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Abstract: In this work, we explore a three-dimensional formulation of the polynomial affine model
of gravity, which is a model that extends general relativity by relaxing the equivalence principle
through the exclusion of the metric from the set of fundamental fields. In particular, in an attempt
to gain insight of the role of the torsion and nonmetricity in the gravitational models, we consider
homogeneous and isotropic cosmological models, for which their solutions are classified in a decisions
tree. We also show a few of these explicit solutions that allow the definition of (alternative/emergent)
metrics derived from the connection.

Keywords: alternative models of gravity; affine gravity; cosmological models; three-dimensional
gravity; exact solutions
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1. Introduction

During the first quarter of the twentieth century, Einstein built the general theory
of relativity, attempting to render gravitational interactions and the special theory of
relativity compatible. The resulting model, known as general relativity, turned to provide
a geometrical interpretation of gravitational interactions, where gravitational forces are a
manifestation of the curvature of spacetime.

General relativity is so far the most successful model of gravitational interactions at
our disposal, explaining a large amount of experimental observations [1]. Nonetheless,
the completion of general relativity with the standard model of particles is insufficient to
account for effects such as the rotation of the Halos of Galaxies [2–4], and the value of the
cosmological constant [5,6]. We should add to that the difficulty the ability to consistently
quantize the model [7–14].

In order to bypass these vicissitudes, it is necessary either to modify the matter content
of the standard model of particles or to find an alternative model to general relativity.
In this work, we focus on the second type of modifications, particularly to enhance the
gravitational sector by allowing a general connection and restricting the role of the metric.1

Interestingly, a general notion of (continuous and connected) manifolds is determined
by the affine connection, which is a geometrical object more fundamental than the metric.
A manifold (M) equipped with an affine connection (Γ̂ ) is called an affine manifold, and it
admits the notion of parallel transports. Hence, the Riemannian geometry behind general
relativity is a particular case of the above when the connection is symmetric in their lower
indices and compatible with a metric tensor field, i.e., Γ̂[µ

λ
ν] = 0 and ∇(Γ̂)g = 0. In affinely
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connected manifolds, it is possible to define (0
2) tensors derived from the connection,

e.g., the Ricci tensor field, for which its symmetric part might serve as a metric field if it is
non-degenerated [15]. Sometimes, these tensors are referred to as connection descendent or
induced or emergent metric tensor fields.

From a modern perspective, the idea of formulating gravity as an affine theory is attrac-
tive since other fundamental interactions are gauge theories, for which their fundamental
fields are gauge connections, and such theories are re-normalizable. Therefore, an affine
formulation of gravity would bring the theory to the same footing with gauge theories.

The first proposals of affine gravity were considered by Einstein, Eddington and
Schrödinger [16–19], but those models did not offer sufficient phenomenological novelty,
while their treatments were significantly more complex. More recent affine models of
gravity were proposed by Kijowski and collaborators [20–23], Popławski [24–27], Krasnov
and collaborators [28–33], and ourselves [34,35].

Albeit the fact that affine formulations of gravity conceptually differ from general rela-
tivity, the predictions obtained from earlier models do not provide significant differences
from those of general relativity, while their manipulation was harder.2 It has been under-
stood that even if two models are equivalent at the dynamical level, their generalisations
might be inequivalent [36]. However, subsequent models predict novel effects.

In the four-dimensional version of the polynomial affine model of gravity, even if we
restrict ourselves to the torsion-free sector of the model, the vacuum solutions of Polynomial
Affine Gravity include the vacuum solutions of general relativity as a subset [35]. Moreover,
some vacuum solutions of our affine model account for effects that in general relativity are
induced by the presence of matter. This is interpreted as a mimicking of matter effects by
the non-Riemannian structure of geometry [37]. Although the underlying geometry of the
polynomial affine model of gravity does not require the existence of a metric ab initio, it is
possible to define connection-descendent metrics,3 allowing to distinguish between null
and non-null geodesics (self-parallel), which would describe the free-fall trajectories for
mass-less and massive particles [38]. What is worth noticing is the existence of a connection-
descendent metric permits making contact with other quantities of interest in cosmological
and astronomical/astrophysical applications, such as the red shift.

