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Abstract: The recently obtained special Buchdahl-inspired metric Phys. Rev. D 107, 104008 (2023)
describes asymptotically flat spacetimes in pure Ricci-squared gravity. The metric depends on a
new (Buchdahl) parameter k̃ of higher-derivative characteristic, and reduces to the Schwarzschild
metric, for k̃ = 0. For the case k̃ ∈ (−1, 0), it was shown that it describes a traversable Morris–
Thorne–Buchdahl (MTB) wormhole Eur. Phys. J. C 83, 626 (2023), where the weak energy condition is
formally violated. In this paper, we briefly review the special Buchdahl-inspired metric, with focuses
on the construction of the Kruskal–Szekeres (KS) diagram and the situation for a wormhole to emerge.
Interestingly, the MTB wormhole structure appears to permit the formation of closed timelike curves
(CTCs). More specifically, a CTC straddles the throat, comprising of two segments positioned in
opposite quadrants of the KS diagram. The closed timelike loop thus passes through the wormhole
throat twice, causing two reversals in the time direction experienced by the (timelike) traveller on
the CTC. The key to constructing a CTC lies in identifying any given pair of antipodal points (T, X)

and (−T,−X) on the wormhole throat in the KS diagram as corresponding to the same spacetime
event. It is interesting to note that the Campanelli–Lousto metric in Brans–Dicke gravity is known to
support two-way traversable wormholes, and the formation of the CTCs presented herein is equally
applicable to the Campanelli–Lousto solution.

Keywords: closed timelike curves; Ricci-squared gravity; traversable wormholes

1. Introduction

Wormholes are hypothetical shortcuts in spacetime, and are solutions for the gravita-
tional field equations, where the fundamental ingredient is the flaring-out condition [1].
In classical General Relativity, the latter condition entails the violation of the null energy
condition, and consequently all of the energy conditions [2,3]. However, it has been shown
that in modified theories of gravity, the matter threading the wormhole throat may sat-
isfy the energy conditions, and it is the higher order curvature terms, interpreted as a
gravitational fluid, that support these nonstandard wormhole geometries [4,5]. Another
extremely interesting feature of traversable wormholes is that they may be hypothetically
manipulated to induce closed timelike curves (CTCs) [6–9]. In fact, General Relativity is
contaminated with non-trivial geometries, which generate CTCs [10–18], which allow time
travel, in the sense that an observer that travels on a trajectory in spacetime along this curve
and may return to an event before his departure [19].

Due to the interesting physics involved in these exotic spacetimes, much attention
has been given to these geometries in the literature, and we refer the reader to [3], and the
references therein, for a recent review. As wormhole physics has been explored extensively
in modified theories of gravity, where the higher-order curvature terms support these
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wormhole geometries [5], in this work, we shall be interested in the recent special Buchdahl-
inspired metric, obtained by one of the present authors [20], that describes asymptotically
flat spacetimes in pure R2 gravity [21]. The metric is dependent on a new (Buchdahl)
parameter k̃ of higher-derivative characteristic, and recovers the Schwarzschild metric
when k̃ = 0. In a recent work [22], it was demonstrated that the special Buchdahl-inspired
metric supports a two-way traversable Morris–Thorne–Buchdahl (MTB) wormhole for
k̃ ∈ (−1, 0), in which case the weak energy condition is formally violated.

In this paper, we shall review the special Buchdahl-inspired metric, with focuses on
the construction of the ζ–Kruskal–Szekeres (KS) diagram and the conditions to generate
a wormhole. Curiously, the MTB wormhole structure appears to permit the formation of
CTCs. A CTC straddles the throat, comprising of two segments positioned in the opposite
Quadrant I and Quadrant III of the ζ–KS diagram. The closed timelike loop thus passes
through the wormhole throat twice, causing two reversals in the time direction experienced
by the (timelike) traveller on the CTC. The key to constructing a CTC lies in identifying
any given pair of antipodal points (T, X) and (−T,−X) on the wormhole throat in the ζ–KS
diagram as corresponding to the same spacetime event.

In a previous work [23], Popławski put forth this procedure for the Einstein–Rosen
bridge in which he identified antipodal points on the horizon as corresponding to the same
spacetime event. Although his maneuver may prove untenable for “Schwarzschild worm-
holes” (and he did not report a CTC), we adapt his construction to the MTB wormhole,
with a minor but crucial modification: instead of the horizon, the identification of antipodal
points takes place on the wormhole throat which permits a two-way traversal. In cer-
tain situations, the Campanelli–Lousto solution in Brans–Dicke gravity is known to support
two-way traversable wormholes [24]. When this occurs, the formation of CTCs presented
herein is equally applicable to the Campanelli–Lousto solution. Generally speaking, our
CTC should be a generic aspect of the family of scalar–tensor theories.

