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Abstract: In the present paper, we consider quantum theories obtained through the quantization of
classical theories with first-class constraints assuming that these constraints form a Lie algebra. We show
that in this case, one can construct physical quantities of a new type. We apply this construction to string
theory. We find that scattering amplitudes in critical bosonic closed string theory can be expressed in
terms of physical quantities of the new type. Our techniques can also be applied to superstrings and
heterotic strings.
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1. Introduction

In BRST formalism, we can construct physical quantities by taking correlation functions
of BRST-closed operators in a physical (BRST-closed) state. (These correlation functions can
be considered polylinear functions in BRST cohomology.) In the present paper, we consider
quantum theories obtained through the quantization of classical theories with first-class con-
straints assuming that these constraints form a Lie algebra. We show that in this case, one can
construct physical quantities of a new type (Section 2). We apply this construction to string
theory (Sections 5 and 6). We find that scattering amplitudes in critical bosonic closed string
theory can be expressed in terms of physical quantities of the type described in Section 2. Our
techniques can also be applied to superstrings and heterotic strings; this will be shown in a
separate paper.

Our results on scattering amplitudes in string theory are based on a comparison with
the expression of these amplitudes in operator formalism [1,2]. The operator formalism is
closely related to Segal’s definition of conformal field theory [3]. We recall this definition (or,
more precisely, the modification of this definition that is used in operator formalism) and the
main ideas of operator formalism (Sections 3 and 4). In Appendix A, we sketch a new, simple
approach to operator formalism.

One of the main takeaways from our results is as follows: Knowing the one-string space
of states in BRST formalism, one can calculate physical quantities describing interacting strings.
Neither multi-string states nor worldsheets with non-trivial topology, which are necessary for
other approaches, are fundamental in our approach; we show that they are, in some sense,
hidden in one-string space.

The present paper is a byproduct of my attempts to formulate string theory in algebraic
and geometric approaches to quantum theory (see [4] and references therein). The results of
this paper show the way to solve this problem: it is sufficient to work in the one-string space.

2. General Considerations

For every supermanifold M, we can construct a supermanifold ΠTM by reversing the
parity in fibers of tangent bundle TM. If (x1, . . ., xm) are coordinates in M, then the coordinates
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in ΠTM are (x1, . . ., xm, ξ1, . . ., ξm), where the parity of ξk is opposite to the parity of xk. Poly-
nomial functions on ΠTM are identified with differential forms on M, more general functions
with pesudodifferential forms. The formula Q = ξk ∂

∂xk specifies an odd vector field on ΠTM;
the anticommutator of this vector field with itself vanishes. We can say that Q specifies a
structure of Q-manifold on ΠTM; in other words, Q is a homological vector field. It defines
an odd derivation d of the algebra of functions on ΠTM. Operator d obeys d2 = 0 and can be
identified with the de Rham differential.

There exists an invariant definition of ΠTM that shows that the construction of ΠTM is
functorial. In other words, a map M → N induces a map ΠTM → ΠTN; the induced map
agrees with the de Rham differential. Namely, ΠTM can be identified with the space of maps
of (0, 1)-dimensional superspace R0,1 into M. Every vector field on space R0,1 induces a vector
field on the space of maps. The Lie superalgebra of vector fields on R0,1 is (1, 1)-dimensional;
an odd vector field on R0,1 induces a homological vector field Q on the space of maps, and an
even vector field induces a grading on the algebra of functions on this space.

This remark allows us to say that ΠTg, where g is a Lie superalgebra, is equipped with
the structure of a differential Lie superalgebra. We denote this Lie superalgebra by g′ and the
differential in it by Q. Sometimes, it is convenient to consider a semi-direct product g′′ of the
Lie superalgebra and the Lie superalgebra of vector fields on R0,1.

Similarly, if G is a supergroup, then G′ = ΠTG is also a supergroup (the multiplication in
G induces multiplication in the space of maps R0,1 → G). The Lie superalgebra of G′ can be
identified with g′, where g stands for the Lie superalgebra of G. The homological vector field
on G′ induces differential Q on g′.

If g is a Lie algebra with generators Tk and commutation relations [Tk, Tl ] = f r
klTr,

Lie superalgebra g′ has even generators Tk, odd generators bk and commutation relations
[Tk, Tl ] = f r

klTr, [Tk, bl ] = f r
klbr, [bk, bl ]+ = 0. Generators Tk are Q-exact (by acting by Q on bk,

we obtain Tk).
Every element of G′ can be represented in the form g exp(µkbk), where µk are odd pa-

rameters, g ∈ G and exp stands for the exponential map of the Lie superalgebra into the
corresponding supergroup.