Moved by the moral from the early attempts to build affine models of gravity, it is
convenient to analyze the model in lower dimensions, where the number of parameter
is in general diminished. These models are a playground to test methods that would be
applied in four dimensions, but they also might be applied in other branches of physics
since some gauge theories in three dimensions can be interpreted as the high-temperature
limit of four-dimensional models [39].

Historically, the three-dimensional version of general relativity was firstly studied by
Staruszkiewicz [40], who considered Schwarzschild-like solutions and noticed a relation
between the presence of massive point particles and conical singularities. It was soon
understood that in three-dimensional general relativity there were no propagating degrees
of freedom as a consequence of a relation between the Riemann and Ricci tensors (they are
not independent since the conformal Weyl tensor in three dimensions is trivial). Due to this,
the interest for three-dimensional gravity decreased. It was only after a series of papers
by Deser, Jackiw, and Templeton [41–44], who added a nontrivial topological term to the
action, that three-dimensional gravity re-emerged. In those works, the authors showed that
the additional term induced a massive model of gravity dubbed Deser–Jackiw–Templeton
gravity (or DJT for short).

Later, it was shown that the three-dimensional gravity modified by the Pontryagin–
Chern–Simons Lagrangian is equivalent to a Yang–Mills theory (called Chern–Simons
gravity), and its perturbative expansion was renormalizable [45].4 Later, Bañados, Teitel-
boim and Zanelli found the first black hole solution [47], disproving the triviality of the
classical three-dimensional gravity. After these there was a boost in the search of exact
solutions [48] and analysis of their quantum aspects [49].
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From all of the above, it is possible to conclude that the non-triviality of three-
dimensional gravity comes from topological aspects. However, when one considers affinely
connected manifolds, it is possible to define the projective Weyl tensor field:

Wµν
λ

ρ = Rµν
λ

ρ −
1

D− 1

(
Rνρ δλ

µ −Rµρ δλ
ν

)
,

without the use of a metric tensor. The projective Weyl tensor, unlike the conformal
Weyl tensor (which requires a metric and has terms, with the scalar curvature), does
not vanish necessarily. Therefore, gravitational models involving the affine connection
might express dynamical effects unaccounted for by general relativity. An example of the
modifications to the dynamics comes from the existence of nonmetricity which, unlike
the torsion, introduces a term that is responsible of the non-coincidence of geodesics and
self-parallel curves. Moreover, such a quantity cannot be set to zero through a coordinate
transformation due to its tensor character, i.e., it is only zero in a frame if it vanishes in any
other frame.

The aim of this study is to review some of the aspects of the polynomial affine model
of gravity introduced in Ref. [34], focusing our attention on the three-dimensional scenario.
In this context, we find ansätze compatible with the cosmological principle, which allows
us to solve the field equations. Interestingly, some of the solutions admit non-degenerated
derived metrics.

2. What Is the Polynomial Affine Model of Gravity?

Our purpose is to build an alternative model of gravity where the degrees of freedom
mediating the interaction come from a fundamental affine connection, instead of coming
from the metric tensor field. In order to achieve our goals, we suppressed the use of the
metric in the formulation of the action and focused on terms that are polynomials in fields
(and their derivatives). As a consequence, the number of possible terms involved in the
action is finite, as we shall show by an analysis of the index structure later in this section.

Starting from the affine connection, Γ̂µ
λ

ρ, we can decompose it into its irreducible
components by separating the symmetric and skew-symmetric parts (in the lower indices),

Γ̂µ
λ

ν = Γ̂(µ
λ

ν) + Γ̂[µ
λ

ν] = Γµ
λ

ν + Bµ
λ

ν +A[µδλ
ν].