This paper is organized in the following manner: In Section 2, we present the vacuum
special Buchdahl-inspired metric, and in Sections 3 and 4, we review the causal structure of
the solution, using the Kruskal–Szekeres diagram, which is a maximal analytic extension
of the special Buchdahl-inspired metric. For completeness, Section 5 provides a brief
detour for the case of naked singularities. Section 6, the most essential one, describes our
construction of the CTCs for the MTB wormholes. Finally, in Section 7, we discuss our
results and conclude.

2. The Special Buchdahl-Inspired Metric: Brief Review

The pureR2 action,
∫

d4x
√−gR2, yields the field equation in vacuo [21]

R
(
Rµν −

1
4

gµνR
)
+ gµν�R−∇µ∇νR = 0 . (1)

Despite the fourth-order nature of this equation, in [20], one of the present authors obtained
an exact closed analytical solution, named the special Buchdahl-inspired metric. It describes
a static and spherically symmetric vacuum configuration

ds2 =
∣∣∣1− rs

r

∣∣∣k̃{−(1− rs

r

)
dt2 +

(
ρ(r)

r

)4 dr2

1− rs
r
+

(
ρ(r)

r

)2

r2dΩ2

}
, (2)

where the function ρ(r) is given by virtue of(
ρ(r)

r

)2

:=
ζ2
∣∣1− rs

r

∣∣ζ−1(
1− s

∣∣1− rs
r

∣∣ζ)2

( rs

r

)2
. (3)

The dimensionless parameters k̃ and ζ are defined as k̃ := k/rs, ζ :=
√

1 + 3k̃2, and s := ±1
denotes the signum of 1− rs

r . Here, k̃ is a new (Buchdahl) parameter of higher-derivative
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characteristic, and rs plays the role of a Schwarzschild radius. At k̃ = 0, ρ(r) ≡ r and
Equation (2) recovers the Schwarzschild metric. At spatial infinity, metric (2) is asymp-
totically flat (Note: a more general solution expressed in a compact form, named the
Buchdahl-inspired metric, was obtained by one of the authors in Refs. [25,26] by complet-
ing the original but unfinished work of Buchdahl [21]. This latter solution is asymptotically
de Sitter, and is specified by four parameters, reflecting the fourth-derivative nature of a
quadratic theory).

Upon another coordinate transformation [22]

1− r′s
r′

= s
∣∣∣1− rs

r

∣∣∣ζ , (4)

in which r′s := ζ rs and s = sgn
(
1− rs

r
)
= sgn

(
1− r′s

r′

)
, the metric given in Equations (2)

and (3) can be brought into the following form

ds2 = −s
∣∣∣∣1− r′s

r′

∣∣∣∣Adt2 + s
∣∣∣∣1− r′s

r′

∣∣∣∣Bdr′2 +
∣∣∣∣1− r′s

r′

∣∣∣∣B+1

r′2dΩ2 , (5)

where

A :=
k̃ + 1

ζ
, B :=

k̃− 1
ζ

, ζ :=
√

1 + 3k̃2 . (6)

The parameters satisfy the following relation:

A2 + AB + B2 = 1 . (7)

It is worth noting that the metric expressed in Equation (5) also describes the generalized
Campanelli–Lousto (CL) solution for the Brans–Dicke action,

∫
d4x
√−g

[
φR− ω

φ∇µφ∇µφ
]
.

In the generalized CL metric, which was found recently in [24] by one of the present authors,
A and B take on any value in R, and are linked by

A2 + AB + B2 − 1 = −ω

2
(A + B)2 , (8)

with ω being the Brans–Dicke parameter.
In the rest of this work, we shall concern ourselves with the special Buchdahl-inspired

metric in pureR2 gravity. Dropping the prime in the notation of r′ and r′s in Equation (5),
we shall use the explicit expression below

ds2 =
∣∣∣1− rs

r

∣∣∣ k̃
ζ

{
−s
∣∣∣1− rs

r

∣∣∣ 1
ζ dt2 + s

∣∣∣1− rs

r

∣∣∣− 1
ζ dr2 +

∣∣∣1− rs

r

∣∣∣1− 1
ζ r2dΩ2

}
, (9)

where
s := sgn

(
1− rs

r

)
, ζ :=

√
1 + 3k̃2 . (10)

3. The ζ–Kruskal–Szekeres Coordinates

The construction of the KS diagram for the special Buchdahl-inspired metric has
been carried out in Refs. [20,24]. However, for self-consistency and self-completeness, we
summarize the key points here.