Let us now consider a classical system that, after quantization, can be described by Hilbert
space E . If a new classical system is obtained from this system by means of constraints
obeying a Lie algebra g of group G, then the quantized system can be described in BRST
formalism by space E ′, obtained by adding ghosts to E . (To obtain E ′, we take the tensor
product of E by the representation space of canonical anticommutation relations [ĉk, b̂l ]+ =
δk

l , [ĉk, ĉr]+ = 0, [b̂l , b̂r]+ = 0.) The constraints induce operators Tk in E ; BRST operator Q̂
has the form Q̂ = Tkck + 1

2 f r
kl ĉ

k ĉl b̂r, where f r
kl are structure constants of algebra g and ĉk, b̂l

are ghosts obeying canonical anticommutation relations (in the case of an infinite number of
degrees of freedom, we should use normal ordering; this can lead to anomalies). Operators
T̂k = Tk + f r

kl ĉ
l b̂r are BRST-trivial in E ′; this follows from relation T̂k = [Q̂, b̂k]+. Together with

operators b̂k, they specify a representation ψ of Lie superalgebra g′, i.e., a homomorphism of g′

into space L of linear operators acting in E ′; this homomorphism agrees with differentials (in
this statement, space L is considered a Lie superalgebra).

We assume that representation ψ is integrable (=can be exponentiated), i.e., it can be
obtained from a representation Ψ of group G′. (Recall that g is the Lie algebra of group G).

Representation Ψ induces a map Ψ∗ of L∗ (of the superspace of linear functionals on L)
into the space of functions on G′ (the space of (pseudo)differential forms on G). This map
agrees with differentials; this means, in particular, that it transforms Q-closed element σ ∈ L∗
into a closed (in general, inhomogeneous) form Ψ∗(σ) on G. (The BRST operator acts on L as
(anti)commutator with Q̂, and this action induces a BRST operator on L∗.)
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By integrating Ψ∗(σ) over a cycle in G, we obtain a physical quantity (the integral does
not change if we add a Q-exact term to σ; hence, it depends only on the BRST cohomology
class of σ).

If K is a subgroup of G and the form Ψ∗(σ) descends to G/K, we can integrate the form
on G/K over a cycle in G/K. (Here, G/K stands for the space of right cosets= space of orbits of
left action of K on G.) This construction leads to a more general class of physical quantities.

Let us consider a special case where a Q-closed element σ ∈ L∗ is specified by the formula

σ(A) = 〈ρ|A|χ〉 (1)

where A ∈ L, 〈ρ| ∈ (E ′)∗ and |χ〉 ∈ E ′ are Q-closed. By taking A as Ψ(g′), where g′ ∈ G′, we
obtain a Q-closed function

(Ψ∗σ)(g′) = 〈ρ|Ψ(g′)|χ〉 (2)

on G′ (a non-homogeneous closed form on G). By representing g′ ∈ G′ as g exp(µkbk)), where
g ∈ G, we obtain

(Ψ∗σ)(g exp(µkbk)) = 〈ρ|Ψ(g exp(µkbk)))|χ〉 = 〈ρ|Ψ(g) exp(µk b̂k)|)χ〉 (3)

(we use the fact that G is embedded into G′; hence, Ψ is defined on G).
Function (2) descends to G′/K′ = (G/K)′ (equivalently, the corresponding closed (pseudo)

differential form descends to G/K) if 〈ρ| is a K′-invariant element of (E ′)∗. (The relation
〈ρ|Ψ(k′) = 〈ρ| for k′ ∈ K′ implies that (Ψ∗σ)(k′g′) = (Ψ∗σ)(g′).)

Homogeneous components of the form shown in (3) are closed forms that can be repre-
sented as

〈ρ|Ψ(g)B|χ〉 (4)

where B is a homogeneous polynomial with respect to b̂k.
Notice that our constructions can be applied to the case where E and E ′ are replaced by

their n-th tensor powers; then, groups G and G′ should be replaced with the direct products of
n copies of these groups.

One can consider a more general situation where we have two subgroups of group G
denoted by K and H, element |χ〉 is an H′-invariant element of E ′ (i.e., Ψ(h′)|χ〉 = |χ〉 for
all h′ ∈ H′) and element 〈ρ| is a K′-invariant element of the dual space. Then, Function (2)
descends to H′\G′/K′ (to the space of double cosets).

Our consideration can be generalized to the case where g is a Lie algebra of semigroup G.
In this case, one should assume that representation ψ is semi-integrable, i.e., it can be obtained
from the representation of semigroup G′ having Lie algebra g′.

Another important generalization is the following: It is sufficient to assume that 〈ρ| is
k′-invariant (i.e., 〈ρ|ψ(k′) = 0). Here, k is a Lie subalgebra of Lie algebra g. If k is a Lie algebra
of a connected subgroup K of semigroup G, this assumption is equivalent to K′-invariance of
〈ρ|; we come back to the situation considered above. However, in the situation considered in
the next sections, Lie algebra k cannot be considered a Lie algebra of some group.