In the last equality, we split the skew-symmetric component of the connection further
into its trace, A, an its traceless part, B . Hereafter, we denote the symmetric component
of the connection by Γ (without the hat). It is worth mentioning that the skew-symmetric
part of the connection is related to the torsion tensor field; therefore, both A and B are the
building blocks of torsion.

Our guideline to build the action functional would be the invariance under diffeomor-
phisms, and the field content of the model would be the symmetric connection (Γ), the trace
of the torsion (A), and the traceless torsion (B ). Note that the torsion-descendent fields are
tensor fields, while Γ is (still) a connection. Consequently, the symmetric connection cannot
(in principle) enter directly to the action, but instead it should enter through the covariant
derivative, ∇.

In order to build an action functional successfully, we require a volume form in the
affine manifold. Such volume form is a generalisation of the well-known Riemannian
volume form, which is defined by the metric tensor field, dVg = d3x

√
g, where symbol g

represents the (absolute value of the) determinant of the metric tensor field. We denote the
affine volume by dVµνλ = dxµ ∧dxν ∧dxλ.

How do we build the action with these ingredients? Since the action is the integral
of the Lagrangian, which is a scalar density, we should write down all possible terms that
are polynomial in the fields, which can be contracted to form scalar densities. Since A, B ,
and ∇ have tensor character and the volume form is the only element with weight, we can
classify the terms in the action by an analysis of the indices structure.5



Universe 2022, 8, 68 4 of 11

Note that all “tensor” fields have a simple net lower index (e.g., the B field has one
upper and two lower indices; thus, it would contribute to a net single index), while the
volume form has three upper indices. Let us define the index balance operator as N , which
returns the value +1 for each upper index and −1 for lower indices, and the weight operator
as W , which returns the weight of the tensor density. Then, an operator of the following
form is obtained:

O = AmBn∇p dVq,

where the superindices denote the power of the element (number of times it might appear),
and it can be part of the Lagrangian when the net index balance is zero and its weight is
one; thus, it should satisfy the following:

N (O) = 3q−m− n− p = 0, W (O) = q = 1,

if the operator could take part in the action.
Now that we know the restrictions in the power of the fields, we write down all

possible contractions, and use the symmetries of the fields to eliminate redundant terms.
The most general action (up to boundary terms) is given by the following (see Ref. [34]):

S =
∫

dVαβγ

(
B1AαAµBβ

µ
γ + B2AαFβγ + B3Aα∇µBβ

µ
γ + B4 Bα

µ
νBβ

ν
λBγ

λ
µ

+ B5Rαβ
µ

µAγ + B6Rµα
µ

νBβ
ν

γ + B7 Γα
µ

µ∂βΓγ
ν

ν

+ B8

(
Γα

µ
ν∂βΓγ

ν
µ +

2
3

Γα
µ

νΓβ
ν

λΓγ
λ

µ

))
,

(1)

where the topological Chern–Simons terms have been included explicitly. In the above, we
use the symbols F to denote the field strength of the A-field, i.e., Fβγ = ∂βAγ − ∂γAβ, and
we useR = RΓ to denote the curvature of the symmetric connection.

In comparison with the action of general relativity, Equation (1) seems unpleasant
at first. However, we should have in mind that the Hilbert–Einstein action is far from
being the most general one compatible with the symmetries. For this reason, it is useful to
highlight some nice features of the polynomial affine model of gravity, which can be read
from its action: (i) Similarly for the other fundamental interactions, the fundamental field is
a connection; (ii) all coupling constants are dimensionless, which is desirable from the point
of view of Quantum Field Theory, since the superficial degree of divergence vanishes; (iii)
at least at a classical level, the model seems to exhibit scale invariance; (iv) the number of
possible terms in the action is finite (we usually refer to this property as the rigidity of the
model), giving the impression that in the hypothetical scenario of quantisation, the model
would be renormalisable, since all counter-terms should have the form of terms already
present in the original action.