• The tortoise coordinate r∗(r) for the special Buchdahl-inspired metric (9) is defined by
virtue of

dr∗ =
s∣∣1− rs
r

∣∣1/ζ
dr . (11)

This equation is soluble, yielding the tortoise coordinate in terms of a Gaussian
hypergeometric function

r∗(r) =
rs

1− 1/ζ

∣∣∣1− rs

r

∣∣∣1−1/ζ

2F1

(
2, 1− 1/ζ; 2− 1/ζ; 1− rs

r

)
− rs π/ζ

sin(π/ζ)
, (12)
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which is represented in Figure 1. The integration constant required for Equation (11)
has been chosen such that r∗ = 0 when r = 0.

Figure 1. The ζ–tortoise coordinate given by Equation (12) for various values of k̃ (with rs = 1).

• The advanced and retarded Eddington–Finkelstein coordinates are defined as

v := t + r∗ , (13)

u := t− r∗ , (14)

respectively.

• For the Kruskal–Szekeres (KS) coordinates, it is necessary to separate the two ranges,
r > rs versus r < rs.

– For r > rs, we define

X :=
1
2

(
e

v
2rs + e−

u
2rs

)
= e

r∗(r)
2rs cosh

t
2rs

, (15)

T :=
1
2

(
e

v
2rs − e−

u
2rs

)
= e

r∗(r)
2rs sinh

t
2rs

. (16)

– For r < rs, we define

X :=
1
2

(
e

v
2rs − e−

u
2rs

)
= e

r∗(r)
2rs sinh

t
2rs

, (17)

T :=
1
2

(
e

v
2rs + e−

u
2rs

)
= e

r∗(r)
2rs cosh

t
2rs

. (18)

In combination, the special Buchdahl-inspired metric in the Kruskal–Szekeres (KS) coordi-
nates is thus

ds2 =
∣∣∣1− rs

r

∣∣∣ k̃
ζ

{
−4r2

s e−
r∗
rs

∣∣∣1− rs

r

∣∣∣ 1
ζ
(

dT2 − dX2
)
+ r2

∣∣∣1− rs

r

∣∣∣1− 1
ζ dΩ2

}
, (19)

where

T2 − X2 = −s e
r∗(r)

rs

= −s exp

[ ∣∣1− rs
r

∣∣1−1/ζ

1− 1/ζ
2F1

(
2, 1− 1/ζ; 2− 1/ζ; 1− rs

r

)
− π/ζ

sin(π/ζ)

]
, (20)

T
X

=

(
tanh

t
2rs

)s
, (21)
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with s = ±1 for the ranges r ∈ (rs, ∞) and r ∈ (−∞, rs), respectively. Note that in this final
form, the coordinates T and X are enlarged to satisfy Equations (20) and (21). That is to say,
each pair of coordinates (t, r) corresponds to two pairs of coordinates (T, X) and (−T,−X),
with X and T given by Equations (15) and (16) for the range r ∈ (rs, ∞) and Equations (17)
and (18) for the range r ∈ (−∞, rs).

It is apt and convenient to call the range r ∈ (rs, ∞) an “exterior” region. However,
since the Kretschmann invariant in general diverges at r = rs [20], we shall avoid naming
the range r ∈ (0, rs) an “interior” region, from here on.

4. The ζ-Kruskal–Szekeres Diagram

Restricting within the (T, X) plane, i.e., dθ = dϕ = 0, the ζ–KS diagram for metric (19)
is shown in Figure 2. We refer to a number of key features, developed in Ref. [20]:

Figure 2. ζ–Kruskal–Szekeres diagrams for the special Buchdahl-inspired spacetimes, given by
Equation (2) or Equation (9). Each point on the diagram is a 2-sphere. Except for k̃ = 0 and k̃ = −1,
the Kretschmann scalar diverges on the hyperbolae r = rs and r = 0; see Appendix A for exposition.

1. The ζ–KS diagram is conformally Minkowski. The null geodesics are dX = ±dT.
2. Per Equations (20) and (21), a constant–r contour corresponds to a hyperbola, while a

constant–t contour corresponds to a straight line running through the origin of the
(T, X) plane. The coordinate origin r = 0 amounts to T2−X2 = 1, since r∗(r = 0) = 0.

