2γϕ .

It is worth noting that, in the earlier subsection, we obtained a similar expression for γ
(γ ∼ T) when we identified the Langevin equation with the Raychaudhuri Equation (46).

Let us now look at thermalization through dissipation via bulk viscosity. At the critical
point, meff → 0 implying C → ∞. From Equation (39), we see that close to the critical point,
ζ ∼ 1/(2C). Thus, both γ and ζ flow to zero as the system reaches the critical point. Thus,
the coefficient of bulk viscosity determines the scrambling time.

Our analysis reveals an intriguing fact: the mass gap is critical in determining the
bulk viscosity (ζ) and damping coefficient (γ), both of which affect the thermalization
rate. For macroscopic black holes, the thermalization process described by the classical
Equation (46) is a good approximation, as most of the energy falling into the black hole has
been thermalized. However, as the system approaches the critical point, meff decreases, and
the equation governing thermalization deviates more from the classical Equation (46). The
mass gap meff (or 1/C) is a measure of the deviation of the near-horizon geometry from that
of the asymptotically flat, stationary, black hole space-time. For smaller-size black holes,
meff is higher, and more of these modes thermalize slowly, which may hold the key to how
information escapes from a black hole at late times. This is being investigated. Finally, we
would like to emphasize that our arguments are model-independent to a large extent. This
is because theories near the critical point are universal. Thus, the argument presented here
is valid if we assume that the theory is approaching a critical point.

5. Microscopic Toy Model Corresponding to Effective Field Theory

The last two sections demonstrated that the effective field theory corresponding to
homogeneous horizon perturbations can account for the bulk viscosity of the horizon-fluid,
which, in turn, can explain scrambling time. This section proposes a microscopic toy model
for the effective Hamiltonian (2). Like the construction of the effective Hamiltonian, the
microscopic toy model considers two different aspects of the black hole horizon. First, the model
must incorporate near-horizon symmetries of the stationary black hole [32–38], which
we have already discussed in some detail in the context of constructing an effective field
theory. Second, the model must incorporate the physics of the transport phenomena of
horizon-fluid [18,19]. In this work, this will mean only the phenomenon of bulk viscosity of
the horizon-fluid. However, these two aspects of the black hole horizon do not necessarily
constrain the microscopic model, as many microscopic models can satisfy both of these
aspects. In this work, we consider the eight-vertex Baxter model [21–26] as an illustration
of the above-mentioned ideas. We demonstrate that this integrable model satisfies both
horizon requirements.

The model possesses the following properties, which serve as crucial components
in the microscopic model building of the horizon-fluid: To begin with, it has a lattice
Virasoro algebra that corresponds with S 1 diffeomorphism symmetry [62,63]. Second, it
comprises two staggered 2D Ising lattices and has the same free-energy density as the 2D
Ising model. However, the symmetry of the two sublattice model is quite different from
that of the conventional Ising model. As a result, the critical indices of the Baxter solution
are generally different from those of Ising [62]. Third, it exhibits a second-order phase
transition. In the continuum limit, it is an Integrable Field Theory near the critical point
and is a CFT at the critical point [63–65].

To demonstrate that the eight-vertex Baxter model can indeed be used as a microscopic
toy model, we follow three steps:

1. Adopt the Baxter model for the black hole horizon. This is achieved by the projection
of two planes onto the surface of a sphere.

2. Show that the eight-vertex Baxter model incorporates lDiff
n diffeomorphism symmetry.
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3. Show that in the continuum limit, the microscopic toy model leads to effective
Hamiltonian (2).

5.1. Adopting the Baxter Model for Black Hole Horizon

The alert reader may wonder how the Baxter model can be adapted to the cross-section
of a black hole event horizon, a S2 surface. As shown in Figure 2, this model can be adopted
on the two hemispheres of the S2 surface through projection from two Baxter lattices. Let
Pu (Pd) denote the map corresponding to the projection A → Hu (B → Hd). For the
consistency of the model, we need to impose the condition P−1

u ◦ {Γ} ≡ P−1
d ◦ {Γ}, where

P−1 denotes the inverse map, and Γ is the equatorial plane of the S2 surface.