The field equations derived from the action in Equation (1) are as follows:

2B1AαBν
α

ρ + 2B2Fνρ + B3∇µBν
µ

ρ + B5Rνρ
µ

µ = 0, (2)

2B1AνAρ − 2B3∇(νAρ) + 3B4Bν
µ

σBρ
σ

µ + 2B6Rµ(ν
µ

ρ) = 0, (3)

B3AµBρ
ν

σ + B5

(
δν

µFρσ + δν
[ρFσ]µ

)
+ B6

(
2δν

µ∇τBρ
τ

σ + δν
ρ∇τBσ

τ
µ + δν

σ∇τBµ
τ

ρ

)
+ B7

(
δν

µRρσ
λ

λ + δν
[ρRσ]µ

λ
λ

)
+ B8

(
Rρσ

ν
µ + δν

[ρRσ]λ
λ

µ

)
= 0. (4)

We have to mention that the field equations presented above are obtained by a naive
optimization of the action functional, without taking into account the possible existence of
second class constraints that could result in the necessity of adding boundary contributions
to the action.
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In order to solve the field equations, we use the same strategy as in general relativity to
provide an ansatz that must be compatible with the requirements of our problem.

3. Building the Ansätze

Riemannian geometry is the arena where general relativity lays its grounds, and the
fundamental geometrical object in Riemannian geometry is the metric tensor field. Since
the metric tensor field is related to the notion of distance, in the easiest examples it is
straightforward to propose ansätze. However, for less trivial examples one utilises the
notion of the Lie derivative and its relation with the concept of symmetries.

Although the action of the Lie derivative on tensors (and even tensor densities) is
commonly known [50], it is less known that it is possible to define the Lie derivative of an
affine connection [51–53], given by the following relation,

£V Γ̂µ
λ

ν = Vσ∂σΓ̂µ
λ

ν − Γ̂µ
σ

ν∂σVλ + Γ̂σ
λ

ν∂µVσ + Γ̂µ
λ

σ∂νVσ +
∂2Vλ

∂xµ∂xν

= ∇̂µ∇̂νVλ + R̂ρµ
λ

νVρ − 2∇̂µ

(
Γ[ν

λ
ρ]V

ρ
)

.
(5)

In the above, the vector field V represents a generator of the symmetry group, i.e., in
mathematical terminology, V defines the symmetry flow. Note that the second line is a
covariant expression, since the skew-symmetric part of the connection (i.e., the torsion) is a
tensor field.

Therefore, the strategy to find ansätze would be the following: (i) Define the desired
symmetries in concordance with the physical problem we would like to solve; (ii) obtain
the vector fields associated to the generators of the symmetry group and express them in
the coordinate system of preference; (iii) restrict the coefficients of the affine connection
by solving the set of equations defined by £V Γ̂ν

λ
ρ = 0. Note that this represents a set of

27 partial differential equations for each vector V.
In order to illustrate the procedure, we use spherical coordinates, (t, r, ϕ), and show

that the general affine connection is compatible with isotropy and the cosmological principle
(i.e., isotropic and homogeneous).

In three-dimensions, the vector fields generating the rotation and translations along a
two-dimensional subspace of constant curvature are represented by the following:

J =
(
0 0 1

)
,

X =
√

1− κr2
(
0 cos ϕ − 1

r sin ϕ
)
,

Y =
√

1− κr2
(
0 sin ϕ 1

r cos ϕ
)
,

(6)

where κ = −1, 0,+1 is the normalised Gaußian curvature of the two-dimensional subspace.