3. The boundary r = rs corresponds to two distinct hyperbolae, given by

T2 − X2 =

−e−
π/ζ

sin(π/ζ) for r > rs ,

+e−
π/ζ

sin(π/ζ) for r < rs .
(22)

Since each hyperbola has two separate branches on its own, Figure 2 shows four
branches representing r = rs in total. For k̃ = 0 (i.e., ζ = 1), the hyperbolic branches
(22) degenerate into two straight lines, T = ±X, as is expected for the Schwarzschild
metric. In the limit of k̃→ 0, Region (VI), which sandwiches within the four hyperbolic
branches, shrinks and disappears.
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4. Region (I) refers to r > rs (the “exterior”); Region (II) refers to 0 < r < rs.
5. Regions (III) and (IV) are double copies of Regions (I) and (II) respectively, by flipping

the sign of the KS coordinates, viz. (T, X) ↔ (−T,−X). Regions (Va) and (Vb) are
unphysical, viz. r < 0.

6. Region (VI) generally contains curvature singularities, with the Kretschmann scalar
generally diverging on the hyperbolic branches given in (22). The “gulf” represented
by Region (VI) is a new feature of the asymptotically flat Buchdahl-inspired spacetimes.
The Kretschmann invariant is reproduced in Appendix A.

Areal Radius

The ζ–KS diagram, depicted in Figure 2, is the maximal analytic extension of the special
Buchdahl-inspired metric, given in Equation (9). Similar to the usual KS diagram for the
Schwarzschild metric, our ζ–KS diagram reveals a double-cover, comprising Regions (III)
and (IV).

In [22], one of the present authors showed that, in certain situations, Region (I) and
its double-cover Region (III) can be further split. When this splitting occurs, the physical
singularities on the hyperbolic branches of r = rs are shielded from an observer situated
at spatial infinity, and the double covers that are connected to spatial infinity can be
seamlessly “glued” together to form a two-way traversable wormhole. This procedure was
carried out in [22]. However, we shall briefly review the analysis here, for self-consistency
and self-completeness.

From Equation (9), the areal radius is given by

R(r) = r
∣∣∣1− rs

r

∣∣∣ 1
2

(
1+ k̃−1

ζ

)
(23)

Figure 3 depicts R as function for r for various values of k̃. Furthermore, since

dR
dr

=
r−

(
1
2 −

k̃−1
2ζ

)
rs

r− rs

∣∣∣1− rs

r

∣∣∣ 1
2

(
1+ k̃−1

ζ

)
, (24)

the equation dR/dr = 0 has a single root, given by

r∗ =
rs

2

(
1− k̃− 1

ζ

)
. (25)

This root lies in the range of (rs, ∞) as a local minimum if k̃ ∈ (−1, 0) and in the range of
(0, rs) as a local maximum if k̃ ∈ (−∞,−1) ∪ (0,+∞). We refer the reader to Figure 3 for
more details, and below, we briefly analyze both cases.

Figure 3. R vs. r for the special Buchdahl-inspired metric; using rs = 1. Panel (B), representative of
k̃ ∈ (−1, 0), yields a minimum for R(r) and corresponds to a wormhole. Panels (A,C), representative
of k̃ ∈ (−∞,−1) ∪ (0,+∞), show a monotonic behavior for R(r) in the “exterior”, r > rs.
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5. Naked Singularity: Case k̃ ∈ (−∞,−1)∪ (0,+∞)

This case corresponds to Figure 3A,C. The “exterior” Region (I) forms one continuous
sheet, and its double cover Region (III) forms another continuous sheet.

We plot a timelike trajectory A → B in Figure 4. In Region (I), an infalling traveller
reaches the singularity at point B after a finite amount of proper time. Note that in the view
of an observer who stays at rest at spatial infinity in Region (I), it takes a finite amount of
time t for the traveller to hit the singularity. This is in contrast to the Schwarzschild metric,
where an observer from afar will never witness the traveller reaching the horizon at r = rs.

What happens to the traveller after reaching the singularity remains an open question
with several possibilities. There are at least three scenarios to consider: (i) the traveller
might come to a halt at r = rs without further motion; (ii) the traveller might enter the
“gulf” region, viz. Region (VI); or (iii) the traveller might directly pass into Region (II) and
continue heading towards the singularity at r = 0. Regardless of the outcome, we do not
concern ourselves with this case. Our focus is directed towards the wormhole scenario,
which will be presented next.