B

A
↓ ↪→φ ↓ Pu

Hu

→Γ

Hd

↑ ↑ Pd

Figure 2. The projection of the eight-vertex Baxter model from the two sub-lattices to the S2 surface
of the horizon.

The above condition retains the periodic boundary condition of the Baxter model.
The projection allows relating the Euclidean boost parameter of the Baxter model [65] to
the azimuthal angle in the spherical polar coordinate. We can relate the Virasoro algebra
(corresponding to the S 1 diffeomorphism) of the Euclidean boost parameter to the S 1
diffeomorphism of the azimuthal angle in the horizon-fluid model. Thus, the projection
retains the model’s main physical features [65] and incorporates a representation of the S 1
diffeosymmetry in the model. It is the diffeosymmetry of the azimuthal angle for the black
hole system. Like any other lattice approach, the challenge consists in showing that a con-
tinuum limit exists for which the effective action has a diffeomorphism invariance [16,17].
As we show, this model reduces to the effective Hamiltonian (2), which preserves sym-
metry. Our next task explicitly shows that the eight-vertex Baxter model possesses the
Virasoro algebra.

5.2. Eight-Vertex Model and Deformed CFT

The model has eight possible arrangements of arrows at a vertex with four distinct
Boltzmann weights, a, b, c, and d. These satisfy two constraints [26]:

cd
ab

=
1− Γ
1 + Γ

;
a2 + b2 − c2 − d2

2(ab + cd)
= ∆ (49)

For constants Γ and ∆, there exists a one-parameter family of Boltzmann weights
(w) that satisfy the star–triangle relationships and, hence, the eight-vertex model has a
one-parameter family of commuting transfer matrices [26]. This allows one to parameterize
the Boltzmann weights explicitly in terms of spectral variable (u):

a = snh(λ− u) b = snh u
c = k snh λ, d = k snh(λ− u)

(50)
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where k is the elliptic modulus, and snh u = −i sn(iu). It has been shown that the transfer
matrix of the eight-vertex model commutes with the XYZ Hamiltonian [66]:

HXYZ = −1
2

N

∑
j=1

Jσσσ
j σσ

j+1 where σ = x, y, z. (51)

The coupling constants are related to the weights by the relation: Jx : Jy : Jz = 1 : Γ : ∆.
The spins σn’s are related to the vertex weights by the vertex operator (Vn):

Vn =
1
2

[
a + c + [a− c]σz

nσz
n+1 + [b + d]σx

n σx
n+1 + σ

y
n σ

y
n+1

]

The row-to-row transfer matrix can be expressed as

T(u) = lim
N→∞

Tr(V−N V−N+1 · · ·VN). (52)

The transfer matrix can be expanded formally around a point u = u0, as

ln T(u) =
∞

∑
n=0

In(u− u0)
n ; In :=

1
n!

dn ln T(u)
dun

∣∣∣∣
u=u0

(53)

In (n ≥ 1) can be interpreted as the operators that couple with (n+ 1) neighboring sites [26].
I1 corresponds to the Hamiltonian of a spin chain with the nearest neighbor (51):

I1 = −HXYZ ≡
∞

∑
j=−∞

HXYZ(j, j + 1). (54)

It is more convenient for our purpose to describe the model in terms of the corner
transfer matrix. The corner transfer matrix operator can be viewed physically as connecting
semi-infinite rows of arrows with a semi-infinite column of arrows of one quadrant of the
lattice. In the thermodynamic limit, the following relation holds [26]:

A (u) = exp
[
−πu

2K
L0

]
, (55)

where K is a complete elliptic integral associated with modulus k and

L0 =
2K
π

∞

∑
j=−∞

jHXYZ(j, j + 1). (56)