3.1. Isotropic Connection

Straightforwardly, one can observe from Equation (5) that, since the vector field J
is constant, the non-homogeneous contribution to the Lie derivative vanishes; thus, it
coincides with the Lie derivative of a (1

2)-tensor.
Moreover, the explicit relations derived from the condition of the vanishing Lie deriva-

tive of the connection along the vector J are as follows:

£J Γ̂µ
λ

ν = ∂ϕΓ̂µ
λ

ν = 0. (7)

The solution is that none of the components of the affine connection depend on the
angular coordinate ϕ. Unfortunately, this symmetry argument does not kill any of the
components of the connection! Consequently, using only an argument of isotropy, it would
be almost impossible to find an analogous case of the Schwarzschild black hole—which in
three-dimensions is called Bañados–Teitelboim–Zanelli (BTZ) black hole [47,48,54,55].
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3.2. Isotropic and Homogeneous Connection

In order to find the affine connection compatible with the cosmological principle, we
have to solve the conditions of the vanishing Lie derivative of the connection along the
vector fields X and Y. This procedure is long and tedious but straightforward, and we refer
the interested reader to check Refs. [37,56] to see more details.

After solving the conditions, the irreducible components of the affine connection are
given by the following:

Γt
t
t = j(t), Γi

t
j = g(t)Sij,

Γi
k

j = γi
k

j, Γt
i
j = Γj

i
t = h(t)δi

j + f (t)Sikεkj
r√

1− κr2
,

(8)

where f , g, h, and j are functions of time, while Sij and γi
j
k are the two-dimensional

rank two symmetric tensor and connection compatible with isotropy and homogeneity,
defined by the following:

Sij =

(
1

1−κr2 0
0 r2

)
,

and

γr
r
r =

κr
1− κr2 , γϕ

r
ϕ = −r(1− κr2), γr

ϕ
ϕ =

1
r

, γϕ
ϕ

r =
1
r

.

If one compares with the Levi-Civita connection obtained from a Friedman–Robertson–
Walker metric, one notices that the function j is zero, the function f is something entirely
new (and it exists solely in three-dimensions), and the functions g and h are defined in
terms of the scale factor a, as g = aȧ and h = ȧ/a.

It is possible to show that in the affine case, a reparametrization of the time allows us
to set the function j = 0 [57].

The nonvanishing components of the B -field are as follows:

Bϕ
t
r = −Br

t
ϕ = ξ(t)

r√
1− κr2

,

Bt
r

ϕ = −Bϕ
r
t = ψ(t)r

√
1− κr2,

Br
ϕ

t = −Bt
ϕ

r =
ψ(t)

r
√

1− κr2
,

(9)

while the nonvanishing component of the A-field is At = η(t).

4. Cosmological Solutions

Now that we have the general form of the fields, we substitute such ansatz into the
field equations in Equations (2)–(4). The resulting system of equations is as follows:

2B8g f − B3ξη = 0, (10)

B6(2gψ + ξ̇)− B8 f g = 0, (11)

B8(2gh + κ − ġ) = 0, (12)

B3ηψ + B8(2h f + ḟ ) = 0, (13)

B1η2 − B3η̇ + 3B4ψ2 − 2B6(ḣ + h2 − f 2) = 0, (14)

B3gη − 3B4ψξ + B6(κ + ġ) = 0, (15)

2B1ηξ + B3(2gψ + ξ̇) = 0. (16)
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Notably, the Equation (10) is algebraic. However, we can obtain other algebraic relations
from Equations (11) and (16), and from Equations (12) and (15). These expressions are as
follows:

2B8g f − B3ξη = 0, (17)
B8

B6
g f + 2

B1

B3
ξη = 0, (18)

3
B4

B6
ψξ − 2gh− B3

B6
gη = 2κ. (19)

Equations (17) and (18) can be seen as a system of equations for variables f and η as
functions of g and ξ, but their independence is dictated by the determinant of the following
system coefficients,

Ω = B8

[
4

B1

B3
+

B3

B6

]
gξ. (20)

A thorough search for solutions requires taking into account all possible cases, which
can be represented by decision trees (see Figure 1). We shall sketch the types of solutions
in two cases: (i) when the determinant in Equation (20) is nonvanishing, which requires
f = η = 0; and (ii) when the determinant Ω vanishes, for which the decision tree has
many branches.