Figure 4. The case of naked singularities, k̃ ∈ (−∞,−1) ∪ (0,+∞). On the infalling radial timelike
trajectory (blue line), a particle in Region (I) eventually hits the naked singularity at r = rs.

6. Wormhole: Case k̃ ∈ (−1, 0)

Panel (B) in Figure 3 is representative of this case. The areal radius R exhibits a
minimum at r∗ = rs

2

(
1− k̃−1

ζ

)
in the “exterior” region, viz. r∗ > rs, per Equation (25).

In Ref. [22], this fact was employed to construct a Morris–Thorne–Buchdahl (MTB) worm-
hole with its throat located at r∗. A schematic depiction of the wormhole at a specific
time-slice (at a given T), with the azimuth angle ϕ shown and the polar angle θ suppressed,
is shown in Figure 5. We refer the reader to Ref. [22] for details.

The ζ–KS diagram exhibits an additional feature: in Figure 6, the loci where r = r∗,
representing the local minimum areal radius, are depicted as two thick red hyperbolic
branches. These branches partition the “exterior” Region (I) into two sub-regions, denoted
as (Ia) and (Ib), while the double-cover Region (III) is also divided into two sub-regions,
(IIIa) and (IIIb). The two asymptotically flat sheets in sub-region (Ia) and sub-region (IIIa)



Universe 2023, 9, 467 8 of 15

are seamlessly connected or “glued” together along the two thick red hyperbolic branches
(as well as along the polar angle θ and the azimuth angle ϕ of the two-sphere) to form a
four-dimensional wormhole.

Figure 5. Embedding diagram of a typical traversable wormhole. The wormhole “throat” is depicted
horizontally to be compatible with Figure 6 on page 9, with the right mouth corresponding to Region
(Ia) and the left mouth Region (IIIa). Note, however, that the embedding diagram is a “snapshot” at
a fixed timeslice T (while the azimuth direction is made explicit), whereas the ζ–KS shows the full
“evolution” in the T−direction (with both the polar and azimuth angles being suppressed).

Figure 6. The case of the traversable wormhole, with k̃ ∈ (−1, 0). The wormhole throat is depicted
by the red lines, which further split Region (I) into (Ia) and (Ib), and Region (III) into (IIIa) and (IIIb).
On the radial trajectory A→ B ≡ C → D → E ≡ F → A, an infalling traveller in sub-region (Ia) first
enters the wormhole mouth at point B then traverses into sub-region (IIIa) by emerging at the other
mouth at point C (hence, on outgoing motion). As the two red lines are “glued” together to form a
wormhole that connects sub-region (Ia) and sub-region (IIIa), the pair of antipodal points B and C
represent a single spacetime event. Likewise, the pair of antipodal points E and F correspond to a
single spacetime event. The segment C → D → E progresses backward in time as compared with the
segment F → A→ B.
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It is essential to note that, according to Equations (20) and (21), each spacetime event
(t, r) with r in the range of (rs, ∞) corresponds to two antipodal points (T, X) and (−T,−X)
of the KS coordinates. This duplication (or double degeneracy) is nothing but a double copy
of exterior sheets. However, in general, these two points correspond to distinct spacetime
events which occur in two separate sheets. Only along the loci r = r∗ do the sheets become
“glued” together, forming a wormhole throat with the two thick red hyperbolic branches
as the two mouths. Along the throat, the two antipodal points correspond to the same spacetime
event. In other words, in Figure 6, point B and point C are identical, as are points E and F.
Note that this identification does not apply, for instance, to the pair of antipodal points A
and D, as these points stay off the throat. That is to say, despite sharing the same value of r
and the same value of t, point A and point D represent two independent events that take
place in two separate spacetime sheets.

The identification of antipodal points on the throat can be illuminated by examining
the proper radial coordinate. This coordinate is expressible using Gaussian hypergeometric
functions, with ζ :=

√
1 + 3k̃2 and B := (k̃− 1)/ζ, as derived in [22]:

l(R) = ±
∫ R

R∗

dR√
1− b(R)

R

(26)

= ± ζ rs

1 + B
2
×
[

y1+ B
2 2F1

(
2, 1 +

B
2

; 2 +
B
2

; y
)
− y1+ B

2∗ 2F1

(
2, 1 +

B
2

; 2 +
B
2

; y∗
)]

(27)

where the areal radius is given by

R(y) = ζ rs
y

1
2 (B+1)

1− y
(28)

Figure 7 illustrates the proper radial coordinate for various values of k̃ within the range
(−1, 0). For instance, when k̃ = −0.5, it corresponds to B ≈ −1.134, y∗ ≈ 0.0628, r∗ ≈
1.14 rs, R∗ ≈ 1.7 rs.