It is easy to check that k′-invariance of 〈ρ| implies that Function (2) descends to G′/k′

(equivalently, the corresponding form descends to G/k).
To define space of cosets G/k, we consider left action of the Lie algebra k on semigroup G.

This action specifies a foliation of G; one can define G/k as the space of leaves of the foliation.
Alternatively, G/k can be defined as a connected manifold M where semigroup G acts

transitively with Lie stabilizer k. (We say that action of G on M is transitive if it induces a
surjective map τm of Lie algebra g to the tangent space of M in any point m ∈ M. The Lie
stabilizer at point m is defined as the kernel of τm; we assume that there exists a point with a
Lie stabilizer k.)
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More generally, if |χ〉 is h′-invariant and 〈ρ| is k′-invariant, then Function (2) descends to a
function on space of double cosets h′\G′/k′ (to a (pseudo)differential form on space of double
cosets h\G/k).

In this statement, k and h are Lie subalgebras of g. For an appropriate choice of g, k and h,
this statement can be used to obtain an expression for string amplitudes (Section 6).

3. CFT, TCFT, SCFT, TSFT

Let us start with a reminder of some basic constructions that are used in two-dimensional
conformal field theory (CFT) and in operator formalism of string theory.

Recall that two Riemannian manifolds are conformally equivalent (specify the same
conformal manifold) if there exists a diffeomorphism between these manifolds preserving the
Riemannian metric up to multiplication by a function.

A two-dimensional, oriented conformal manifold can be identified with a complex mani-
fold of complex dimension 1. Maps preserving conformal structure are either holomorphic or
antiholomorphic maps of complex manifolds.

We consider moduli space of complex curves (=one-dimensional, compact, connected
complex manifolds) of genus g with boundary consisting of n parametrized circles. (We assume
that these circles are ordered.) This moduli space denoted by P(g, n) can be regarded as an
infinite-dimensional complex manifold. Equivalently, one can define P(g, n) as the moduli
space of complex curves of genus g with n embedded standard discs.

It is easy to construct a natural map φm,n : P(g, n)× P(g′, n′) → P(g + g′, n + n′ − 2)
identifying the last circle in the first factor with the first circle in the second factor. Similarly,
one can construct a map φn : P(g, n)→ P(g + 1, n− 2) identifying two last circles.

In particular, map P(0, 2)× P(0, 2) → P(0, 2) specifies a structure of a semigroup on
P(0, 2) . This semigroup was introduced independently by Neretin, Konntsevich and Segal;
we call it the semigroup of annuli and denote it by A.

The map P(0, 2)×P(g, n)→ P(g, n) specifies an action of A on P(g, n).
Notice that the Lie algebra of A can be identified with diff (with the complexification of

the Lie algebra of vector fields on a circle); in other words, this is a complex Lie algebra with
generators ln obeying [lm, ln] = (m− n)lm+n.

In Segal’s approach, a CFT having central charge c = 0 specifies a map σg,n : P(g, n)→ Hn,
whereH is a vector space equipped with bilinear inner productH⊗H → C. Using this inner
product, one can construct maps φ̃m,n : Hm ⊗Hn → Hm+n−2 and φ̃n : Hn → Hn−2. Segal’s
axioms are compatibility conditions for maps σg,n, φm,n, φn, φ̃m,n, φ̃n.

The action of semigroup A on P(g, 1) and complex conjugate action generate an action of
A×A and corresponding Lie algebra diff×diff onH.

A CFT having central charge c 6= 0 specifies a map sending a point of P(g, n) into a point of
Hn defined up to multiplication by a number. In this case, we have a projective representation of
diff×diff inH, i.e., a representation of the central extension of this algebra inH.

The central extension of diff is called Virasoro algebra; we denote it by Vir.
Let us consider CFT with a central charge c. Lie algebra Vir × Vir acts on its space of states

H. In other words, we have operators Lm, L̃n obeying

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,

[L̃m, L̃n] = (m− n)L̃m+n +
c

12
(m3 −m)δm+n, [Lm, L̃n] = 0.

There exist many important analogs of these constructions. In particular, one can consider
spaces P ′(g, n) = ΠTP(g, n) instead of P(g, n). It is obvious that analogs of maps φm,n and φn
exist for these spaces. It follows that A′ = P ′(0, 2) is a semigroup acting on P ′(g, n).
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Let us fix a Z2-graded vector spaceH equipped with inner product and parity reversing
differential q respecting this product. Then, topological conformal field theory (TQFT) is
specified by maps P ′(g, n) → Hn. (Notice that such a map specifies a differential form on
P(g, n) with values in spaceHn. The more standard definition of TQFT is formulated in terms
of these forms.) We impose compatibility conditions of these maps with analogs of maps
φm,n, φn, φ̃m,n, φ̃n, as well as compatibility conditions with differential q and homological vector
field on P ′(g, n). It follows that semigroup A′ ×A′ and its Lie algebra diff′ × diff′ act inH.