Ω 6= 0 f = η = 0 g 6= 0 ∧ ξ 6= 0 3 eqs., var.: g, h, ξ

Ω = 0

B8 = 0 ∨B2
3 + 4B1B6 = 0 “exceptional solutions”

ξ = 0

f = 0

g = 0 ∧ κ = 0
η = 0 1 eq., var.: h, ψ

ψ = 0 1 eq., var.: h, η

ψ = 0 3 eqs., var.: g, h, η

η = 0
g = 0 ∧ κ = 0 1 eq., var.: h, ψ

ψ = 0 3 eqs., var.: g, h

g = 0 ∧ κ = 0 2 eqs., var.: f, h, η, ψ

ψ = 0

f = 0 3 eqs., var.: g, h, η

g = 0 ∧ κ = 0 2 eqs., var.: f, h, η

g = 0 ∧ κ = 0

ξ = 0 2 eqs., vars.: f, h, η, ψ

η = 0

ξ = 0 2 eqs., var.: f, h, ψ

ψ = 0 2 eqs., var.: f, h

Figure 1. Decision tree depicting the scan of cosmological solutions.

Interestingly, from the solutions obtained in the scan, only a few of them have all the
fields switched on [57]. Below, we present some of these exceptional solutions.

Firstly, the case with g = κ = ξ = 0 has as nontrivial field, and the equations of
the following:

ḟ + 2 f h = −B3

B8
ηψ, (21)

ḣ + h2 − f 2 =
1

2B6

(
B1η2 − B3η̇ + 3B4ψ2

)
, (22)

which are solved when all the functions are inversely proportional to t. Note that with this
configuration, Γ, A, and B are nonvanishing.
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Another branch of solutions is found when the coupling constants are not all in-
dependent, e.g., for B2

3 + 4B1B6 = 0, condition Ω = 0 is satisfied without fixing g or ξ.
Under these conditions, we observed a couple of exceptional solutions.

First, for B1 = B3 = 0, the solution is characterized by the following functions:

f (t) = 0, g(t) = −κt + Cg, h(t) =
1

t− κCg
,

ξ(t) =

√
−2B6

3B4
Cg, ψ(t) = 0, η(t) = arbitrary,

(23)

for κ 6= 0. While for κ = 0, the functions defining the connection are as follows:

f (t) = 0, g(t) = Cmt + Cg, h(t) =
Cm

2(Cmt + Cg)
,

ξ(t) =

√
−2B6

3B4
(Cmt + Cg), ψ(t) =

√
− B6

6B4

Cm

Cmt + Cg
, η(t) = arbitrary.

(24)

Secondly, for κ = 0, we proposed the ansatz g(t) = tn with n ∈ R − {−2,[
1−
√

33
4 , 1+

√
33

4

]
}, with the following condition.

B4 = − 8B3
6(n + 2)

3B2
8(2n3 − 3n2 − 3n + 4)

.

The functions defining the connection are as follows,

f (t) =

√
2n2 − n− 4 sgn(B8)

2t
, g(t) = tn,

h(t) =
n
2t

, ξ(t) =

√
2n2 − n− 4 sgn(B8)tn

2B6
,

η(t) =
2B6

B3t
, ψ(t) =

(n− 1)
√

2n2 − n− 4 sgn(B8)

4tB6
.

(25)

The solutions shown above are interesting because they admit some form of connection-
descendent metric. In particular, the solution from Equation (25) admits several emergent
metrics, for example, (i) the Ricci tensor field and (ii) the Popławski metric [27],6 defined
from the torsion tensor field as gµν = T µ

λ
ρT ν

ρ
λ, which are in general non-degenerated.

Without further details, for this solution, the metrics are of the following form:

Ric = −A(n)
t2 dt⊗dt+ntn−1

(
dr⊗dr
1− κr2 + r2 dϕ⊗dϕ

)
,

and the following as well:

Popl = − F(n, Bi)

t2 dt⊗dt+G(n, Bi)tn−1
(

dr⊗dr
1− κr2 + r2 dϕ⊗dϕ

)
,

where A, F, and G are numerical factors depending on coefficients Bi and the value of
n [57].