Figure 7. (Left): Proper radial coordinate as a function of areal radius for various value of k̃ ∈ (−1, 0),
per Equations (27) and (28). Each curve is vertical at l = 0, the location of a wormhole throat. (Right):
The size of the throat as a function of k̃ ∈ (−1, 0).

In Figure 7, for a given k̃ ∈ (−1, 0), the curve of l(R) consists of two semi-infinite
segments: The segment with l > 0 corresponds to Region (Ia), whereas the segment with
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l < 0 to Region (IIIa) in the ζ–KS diagram of Figure 6. These two segments are connected
at the throat, marked by l = 0 and R = R∗ (the minimum in the real radius), at which
point the curve l(R) is vertical. It is only at this specific juncture that the two asymptotic flat
sheets, viz. Regions (Ia) and (IIIa), “touch” each other, allowing a transition from one sheet
to another and enabling the identification of antipodal points to take effect.

The coordinate l covers the entire range (−∞,+∞). A geodesic running across the
throat is thus complete, without encountering any physical singularities. As the MTB
wormhole consists of Regions (Ia) and (IIIa), the physical singularities located at r = rs are
insulated within Regions (Ib) and (IIIb), which are not components of the wormhole.

Now, consider an intrepid traveller tracking an infall starting from point A:

• The traveller enters the right mouth of the wormhole at point B after a finite amount
of proper time. From the perspective of an observer at rest in Region (Ia), it also takes
a finite amount of time for the traveller to reach point B.

• Subsequently, the traveller emerges from the left mouth of the wormhole at point
C (note: point B and point C are identical!). They then ascend the potential well
(viz. increasing r), moving toward point D. It is important to note that, relative to
the observer in Region (Ia), the traveller appears to move backward in time, as the t
coordinate decreases from point C to point D.

• If the traveller chooses to fall back into the left mouth, they will re-enter it at point E.
They will then re-emerge at the right mouth at point F (which is identical to point E!).
Notably, upon re-emergence, they are once again moving forward in time.

• At this stage, the traveller can choose to proceed to point A, thereby completing a closed
timelike loop.

The traveller’s ability to complete such a loop relies on the two reversals of time direction,
occurring each time they enter a wormhole mouth and emerges from the other mouth.

7. Discussions and Summary

In the preceding section, we have constructed a closed timelike curve (CTC) by having
a traveller pass through the wormhole throat twice in succession. During each passage,
the traveller experiences a reversal in the time direction with respect to an observer at rest.
This construction is succinctly captured in Figure 6, where the closed path A→ B ≡ C →
D → E ≡ F → A forms a CTC.

1. It is worth highlighting that the CTC we have described does not require having one
wormhole mouth move at high speed or be located near a supermassive object to
accumulate time dilation, as popularized in [2,6,19]. To the best of our knowledge,
the CTC presented herewith has not been documented in the existing literature.

2. Our association of a pair of antipodal points (such as B and C) with a single spacetime
event was inspired by a similar construction proposed by Popławski. In [23], he revis-
ited the Einstein–Rosen (ER) bridge and identified two antipodal points on the horizon
with a single spacetime event. The ER bridge was interpreted as a “Schwarzschild
wormhole” connecting the two exterior sheets joined at the horizon. However, the ER
bridge encounters various issues related to traversability, stability, and a problematic
thin-shell mass distribution at the horizon. (It is also worth noting that Popławski did
not suggest the possibility of CTCs in his work.)

3. The Morris–Thorne–Buchdahl wormhole, developed in [22] and briefly summarized
in this paper, appears to avoid the issues faced in Popławski’s work. Setting aside the
physical questions regarding causality violations and time-travel-related paradoxes,
our construction of a CTC appears to be mathematically consistent.

4. Central to our approach is the identification of any given pair of antipodal points on
the loci of minimum areal radius, denoted as r = r∗, with a single spacetime event.
This identification becomes evident through Equations (20) and (21), as well as in the
KS diagrams employed for the Schwarzschild metric (used in Popławski’s work) and
our special Buchdahl-inspired metric in Figure 6.
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5. Embedding diagrams, such as the one in Figure 5, depict a “snapshot” of the wormhole
at a fixed timeslice, without illustrating the evolution of timelike trajectories. As such,
the use of embedding diagrams may obscure the identification of spacetime events
on the throat, a procedure we carried out in this paper. In this regard, the decisive
advantage of KS diagrams is their ability to reveal the full causal structure of spacetime,
making this identification transparent.