By replacing, in the definition of CFT, conformal manifolds with superconformal man-
ifolds, we obtain a definition of superconformal field theory (SCFT). One can also define
topological superconformal field theory (TSFT); the modification that leads from SCFT to TSFT
is very similar to the modification leading from CFT to TCFT.

4. Subalgebras, Stabilizers, Invariants

Lie algebra diff consists of complex vector fields on a circle. A very general way to
construct Lie subalgebras of diff is based on the consideration of the embedding of the circle into
a complex manifold M. Then, complex vector fields on the circle that can be holomorphically
extended to M constitute a Lie subalgebra of diff. We can obtain a smaller Lie subalgebra
assuming that the extended vector field vanishes on some subset of M.

A more concrete realization of this construction can be obtained if we take, as M, a one-
dimensional, connected complex manifold (a complex curve) with n parametrized boundary
components (n circles B1, . . ., Bn), p punctures (p deleted points x1, . . ., xp) and m marked
points u1, . . ., um. (Equivalently, one can consider a complex curve M with n embedded disks,
p punctures and m marked points; then, we take, as M, curve M with deleted disks.) The
moduli space of objects of this kind is denoted by P(n, p, m), and its connected components
(labeled by genus g of M) are denoted by P(g, n, p, m). (If p = 0, m = 0, we obtain space
P(g, n), considered in the preceding section.) The direct product of n copies of semigroup A
(hence also the direct product of n copies of Lie algebra diff) acts on these moduli spaces.

Let us fix one of the boundary components (say, the first one) and consider the action of the
corresponding semigroup A on P(g, n, p, m). Lie stabilizer kM ⊂diff at point M ∈ P(g, n, p, m)
can be described as the Lie algebra of complex vector fields on boundary component S = B1
that have a meromorphic extension to M with zeros at the marked points and singularities
only in the punctures.

By taking the product of n copies of semigroup A corresponding to all boundary compo-
nents and considering Lie stabilizer kM ⊂ diff ×. . .×diff, we obtain

P(g, n, p, m) = (A× . . .×A)/kM.

(We used the fact that A× . . .×A acts transitively on P(g, n, p, m).) Lie stabilizer kM at
point M ∈ P(g, n, p, m) consists of vector fields on the boundary of M that have a meromorphic
extension to M with zeros at the marked points and singularities only in the punctures.

Let us now consider CFT with central charge c = 0 in Segal’s approach. In this approach,
we assign a vector φM ∈ Hn to every point M ∈ P(g, n). Here, H stands for linear space
equipped with anon-degenerate inner product. semigroup An, hence its Lie algebra diffn, acts
onHn. If f ∈diff is a complex vector field on a circle, then the corresponding operator acting
on the i-th factor ofHn is denoted by L(i)( f ). The Virasoro generators acting on the i-th factor
(operators corresponding to vector fields zk+1 d

dz ) are denoted by L(i)
k . Lie stabilizer kM ⊂ diffn

consists of complex vector fields on the boundary that can be holomorphically extended to M.
It is easy to check that φM is kM-invariant.
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More generally, let us take M ∈ P(g, n, p = 0, m). By fixing holomorphic coordinates at
marked points (=holomorphic disks with centers at these points), we obtain a point
M̃ ∈ P(g, n + m) and a vector φM̃ ∈ Hn+m.

If χ = χ1 ⊗ . . .⊗ χm ∈ Hm, we can define ψ(χ) ∈ Hn as the inner product of φM̃ and χ.
(We use the inner product inH to calculate the pairing of the last m factors inHn+m with χ.) If
L(i)

k χi = 0 for k ≥ 0, then ψ(χ) does not depend on the choice of coordinate systems at marked
points; it is kM-invariant. Here, kM stands for the Lie algebra of complex vector fields on the
boundary of M that can be extended to holomorphic vector fields on M vanishing at marked
points. (It can also be characterized as the Lie stabilizer of An at point M ∈ P(g, n, p = 0, m).)

Let us formulate a similar statement in the case where we work with TCFT instead of CFT.
In this case, we have maps P ′(g, n)→ Hn, where P ′(g, n) = ΠTPg, n) andH is equipped by
a differential q. Algebra diff′ is represented inH by operators L( f ), b( f ), where f ∈diff. They
obey [L( f ), L(g)] = L([ f , g], [L( f ), b(g)] = b([ f , g]), [b( f ), b(g)]+ = 0, L( f ) = [q, b( f )]+. This
action induces an action of diff′n onHn; the operators acting on the i-th factor are denoted by
L(i)( f ), b(i)( f ) or by L(i)

k , b(i)k if f = zk+1 d
dz .