To keep the calculations transparent, we set Γ = 0, i.e., cd = ab in (49). This cor-
responds to the condition Jz = 0 in the Hamiltonian (51), which is the well-known XY
model [26]. L0 in Equation (56) is diagonalized by the operators:

Ψ(l) = Nl

∫
dα e−ıαlπ/2Kχ(α) (57)

where Nl is the normalization constant, and χ(α) = sn α aα(α) + ı
√

k cn α ay(α).
The integration of α over one complete real period of the elliptic functions from −2K +

ıK′/2 to 2K + ıK′/2. Itoyama and Thacker [63–65] showed that L0 could be expressed:

L0 = ∑
l

l : Ψ̄(l)Ψ(l) : + h , (58)

where h is a constant and : : refers to a normal-ordered product. L0 is embedded into
a Virasoro algebra as a central element [63–65]. The normal ordering is defined by the
relations, Ψ(l)|h〉 = 0(∀ l ≥ 1), Ψ(l)|h〉 = 0, (∀ l ≤ 1).
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Other Virasoro operators Ln can be constructed from these momentum space
operators [65].

From (57), it follows that,

[Ln, Lm] = (n−m)Ln+m +
1

12
c(n3 − n)δn+m,0. (59)

As noted in Ref. [65], the physical Hilbert space built from the state |h〉 forms the
highest weight representation of the Virasoro algebra. Since the eigenvalues of L0 are
doubled due to the zero modes of the operator Ψ(0) and Ψ(0), the highest weight vector
forms a two-dimensional representation under parity conjugation. At the critical point, the
central charge c = 1 and h = 1/8.

Using the following classical generators (lDi f f
n ),

lDi f f
n = −1

2
ζn+1 d

dζ
− 1

2
d

dζ
ζn+1 , (60)

we can obtain Virasoro algebras different from the one described above. The difference is
that lDiff

n are generators of the diffeotransformation of the spectral rapidity parameter or
the Euclidean boost parameter (α) [65,67]. The corresponding Virasoro algebra can then be
constructed by defining the following L Diff

n :

L
di f f
n =:

∫ 3K

−K

dβ

2π
B(β + 2K− ıK′)lnB(β) : +hδn,0 = ∑

l
(l +

n− 1
2

) : ψ̄(l)ψ(l + n) : +hδn,0. (61)

This demonstrates that the eight-vertex model possesses the Virasoro algebra given
by (61), which holds the key to incorporating near-horizon S1 diffeosymmetry in the
model of the horizon-fluid. The 2-D Euclideanized space-time (τ, q) can be identified with
the 2-D Euclidean space (x1, x2) on which the horizon-fluid resides. The rapidity or the
boost parameter in a Euclideanized space-time corresponds to the rotation angle. A closer
look reveals that, in this case, the rapidity is the azimuthal angle depicted in Figure 2.
Thus, the lDiff

n diffeomorphism algebra of the spectral rapidity corresponds to the lDiff
n

diffeomorphism symmetry of the black hole horizon. Thus we see that the microscopic
modeling of the horizon-fluid with a mass gap incorporates lDiff

n diffeomorphism symmetry
into the black hole horizon. Our next task is to relate the eight-vertex Baxter model with
the effective field theory Hamiltonian (2).

5.3. Continuum Limit and Effective Field Theory

Long-range effects dominate the critical properties of the model; hence, a continuum
approximation will suffice. The eight-vertex model’s continuum limit is a theory of massive
Dirac Fermions (Ψ1, Ψ2) [65]

SDirac =
∫

dτdq

[
1
2

iΨ1

(←→∂
∂τ

+

←→
∂

∂q

)
Ψ1 +

1
2

iΨ2

(←→∂
∂τ
−
←→
∂

∂q

)
Ψ2 −m(Ψ̄1Ψ2 + Ψ̄2Ψ1)

]
. (62)