6. Let us draw a comparison between our CTC and the Deutsch-Politzer (DP) time machine.

• In [27,28], a DP space is created from a two-dimensional Minkowski spacetime
by making two finite-size “space-like” cuts and gluing the edges of the cuts,
effectively forming a “handle” which connects two space-like regions and creates
a time machine. The essence of a DP time machine is that the spacetime topology
is altered [Note that the DP space has singularities; to exorcise them, in [29,30]
Krasnikov performed a conformal transformation to send the singular points
away to infinity].

• Our CTC construction shares both analogies and differences with the DP time
machine. The ζ–KS diagram of the Buchdahl-inspired vacuum (Figure 6) is a
two-dimensional Minkowski spacetime (modulo a Weyl transformation). For k̃ ∈
(−1, 0), the hyperbolic branches of r = r∗ are glued to form a portal between the
two time-reversed sheets, viz. Regions (Ia) and (IIIa). In this regard, akin to the
DP space, our construction is a concrete realization of a time machine induced by an
alteration in the topology of spacetime.

• Unlike the deliberate surgery employed in the DP space, the alteration of the
topology in the Buchdahl-inspired vacuum occurs naturally, driven by the
fourth-derivative dynamics of pure R2 gravity. (Also, similar to Krasnikov’s
work [29,30], Regions (Ia) and (IIIa) in our ζ–KS diagram are devoid of (phys-
ical) singularities.) A comprehensive discussion of their commonalities and
differences exceeds the scope of this paper.

7. Our CTC construction is not confined solely to the MTB wormholes of pureR2 gravity.
It is also applicable to two-way traversable wormholes in Brans–Dicke (BD) gravity,
which share a similar Kruskal–Szekeres diagram, as demonstrated in Ref. [24] by one
of the authors.

• More generally, the Brans wormhole, first established by Agnese and La Camera
for BD gravity in [31,32], encompasses the MTB wormhole inR2 gravity [24]. It
is known that a static vacuum solution of any f (R) gravity cannot host a twice
asymptotically flat wormhole [33]. However, a cut-and-paste procedure can be
employed to generate such a wormhole, a technique that underlies the creation
of the Brans wormhole [31,32,34,35].

• The MTB wormhole satisfies the four “traversability-in-principle” criteria laid
out by Morris and Thorne [1]. To be considered “usable”, the tidal forces should
remain finite. We have computed the tidal forces in Appendix B. Our findings
indicate that despite jumps in higher derivatives across the throat in the metric
components, the tidal forces remain finite throughout the two asymptotically flat
spacetime sheets.

In conclusion, the presence of CTCs is an extremely subtle issue which needs to be handled
with great caution, due to the association with time travel paradoxes, such as the classical
consistency paradoxes and causal loops [19]. Much has been written on the resolution to the
paradoxes associated with CTCs, such as the Principle of Self-Consistency [36–38] and the
Chronology protection conjecture [39] (we refer the reader to [19] for more details). The issue
of CTCs is an extremely fascinating research topic and is essentially useful as “gedanken-
experiments” that force us to confront the foundations of general relativity, and its modifications,
and extract clarifying views.



Universe 2023, 9, 467 12 of 15

Author Contributions: All the authors have substantially contributed to the present work. All au-
thors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Fundação para a Ciência e a Tecnologia (FCT) from
the research grants UIDB/04434/2020, UIDP/04434/2020 and CERN/FIS-PAR/0037/2019 and
PTDC/FIS-AST/0054/2021.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank the anonymous referees for insightful and helpful comments.
H.K.N. wishes to thank Tiberiu Harko, Mustapha Azreg-Aïnou, and Nicholas Buchdahl. F.S.N.L.
acknowledges support from the Fundação para a Ciência e a Tecnologia (FCT) Scientific Employment
Stimulus contract with reference CEECINST/00032/2018, and funding from the research grants
UIDB/04434/2020, UIDP/04434/2020 and CERN/FIS-PAR/0037/2019.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Kretschmann Scalar

The Kretschmann invariant has been computed in [24,40]

K := RµνρσRµνρσ (A1)

=
∣∣∣1− rs

r

∣∣∣− 2
ζ (k̃−1+2ζ) r2

s
r6

(
6A− 2B

rs

r
+

C

4
r2

s
r2

)
(A2)

in which A := k̃+1
ζ , B := k̃−1

ζ , ζ :=
√

1 + 3k̃2, whereas

A = A2 + B2 (A3)

B = A2(A− 2B + 3)− B(B− 1)(B− 2) (A4)

C = (A + 1)A2(A− 2B + 3) + (3A2 + B2 − 2B + 3)(B− 1)2 (A5)

• At k̃ = 0: ζ = 1, A = 2, B = 12, C = 48, giving K = 12 r2
s

r6 in agreement with the
standard result fort the Schwarzschild metric.