Let us consider M ∈ P(g, n, p = 0, m), a vector κ = κ1 ⊗ . . .⊗ κm ∈ Hm obeying qκi = 0
and

L(i)
k κi = 0, b(i)k κi = 0 (5)

for k ≥ 0. Then, by slightly modifying the above construction, we can define a vector τ(κ) ∈ Hn.
This vector is k′M-invariant, where kM is the Lie stabilizer of An at point M ∈ P(g, n, p = 0, m).
(By considering M a point of P ′(g, n, p = 0, m), we can say that k′M is the Lie stabilizer of A′n
at this point.)

Using the inner product inH, we can define bra-state 〈τ(κ)|. This state is also k′M-invariant.

5. String Theory

Let us consider classical CFT, which allows CFT to have central charge c after quantization.
To obtain the corresponding string theory, we impose constraints Ln = 0, L̃n = 0, where Ln, L̃n
are classical analogs of Virasoro generators. Using the general construction of Section 2, we
see that one can obtain the space of states of string theory (more precisely, one-string space
in BRST formalism) by adding ghosts. In other words, we should take the tensor product of
Hilbert space E of CFT by space of ghosts Egh, which can be considered a space of states of
CFT with central charge cgh = −26. (The space of ghosts is a tensor product of spaces of states
of bc-system and b̃c̃-system.) We obtain space E ′ = E ⊗ Egh. Let us consider critical closed
bosonic strings. This means that we assume that c = 26. Then, space E ′ is a space of states of
CFT with zero central charge. The generators of Virasoro algebra of this CFT are denoted by
L̂n, ˜̂Lm. We need the following relations among operators L̂n, ˜̂Lm, bn, b̃n, Q acting in this space:

[L̂m, L̂n] = (m− n)L̂m+n

[ ˜̂Lm, ˜̂Ln] = (m− n) ˜̂Lm+n

[L̂m, bn] = (m− n)bm+n, [bm, bn]+ = 0

[ ˜̂Lm, b̃n] = (m− n)b̃m+n, [b̃m, b̃n]+ = 0

L̂n = [Q, bn], ˜̂Ln = [Q, b̃n], [Q, Q]+ = 0

(6)

These relations indicate that by adding ghosts to CFT with critical central charge c = 26,
we obtain TCFT (topological CFT) on space E ′. Our results can be extended to any TCFT; the
assumption that TCFT is obtained from CFT by adding ghosts is irrelevant.
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Lie superalgebra diff′ is represented in E ′ by linear operators L(v), b(v) obeying

[L(v), L(v′)] = L([v, v′]), [L(v), b(v′)] = b([v, v′]), [b(v), b(v′)]+ = 0.

Operators L̃(v), b̃(v) obey similar relations; they give a second representation of diff′, com-
muting with the first one. (Here, v, v′ are complex-valued vector fields on circle:
v, v′ ∈ diff.)

The first four lines of (6) describe the representation of generators of diff′ × diff′ in E ′. This
representation can be extended to a representation of diff′′ × diff′′. (Recall that one can obtain
diff′′ by adding a nilpotent generator and a ghost number to generators Ln, bn of diff′.)

Let us consider the diagonal part of Lie algebra diff′ × diff′ (the Lie subalgebra generated
by operators Ln + L̃n, bn + b̃n).

We assume that the action of the diagonal part of Lie algebra diff′ × diff′ in E ′ can be
integrated and gives an action of A′ on E ′ (a homomorphism Ψ of semigroup A′ into space L
of linear operators in E ′).

This is a standard assumption that lies at the basis of Segal’s definition of CFT (see
Section 3).

We can apply general considerations of Section 2 by taking G = A.
Let us consider the case where a form on G = A (a function on G′ = A′) is specified by

(3). SemigroupA is homotopy-equivalent to S1; therefore, an integral of the closed form shown
in (3) over any cycle of dimension > 1 vanishes. To obtain non-trivial physical quantities, we
construct the form shown in (3) in such a way that it descends to G/k, where k is an appropriate
Lie subalgebra of Lie algebra diff of semigroup G = A (or, more generally, a Lie subalgebra of
Lie algebra diffn of semigroup G = An).

Examples of subalgebras k and corresponding quotient spaces are constructed in Section 3.

6. String Amplitudes

We start the construction of string amplitudes by fixing a one-dimensional compact
complex manifold P0 ∈ P(g, 1) (a complex curve of genus g with parametrized boundary
diffeomorphic to a circle S1). Let us denote by k a Lie algebra consisting of vector fields on
the boundary that can be extended to holomorphic vector fields on P0. Semigroup A acts on
moduli space P(g, 1); hence, we can consider the corresponding action of its Lie algebra diff
on this space. Lie algebra k can be characterized as a Lie stabilizer of this action at P0. The
action of A on P(g, 1) is transitive; hence, P(g, 1) can be identified with A/k. Lie stabilizer
kP of diff at point P ∈ P(g, 1) is a Lie subalgebra of diff consisting of vector fields that can be
holomorphically extended from the boundary to P.