The above action possesses an infinite sequence of conserved densities. Physically,
this implies that besides the total angular momentum, the entire momentum distribution is
conserved [65]. Interestingly, it turns out that all of these operators can also be written as
integrals of local densities in coordinate space,

Ln =
∫

dq J(n)0 (q) , (63)

where J0 is the zeroth component of a conserved current. J(−1)
0 is the Hamiltonian plus the

momentum operator and J(0)0 (at τ = 0) is the first moment of the Dirac Hamiltonian [65].
Integrability ensures the operators are related to the infinite sequence of conserved charges,
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with one for each new Ln [65]. This satisfies another critical requirement of the micro-
scopic model: an integrable field theory with an infinite number of conserved charges
corresponding to an infinite number of symmetries [48].

While action (62) is useful for identifying the infinite number of conserved charges, it
is rather cumbersome performing the hydrodynamic or long-wavelength limit calculations
starting from action (62). Hence, in what follows, we will not be directly using action (62).
Instead, to make contact with the phenomenological analysis, we turn to the fact that the
free-energy density of the Baxter model is the same as that of a classical 2D Ising model near
the critical point [26]. On the other hand, the theory of the two-dimensional Ising model
can be described by a theory of a free massive scalar field ϕ in a two-dimensional Euclidean
space-time [68]. This can be viewed as a mean-field description of the Baxter model.

Thus, the 2-D mean-field theory Hamiltonian of the microscopic model can be ex-
tended to the following 2 + 1-dimensional space-time Hamiltonian:

Heff(ϕ) =
∫ [1

2
(∂ϕ

∂t
)2

+
1
2
(
∇ϕ
)2

+
m2∗
2

ϕ2
]

dA, (64)

which is identical to the effective Hamiltonian (2). The above Hamiltonian satisfies the
essential requirement of possessing Z2 symmetry and can be viewed as a mean-field
description of the horizon-fluid near a critical point. While this mean-field description
does not capture all of the details of the quantum states or reproduce the correct scaling
exponents, it does describe the horizon-fluid properties, as confirmed in Sections 3 and 4.

6. Discussion

This work outlines an approach to studying the low-energy physics of the dynamical
black hole horizons by constructing an effective field theory. Our starting point is that
CFT is a plausible candidate for the effective theory on the horizon. Using the fact that the
dynamical (non-stationary) black hole can be viewed as interacting with external fields
leads to the condition that the theory is not conformal but must incorporate the S (1)
diffeomorphism symmetry. Thus, in our approach, the perturbed black holes are described
by deformed CFTs, and the deformation scale sets the interaction between the horizon and
the external fields. By relating the effective scalar field Hamiltonian (2) to the energy density
of the horizon-fluid, we obtained a relation between the scalar field (ϕ) with the order
parameter. This enabled us to calculate the bulk viscosity coefficient (ζ) of the horizon-fluid
from the correlation functions of the effective field theory Hamiltonian (2). Additionally,
the infrared cutoff corresponding to a mass gap in the theory enables a straightforward
derivation of ζ and area quantization. We also constructed a minimal microscopic toy
model for the horizon-fluid that reduces to the effective field theory Hamiltonian (2). This
model illustrates the construction of a microscopic model of a dynamical horizon.

Our approach allows us to connect two important constants—the bulk viscosity
coefficient ζ of the horizon-fluid and Bekenstein’s quantum of entropy [54]. Furthermore,
we showed that the bulk viscosity coefficient of the horizon-fluid determines the time
required for black holes to scramble. As thermalization progresses, the perturbed black hole
approaches the stationary state, implying that the theory also flows toward the critical point.
Thus, we showed that one could use scaling relations for the relevant transport coefficients
to observe how the thermalization rate decreases with time, implying a departure from
general relativity.