5. Discussion and Concluding Remarks

In this article, we have briefly reviewed the polynomial affine model of gravity, which
attempts to model the gravitational interaction as mediated by the affine connection. Its
action functional is built up without the use of a metric tensor field by explicitly excluding
it from the action.
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Despite the fact that an affine model of gravity brings gravitation a step closer to the
formulation of gauge theories, it is interesting that the number of possible terms in the
action (see Equation (1)) is finite.7

Remarkably, even if we start with an affinely connected manifold, without referring to
a fundamental metric, there are symmetric (0

2) tensors derived from the connection that
might play the role of metric tensor fields when non-degenerated.

The first connection-descendent object that might be a metric is the symmetric Ricci
tensor field [15]. In fact, Einstein and Eddington proposed independently their affine model
of gravity by using the square-root of the determinant of the Ricci, i.e.,

√
Ric, as Lagrangian

density. Another emergent metric is given by a quadratic combination of the torsion tensor,
g(P)

µν = T µ
λ

ρT ν
ρ

λ, which was considered by Popławski in Ref. [27]. We can define a

Popławski-like metric by using the B -field, as g(B )µν = Bµ
λ

ρBν
ρ

λ.
In addition, in three-dimensions, the dual of the B -field, Bλρ = 1

2 εµνλBµ
ρ

ν, is a
symmetric (2

0)-tensor density. When this tensor density is non-degenerated, it might be
interpreted as an analogous case of the Riemannian

√
ggµν. Hence, such quantity induces a

notion of distance, i.e., introduces a metric.
The general field equations are a clear generalisation of the Einstein equations; in

particular, the field equation for the B -field (see Equation (3)) is the analogous case for the
standard equations in general relativity, where the following term is provided:

2B1AνAρ − 2B3∇(νAρ) + 3B4Bν
µ

σBρ
σ

µ

and it might be interpreted as the energy-momentum tensor field of a geometrically in-
duced matter content. It is worth mentioning that the Ricci tensor field in Equation (3) in
general encodes information about nonmetricity, since the symmetric connection, Γ , is not
necessarily compatible with emergent metrics [38,57].

In the sense of the last paragraph, the polynomial affine model of gravity provides
nontrivial solutions in the absence of matter, i.e., there are matter-like effects induced by
non-Riemannian geometrical quantities.

Lastly, although the Hamiltonian analysis of the polynomial affine model of gravity
has not been completed, we have reasons to think that in this model there are propagating
degrees of freedom, unlike the three-dimensional version of general relativity.

Before finishing, we would like to remark some of the features that, in four dimensions,
differentiate the polynomial affine model of gravity from general relativity.

We know that the four-dimensional version of Polynomial Affine Gravity yields to
gravitational interactions (forces) and vacuum solutions that differ from those of general
relativity. Nevertheless, our vacuum solutions contain effects that in general relativity can
be obtained solely in presence of matter. Ergo, the previously mentioned non-Riemannian
matter-like effects might (at least partially) account in the four-dimensional context, for the
dark sector of the Universe.
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Notes
1 In general relativity, the role of the metric is two-fold: it is not only the geometric object that defines distances but the field is also

responsible for the mediation of gravitational interactions.
2 In the words of Schrödinger, “For all that I know, no special solution has yet been found which suggests an application to

anything that might interest us ...” [19].
3 We also refer to these metrics as emergent metrics.
4 An update on the original ideas in this paper can be found in Ref. [46].
5 In previous articles, we refer to this as dimensional analysis.
6 We shall denote the Popławski metric by Popl or g(P).
7 Note that once the metric is included, as in general relativity, the number of possible terms is naturally unbound, since we allow

the contraction of the indices that are initially on the same footing. As an example of these terms, we have the scalar curvature,
R , and its powers,Rn , opening the window to the f (R )-models.
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