This construction can be generalized to the case where P0 ∈ P(g, n) (i.e., it has a boundary
consisting of n parametrized circles; we assume that the orientation of boundary circles agrees
with the orientation of P0). Group An and its Lie algebra diffn (the direct sum of n copies of Lie
algebra diff) act on P(g, n) . Lie algebra kP can be defined as the Lie stabilizer of this action at
P; if P = P0, we use the notation kP = k. Lie algebra kP consists of complex vector fields on the
boundary that can be holomorphically extended from the boundary to P. The action of An on
P(g, n) is transitive; hence, P(g, n) can be identified with An/k.

All these statements are particular cases of the statements formulated in Section 3.
Notice that these objects appear in operator formalism in string theory. The main object of

operator formalism is an element of E ′ depending on P ∈ P(g, 1) (more generally, we have a
map P(g, n)→ E ′n, where E ′n stands for the tensor product of n copies of E ′). In the notations
of [1], this map sends P into φP.

It is well known that φP is k′P-invariant (see formula (5.1) of [1] or formula (7.33) of [5]). No-
tice that φP also appears in Segal’s approach to CFT; the k′P-invariance of φP follows immediately
from this approach (see Section 4).
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In what follows, we apply the considerations of Section 2 to the case where G = An,
P ∈ P(g, n) and Ψn denotes the map of A′n into the space of linear operators in E ′n. (We
have a representation ψn of Lie algebra (diff′ ⊕ diff′)n in this space. This representation is
a homomorphism ψn of Lie algebra (diff′ ⊕ diff′)n into the space of linear operators in E ′n
considered Lie algebra. It is obtained as the tensor product of n copies of homomorphism ψ
of diff′ ⊕ diff′ into the space of linear operators in E ′. On the diagonal part of (diff′ ⊕ diff′)n,
homomorphism ψn is specified by operators Lk(v) + L̃k(v), bk(v) + b̃k(v), where k = 1, . . ., n.
Representation ψn can be integrated to give a representation Ψn of the diagonal part of A′n ×
A′n; later, we use the notations An and A′n for diagonal parts.)

One can verify that P = gP0, where g ∈ An implies

φP = (Ψn(g))(φP0) (7)

The CFT with space of states E ′ has central charge c = 0. Map P(g, n)→ E ′n of operator
formalism is Segal’s map σg,n : P(g, n) → Hn in the case H = E ′. Formula (7) immediately
follows from Segal’s axioms.

Let us consider the form shown in (3) obtained from (1), where 〈ρ| is k′-invariant. As a
k′-invariant element 〈ρ|, we take the bra-state corresponding to φP0 where P0 ∈ P(g, n).

Then, the expression in (3) looks as follows:

(Ψ∗nσ)(g exp(µr
k(b

(k)
r + b̃(k)r ))) =

〈ρ|Ψn(g)Ψn(exp(µr
k(b

(k)
r + b̃(k)r )|χ〉 =

〈φP| exp(µr
k(b

(k)
r + b̃(k)r ))|χ〉

(8)

(we used (7)).
The expression in (8) can be considered an inhomogeneous closed differential form on

G = An; it descends to G/k = P(g, n) because φP is k′P-invariant.
Homogeneous components of the form shown in (8) are closed forms on G/k = P(g, n)

that can be represented as
〈φPB|χ〉 (9)

where B is a homogeneous polynomial with respect to b(k)r + b̃(k)r
The expression in (9) coincides with formulas of operator formalism. Let us show that the

differential form in (9) descends to some quotients of G; by integrating with respect to cycles in
the quotients, we obtain string amplitudes.

It follows from the considerations above that this expression descends to a closed form on
P(g, n). Moreover, by imposing some conditions on χ, one can prove that it further descends
to a closed form ωB on P̂(g, n) = P(g, n)/(S1)n. (The action of group (S1)n on P(g, n) is
defined in terms of rotations of boundary circles.) Namely, we should assume that χ ∈ E ′n

can be represented as a tensor product χ = χ(1) ⊗ . . . ⊗ χ(n), where (L(k)
0 − L̃(k)

0 )χ(k) = 0,

(b(k)0 − b̃(k)0 )χ(k) = 0. This condition means that we can apply the statement at the very end of
Section 2 by taking the Lie algebra of group (S1)n as h.

There exists a natural map P̂(g, n) → M(g, n), whereM(g, n) is the moduli space of
complex curves (one-dimensional, compact complex manifolds) of genus g with n marked
points. This map is a homotopy equivalence; hence, it induces an isomorphism of homology
groups. This allows us to integrate forms ωB over homology classes ofM(g, n). (Of course, we
can obtain a non-zero answer only if the dimension of the form is equal to the dimension of the
homology class. Notice that equivalently, we can integrate the original non-homogeneous form;
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the answer depends only on the homogeneous component of degree equal to the dimension of
the integration cycle.)