The effective field theory considered here works for bulk viscosity only and cannot
describe all the involved processes near the black hole horizon. This is because the effective
scalar degree of freedom we have identified cannot describe all the processes. However,
it demonstrates how such a simple theory can incorporate near-horizon symmetries and
account for the bulk viscosity of the fluid. However, the key ideas used in constructing
this model are quite generic. They can play an important role in the future in building
more realistic effective-theory models for perturbed black holes in asymptotically flat space-
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times. While this has been achieved with AdS background black holes using the Ads/CFT
correspondence, the problem is still unsolved for other types of black holes.

This work assumes CFT can incorporate the S (1) diffeomorphism symmetry of a
stationary black hole; hence a theory describing the event horizon of a stationary black
hole should be a CFT. It is important to note that there is no consensus in the literature yet.
This is because all the approaches suffer from incompleteness, as it has not been possible to
explore the full phase space of the problem. However, a more systematic exploration of the
phase space is performed in some special cases [45], and the results appear to confirm that
the theory on the horizon is CFT. Unfortunately, the scope of this work does not permit
us to enter the debates on this issue. We remind the reader here once more that, ideally, a
full quantum gravity theory is expected to exhibit full diffeoinvariance. However, as we
are here only considering an effective field theory on the fixed background of an event
horizon space-time, that constraint does not apply here. (For a more detailed discussion,
see Refs. [14,15]).

In this work, we have focused on non-extremal black holes. Unfortunately, our
approach is insufficient for extremal black holes to arrive at a value for ζ. This is because
the assumption that only the stationary black hole is a critical point and the perturbed
black hole eventually relaxes to the stationary black hole is not applicable for extremal ones.
However, it is instructive to keep in mind that ζ is independent of T as calculated within
our model, so the results from our model do not contradict the known characteristics of an
extremal black hole in asymptotically flat space-time. It is only γ, as defined by us, that is
proportional to T and hence would be zero for extremal black holes. However, this does
not raise any problem of consistency.

In this work, we have only considered homogeneous perturbations of the stationary
black hole. Therefore, we must develop an effective field theory encompassing general
perturbations capable of describing the horizon-fluid. Naturally, this complete theory
would be richer than the simple scalar field theory discussed here. As a result, we anticipate
a more comprehensive and effective theory of the horizon-fluid that can adequately describe
a system approaching the critical point. Moreover, it should have a representation of the
near-horizon symmetry algebra and a known mass gap.
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Appendix A. Coefficient of Bulk Viscosity from Linear Response Theory

In this appendix, we follow Kubo [53] and derive the bulk viscosity coefficient of the
horizon-fluid from the Hamiltonian (2). Instead of using correlations of the stress-energy
tensor of the scalar field theory [27], we compute the bulk viscosity of the horizon-fluid
from the autocorrelation function of the current [53].

To accomplish this, we need to include an interaction Hamiltonian to the microscopic
Hamiltonian (2). Here, we take a more direct approach. Rather than express the interaction
Hamiltonian explicitly in terms of external matter fields, we will describe the external
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influence on the black hole horizon by examining the black hole horizon’s excitation by
the infalling matter energy. Recall that the infalling energy-matter increases entropy by
an amount, δS. Thus, an external influence excites the horizon from its ground state. The
response is expected to be linear for small perturbations. The change, in this case, is a strain
with a non-zero area. From (8), it follows that:

〈ϕ̃〉 = 1
2

C
δA

A
. (A1)

For bulk viscosity processes in the horizon-fluid, the area strain is

δA

A
=

2ϕ̃

C
.