We obtain a formal expression for string amplitudes by integrating ωB over the funda-
mental homology cycle ofM(g, n) (one should take B having degree equal to the dimension of
M(g, n)). This is a formal divergent expression; the physical explanation of divergence is the
presence of tachyons in the spectrum of bosonic strings. From a mathematical viewpoint, the
problem lies in the non-compactness ofM(g, n) (a fundamental homology class is a locally
finite cycle; to guarantee convergence, we should integrate over a finite cycle or to work with
Deligne–Mumford compactification). However, integrals of form ωB over genuine homology
classes ofM(g, n) exist. (Notice that these forms where used in string field theory [5].)

7. Conclusions and Modifications

In the present paper, we have shown that by starting with the one-string space of states in
BRST formalism, one can obtain an expression for string amplitudes: one should integrate (9)
over some cycles in appropriate quotients of G = An.

The above constructions can be modified in various ways.
Our considerations are based on the statement at the end of Section 2: we assumed that

G = An, Lie subalgebra k is a Lie stabilizer of G at the point of P(g, n) and Lie subalgebra h is
the Lie algebra of (S1)n. One can take other subalgebras k, h.; in particular, one can take one or
both of these subalgebras as Lie stabilizers of G at the points of P(g, n, p, m). (For example, in
the situation described at the end of Section 4, we can take k = kM and 〈ρ| = 〈τ(κ)|.)

One can hope to obtain closed forms with integrals related to interesting physical quantities
(for example, to inclusive cross-sections or to mass renormalization [6]).

One more way to obtain new quantities is based on the remarks at the end of the ap-
pendix, where it is shown that one can construct an analog of operator formalism in terms of
L-functionals.

Other modifications allow us to consider scattering in superstrings and heterotic strings.
They are based on the consideration of superconformal manifolds and the supersymmetric
analog of semigroup A. Notice that in the present paper, we tacitly assumed that we consider
left–right symmetric conformal field theories; of course, when considering heterotic strings and
other theories with independent left and right sectors, we should drop this assumption. (In
these cases, it is useful to apply the ideas of [7].) More details will be given in the follow-up
paper entitled “A new approach to superstring”.
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Appendix A

Let us start with some general remarks about quantization of symplectic vector spaces.
In appropriate coordinates, we can write the symplectic form on such a space either as
ω = ∑ dpkdqk (real Darboux coordinates pk, qk) or as ω = ∑ da∗k dak (complex Darboux co-
ordinates a∗k , ak). (Notice that our considerations can also be applied in the case where the
number of indices is infinite or, more generally, in the case where k takes values in some
measure space; in the latter case, one should replace sums with integrals.) In real Darboux
coordinates, we can represent a quantum state as a vector (or, more precisely, as a ray) in the
Hilbert space of square integrable functions of qk (coordinate representation) or of pk (momen-
tum representation); these representations are related by the Fourier transform. In a complex
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Darboux representation, we represent a state as a vector in Fock space F (in a representation of
canonical commutation relations

[âk, âl ] = δk,l , [âk, âl ] = [â∗k , â∗l ] = 0 (A1)

where there exists a cyclic vector θ obeying âkθ = 0). Notice that the choice of Darboux coordinates
is not unique; different Darboux coordinates are related by linear canonical transformations:

p̃k = Al
k pl + Bklql , q̃k = Ckl pl + Dk

l ql

in the real case and
ãk = Φl

kal + Ψl
ka∗l , ã∗k = Φl

ka∗l + Ψl
kal

in the complex case. (Recall that by definition, canonical transformations preserve Poisson
brackets in classical mechanics and commutation relations after quantization.)

Let us concentrate our attention on the complex case. One says that the canonical transfor-
mation

˜̂ak = Φl
k âl + Ψl

k â∗l , ˜̂a∗k = Φl
k â∗l + Ψl

k âl

is proper if there exists a unitary operator U obeying

˜̂ak = UakU−1, ˜̂a∗k = Ua∗k U−1.

In the case of a finite number of degrees of freedom, all canonical transformations are
proper; hence, a Hilbert spaces constructed by means of different Darboux coordinates can be
identified (up to a constant factor, because U is defined up to such a factor). It is easy to check
that a canonical transformation is proper iff there exists a vector θ̃ in Fock space F obeying
˜̂ak θ̃ = 0 (see [8] for more details). Vector θ̃ corresponds to a Lagrangian subspace W in the
complexification of symplectic vector space V; subspace W is defined by equations

Φl
kal + Ψl

ka∗l = 0.

Conversely, a Lagrangian subspace W in the complexification of V specifies a vector θW in
F ; this vector is defined by equations

ŵkθW = 0 (A2)

where wk stands for a basis of W. Notice that (A2) does not always have a solution, but if the
solution exists, it is defined up to a constant factor. The solution is not necessarily normalizable
(if W is real, θW is always non-normalizable).

In general, Lagrangian submanifolds correspond to vectors in Hilbert spaces (in the
framework of semiclassical approximation). This correspondence is ambiguous, but for linear
symplectic spaces and linear Lagrangian submanifolds (the case we consider), the quantization
is a well-defined procedure.

The same construction works if the canonical commutation relations in (A1) are replaced
with the canonical anticommutation relations

[âk, âl ]+ = δk,l , [âk, âl ]+ = [â∗k , â∗l ]+ = 0 (A3)

and the bosonic Fock space is replaced with the fermionic Fock space.
The coordinates in the analog of the symplectic vector space are regarded to be odd

(anticommuting) variables.
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Let us now consider an oriented compact manifold M with the boundary being represented
as a disjoint union of two parts: outgoing part ∂M+, with orientation agreeing with the
orientation of M, and incoming part ∂M−, with opposite orientation. Let us fix an action
functional S on fields defined on M. Then, variation δS of functional S can be written in
the form

δS =
∫

M
EM + α+ − α− (A4)

The first summand contains integration over the whole manifold, and it vanishes if the
fields obey the equations of motion. The second and third summands contain integration over
the outgoing boundary (α+) and the incoming boundary (α−). We can consider all summands
in (A4) to be one-forms on the space of fields. Let us restrict (A4) to space E of fields satisfying
the equations of motion EM = 0. Then, the first summand disappears, and the difference
α+ − α− is equal to exact form δS. This means that two-forms δα+ and δα− coincide on E . (We
use the notation δ for the de Rham differential on infinite-dimensional spaces.) We obtain a
closed two-form on E ; if this form is non-degenerate, we can consider E a symplectic manifold;
in general, E is a presymplectic manifold.

Let us consider in more detail the case where M is a two-dimensional manifold. Then, the
boundary of M consists of disjoint circles. By applying the above construction to an annular
neighborhood of a circle (considering the space of solutions of equations of motion on an
annulus), we obtain a presymplectic manifold; let us assume that this manifold is symplectic.
We identify it with the phase space and denote it by P .

Let us assume that that the boundary of M consists of n outgoing circles (the incoming
boundary is empty). By restricting the solutions of equations of motion on M to the annular
neighborhoods of boundary circles, we obtain a map of space E of solutions on M into the n-th
power of phase space P . It follows from the consideration above that the image of this map is
a Lagrangian submanifold of Pn.

If action functional S is quadratic, the equations of motion are linear, and we can apply
the constructions reported at the beginning of the appendix to quantize P and this Lagrangian
submanifold. We obtain Hilbert spaceH and a vector (more precisely a ray) inHn.

If action functional S is conformally invariant, we can consider M an element of P(g, n).
We obtain map σg,n : P(g, n)→ Hn of Segal’s approach to CFT. (In general, this map is defined
up to a factor; this corresponds to CFT with a non-vanishing central charge.)

All our considerations can be applied to the case where the action functional is defined
on commuting and anticommuting fields; then, we should work with symplectic superspaces
and their Lagrangian submanifolds. This remark allows us to apply the above techniques to
bosonic strings in flat 26-dimensional Minkowski space (in BRST formalism, all equations of
motion are linear). In this case, we recover formulas of operator formalism of bosonic string
theory [1].

Let us apply the same techniques in the formalism of L-functionals (see, for example, [4]).
In this formalism, we assign to every vector Φ in the representation space of CCR (A1) or CAR
(A3) a functional

Φ(α
∗, α) = 〈e−αâ∗ eα∗ âΦ, Φ〉

or, more generally, to every density matrix K in this space a functional

LK(α
∗, α) = tre−αâ∗ eα∗ âK.

Here, e−αâ∗ = e−αk â∗k , where αk are commuting parameters in the case of CCR and anti-
commuting parameters in the case of CAR.
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Nonlinear L-functional L(α∗, α) corresponds to positive linear functional on Weyl algebra
(a ∗-algebra with generators obeying CCR) or Clifford algebra (where CCR are replaced with
CAR). For every element B of ∗-algebra A, one can define two operators acting on the space
of linear functionals on A; one of them (denoted by the same symbol, B) transforms linear
functional ω(A) into linear functional ω(AB), and the second one (denoted by the symbol B̃)
transforms this functional into linear functional ω(B∗A). If functional ω(A) corresponds to
vector Φ (i.e., ω(A) = 〈Φ, AΦ〉) and BΦ = 0, then Bω = 0, and B̃ω = 0. This remark allows
us to write down the equations for functionals ω corresponding to vectors Φ that appear in
operator formalism.

By representing linear functionals on Weyl or Clifford algebra as functionals L(α∗, α), we
can calculate operators on these functionals corresponding to generators âk, â∗k (see [4]). Using
this remark, we obtain equations for functionals L(α∗, α) appearing in operator formalism.
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