Thus to describe bulk viscosity, we can approximate Hext as [53]:

Hext = −
T
4

∫
K(t)

δA

A
dA = −T

∫
K(t)

ϕ̃

2C
dA. (A2)

Thus, the total Hamiltonian of the horizon to describe the bulk viscosity processes in
the horizon-fluid is:

HHF = Heff(ϕ) + Hext =
∫ [T

2
(∂ϕ̃

∂t
)2

+ T
(
∇ϕ̃
)2

+
T
2

m2
∗ ϕ̃2 − T

1
2C

K̃(t)ϕ̃

]
dA. (A3)

Again, performing a rescaling as before, Hext can be expressed as Hext =
1

2C
∫

K(t)ϕdA,
where K(t) =

√
TK̃(t). Thus the total Hamiltonian can also be expressed in the form,

HHF =
∫ [1

2
(∂ϕ

∂t
)2

+
(
∇ϕ
)2

+
1

2C2 ϕ2 − 1
2C

K(t)ϕ

]
dA (A4)

The external influence results in a change in ϕ, given by

∆ϕ = ϕExcited − ϕGround.

The entropy is maximum if the ground state is taken to be the state of equilibrium of
the system; hence, δS goes to zero in that state. This means we can set ϕGround = 0 and
∆ϕ = ϕ. The following relation gives the response of the fluid:

2ϕ

C
=
∫ t

−∞
dt′
∫

K(t′)ϕ(t− t′)dA, ϕ(t− t′) = 〈[ ϕ̂(t)
2C

,
2ϕ̂(t′)

C
]〉 (A5)

where ϕ(t− t′) is the response function for the process describing the bulk viscosity of
the horizon-fluid, and 〈〉 denotes the statistical average of the physical variable. Taking a
Fourier transform of (A5) with respect to time, we get:

2ϕ(0)
C

=
δA

A
= −ζ[ω]K̃[ω]. (A6)

To evaluate the response function (ϕ(t− t′)) for the process, we proceed by rewriting
the field ϕ̂∗ (also ϕ̂) in terms of the creation and annihilation operators, i.e.,

ˆ̃ϕ(t, x) = ∑
k∗
[âk∗uk∗(t, x) + â†

k∗u
∗
k∗(t, x)], (A7)

where
uk∗(t, x) =

1√
2π

1√
2ω∗

ei(k∗ .x−ω∗t) (A8)
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and k∗, ω∗, x, and t are dimensionless variables in the above equation. Note that lP = 1 in
natural units. For ease of notation, we denote the dimensionless space-time coordinates by
the same notations, x and t. In the hydrodynamic limit, the corresponding infrared cutoff is
much smaller than the dimensions of the total volume (actually area in this case). Thus, we
neglect the effect of the extrinsic curvature of the cross-section of the black hole. Hence,
in our analysis of the horizon-fluid corresponding to a macroscopic black hole, we use
plane wave modes; the field theory calculation performed here can be thought of as ’local’
compared to the entire area of the horizon cross-section.

The dimensionless part of the Hamiltonian, Ĥeff as given by (A3), can then be ex-
pressed in the frequency space as

∫ [1
2
(∂ϕ̃

∂t
)2

+
(
∇ϕ̃
)2

+
1
2

m2
∗ ϕ̃2
]

dA = ∑
k∗
(â†

k∗ âk∗ +
1
2
)ω∗, (A9)

which leads to
Heff(ϕ) = T ∑

k∗
(â†

k∗ âk∗ +
1
2
)ω∗, (A10)

Note that we use the dimensionless variables for frequencies and wave numbers as we
consider the dimensionless part of the Hamiltonian. The dispersion relation also follows,
given by

ω2
∗ = k∗2 + 1/C2. (A11)

Of course, an equivalent relation concerning k and ω can be written from (A22),

T2ω2
∗ = T2k∗2 + T2/C2. (A12)

Following Kubo [53], one can then write down the expression for ζ[ω∗] as

ζ[ωIR] = Im
[∫ ∞

0
〈[ ϕ̂(0)

2C
,

2ϕ̂(t)
C

]〉 e−iωIRtdt
]

, (A13)

where TωIR is the energy quanta corresponding to the frequency ωIR of the field ϕ. (As
mentioned earlier, ωIR is dimensionless.)

From this, we get the following:

ζ[ωIR] = Im
[

1
C2

∫ ∞

0
〈[ϕ̂(0), ϕ̂(t)]〉 e−iωIRtdt

]
, (A14)

In the hydrodynamic limit, this gives the same expression for ζ that we obtained in
Section 3 from (34) and (A15). The only difference is the theta function, which one can
incorporate in the response ϕ(t). Essentially, it refers to expressing it in terms of the scalar
field’s (ϕ) thermal correlation function/thermal Green’s function. From this point, we can
determine the value of ζ as in Section 3.

Appendix B. Teleological Boundary Condition

To compute the correlation function ρδP̄δP̄, it is necessary to understand how the
horizon-fluid reacts to the external environment. Remarkably, the event horizon’s response
to any external impact is anti-causal. Specifically, if matter energy falls over the event
horizon, the event horizon expands until the matter energy goes through the horizon. As
the event horizon of a black hole is defined globally in the presence of the future light-like
infinity, this is not unphysical [13].

Due to this peculiar property of the horizon, the horizon-fluid exhibits an anti-causal
response, meaning that the response of the horizon occurs before the external influence [13].
From a fluid’s perspective, the system is initially out of equilibrium and evolves slowly
towards equilibrium; external influence brings the system to equilibrium, preventing
any further evolution from that state. This is referred to as the teleological nature of
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the horizon [13]. It has been demonstrated in the literature that if the system exhibits an
anti-causal transport process, then the anti-causal transport coefficients have the opposite
sign of their causal counterparts [69]. For normal fluids, external influence disrupts the
equilibrium. For horizon-fluid, the opposite is true; the system tends toward equilibrium
in anticipation of external influences, such as the infusion of energy into the fluid.

Appendix C. Explicit Evaluation of Bulk Viscosity

To obtain ζ, we need to evaluate
[
δϕ̂(t), δϕ̂(0)

]
. To do this, we rewrite ˆδϕ in terms of

ϕ̂, i.e.,
ˆδϕ = ϕ̂− ϕS1̂ =⇒

[
δϕ̂(t), δϕ̂(0)

]
=
[
ϕ̂(t), ϕ̂(0)

]
(A15)

To obtain the above commutation relation of the field operator, we write the Hamilto-
nian corresponding to the Lagrangian (10):

HHF =
1
2

∫ [(∂ϕ

∂t
)2

+
(
∇ϕ
)2

+
1

C2 ϕ2
]

dA (A16)

As we will see, it is easier to analyze rescaled variables ϕ =
√

T ϕ̃, (where T is a
constant). Thus, the above Hamiltonian becomes:

HHF =
T
2

∫ [(∂ϕ̃

∂t
)2

+
(
∇ϕ̃
)2

+ m2
∗ ϕ̃2
]

dA. (A17)

Now we proceed by rewriting the field ϕ̂∗ (also ϕ̂) in terms of the creation and
annihilation operators, i.e.,

ˆ̃ϕ(t, x) = ∑
k∗
[âk∗uk∗(t, x) + â†

k∗u
∗
k∗(t, x)], (A18)

where
uk∗(t, x) =

1√
2π

1√
2ω∗

ei(k∗ .x−ω∗t) (A19)

and k∗, ω∗, x, and t are dimensionless variables.
The dimensionless part of the Hamiltonian, Ĥeff, is given by (A17) and can then be

expressed in the frequency space as

∫ [1
2
(∂ϕ̃

∂t
)2

+
(
∇ϕ̃
)2

+
1
2

m2
∗ ϕ̃2
]

dA = ∑
k∗
(â†

k∗ âk∗ +
1
2
)ω∗, (A20)

which leads to
Heff(ϕ) = T ∑

k∗
(â†

k∗ âk∗ +
1
2
)ω∗, (A21)

The dispersion relation is
ω2
∗ = k∗2 + 1/C2. (A22)

Of course, an equivalent relation concerning k and ω can be written from (A22),

T2ω2
∗ = T2k∗2 + T2/C2. (A23)

Substituting Equation (A15) into Equation (34) leads to [53]:

ζ[ωIR] = Im

[
− i

4C2
ωIR

Eβ(ωIR)

∫ ∞

−∞
〈ϕ̂(0)ϕ̂(t) + ϕ̂(t)ϕ̂(0)〉e−iωIRtdt

]
, (A24)
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where Eβ(ωIR) is the average energy of excitation in the mode with frequency ωIR at
temperature T and is given by:

Eβ(ωIR) =
h̄ωIR

2
coth

(
βh̄ωIR

2

)
. (A25)

Now we demand that the horizon exists in the future as none of the physical processes
can make the horizon disappear. This necessitates the imposition of the future boundary
condition or teleological boundary condition [12,13,18]. Thus, the teleological boundary
condition can be viewed as a condition for the stability of the black hole event horizon.
Using the teleological boundary condition, the mode expansion in (A18) for ϕ̂(t) can be
written as

ϕ̂(t) = ∑
ω′∗

ϕ̂ω′∗(0)e
iω′∗tθ(−t). (A26)

where θ(−t) is the theta function and enforces the anti-casual, teleological nature of the
horizon. (See [18] for a more detailed discussion.) Substituting the above expansion (A26)
into (A24), we get,

ζ[ωIR] = Im

[
− i

2C2
ωIR

Eβ(ωIR)
∑
ω′∗

1
2π
〈ϕ̂2

ω′∗
(0)〉

∫ ∞

−∞
dt θ(−t) exp

[
i(ω′∗ −ωIR/T)t

]
.

]
, (A27)

Replacing the sum over ω′∗ by an integral and performing the integral over t, we get,

ζ[ωIR] = Im

[
− i

8 πC2
ωIR

Eβ(ωIR)

∫ ∞

−∞
〈ϕ̂2

ω′∗
(0)〉 dω′∗

[−i(ω′∗ −ωIR/T)]

]
, (A28)

where we have extended the range of the integral over negative values of ω′∗. Note that the
above integral has a pole at ω′∗ = ωIR, which is the well-known pole at the hydrodynamical
limit. To evaluate the integral over ω′∗, we impose the following physical condition:

lim
|ω′∗ |→∞

〈ϕ̂2
ω′∗
(0)〉 = 0.

This allows us to evaluate the integral over ω′∗ by taking a semicircular contour on
the upper half of the complex plane. The contour is constructed, so one approaches the
semicircle of the contour |ω′∗| → ∞. Performing this integral, ζ[ωIR] is given by:

ζ[ωIR] = Im

[
− i

4C2
ωIR

Eβ(ωIR)
〈ϕ̂2

ωIR
(0)〉

]
. (A29)

Note that ζ[ωIR] is evaluated at the hydrodynamic limit. We now have to evaluate
〈ϕ̂2

ωIR
(0)〉 for a given ωIR. 〈ϕ̂2

ωIR
(0)〉 is

〈ϕ̂2
ωIR

(0)〉 = Tr

[
e−βĤeff

Z
ϕ̂2

ωIR
(0)

]
where Z = Tr[exp−βĤeff]. (A30)

In the path-integral representation, this corresponds to evaluating the Gaussian path
integral with periodic boundary conditions. This leads to:

Tr
[

exp [−βĤ2+1]

Z
ϕ̂2

ωIR
(0)
]
=

∫
dϕ̃(k∗, ωIR; 0) exp

[
− 1

2 m2∗ ϕ̃2(k∗, ωIR; 0)
]

ϕ̃2(k∗, ωIR; 0)∫
dϕ̃(k∗, ωIR; 0) exp

[
− 1

2 m2∗ ϕ̃2(k∗, ωIR; 0)
] . (A31)
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Notes
1 The conformal anomaly gives rise to the central term in the Virasoro algebra.
2 This is an artificial step and unlikely to occur in terrestrial experiments.
3 Since we only consider homogeneous perturbations, the spatial derivatives vanish
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