• At k̃ = −1: ζ = 2, A = 1, B = 6, C = 24, giving K = 6 r2
s

r6 .
• For k̃ 6= 0 and k̃ 6= −1, as k̃− 1 + 2ζ > 0, K generally diverges at r = rs and r = 0.

Appendix B. Tidal Forces in MTB and Brans Wormholes

In addition to the four “traversability-in-principle” criteria [1], it is desirable to require
that the metric components be at least twice-differentiable in terms of the radial coordi-
nate [41]. This “usability” requirement may be justified since the tidal forces, which are
the physical quantities of concern, involve the first and second derivatives of the redshift
and shape functions (as we shall see momentarily). Let us compute the tidal forces for the
Morris–Thorne–Buchdahl (MTB) wormholes and the Brans wormholes.

We shall adopt Morris–Thorne (MT)’s exposition [1]. For the MT ansatz

ds2 = −e2Φ(R)dt2 +
dR2

1− b(R)
R

+ R2dΩ2 (A6)

the radial and lateral tidal forces are proportional to (with primes denoting derivatives
with respect to R):
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∣∣R1̂′ 0̂′ 1̂′ 0̂′
∣∣ = ∣∣∣∣(1− b

R

)(
−Φ′′ +

b′R− b
2R(R− b)

Φ′ −Φ′2
)∣∣∣∣ (A7)

=

∣∣∣∣∣
(

1− b
R

)(
−Φ′′ −Φ′2

)
−
(

1− b
R

)′Φ′
2

∣∣∣∣∣ (A8)

∣∣R2̂′ 0̂′ 2̂′ 0̂′
∣∣ = ∣∣∣∣ γ2

2R2

[
v2

c2

(
b′ − b

R

)
+ 2(R− b)φ′

]∣∣∣∣ (A9)

=

∣∣∣∣∣ γ2

2R

[
−v2

c2

(
1− b

R

)′
+ 2
(

1− b
R

)
φ′
]∣∣∣∣∣ (A10)

These expressions are Equations (49) and (50) in the MT paper [1]. It thus appears desirable
to impose twice-differentiability on Φ and first-differentiability on b as functions of R.

Let us apply these formulae for the asymptotically flat Buchdahl-inspired solution [22]
and the Campanelli–Lousto solution [24,31]. Both of these solutions can be cast in the MT
ansatz, Equation (A6), in which the redshift and shape functions are [22]

e2Φ(R) = yA (A11)

1− b(R)
R

=
(1− B)2

4y

(
y− B + 1

B− 1

)2
(A12)

in which the auxiliary variable y :=
(
1− rs

r
)ζ ∈ (0, 1) and the areal radius R is expressed as

R(y) = ζrs
y

1
2 (B+1)

1− y
. (A13)

For the Campanelli–Lousto solution, A and B are two independent parameters, while
ζ := 1 [24,31]. For the asymptotically flat Buchdahl-inspired solution, A and B are related
by the following definitions [22]

A :=
k̃ + 1

ζ
; B :=

k̃− 1
ζ

; ζ :=
√

1 + 3k̃2 (A14)

As demonstrated in Ref. [22], for k̃ ∈ (−1, 0), the areal radius has a minimum at

y∗ :=
B + 1
B− 1

∈ (0, 1) (A15)

This is the location of the throat, and the variable y for both of the two spacetime sheets are
in the range [y∗, 1).

Direct calculations yield:(
1− b

R

)′
=

(1− B)y−
1
2 (B+3)(1− y)2

2ζrs

(
y +

B + 1
B− 1

)
(A16)

(
1− b

R

)
Φ′ =

A(1− B)y−
1
2 (B+3)(1− y)2

4ζrs

(
y− B + 1

B− 1

)
(A17)

(
1− b

R

)(
−Φ′′ −Φ′2

)
−
(

1− b
R

)′Φ′
2

=
A(2 + A− B)y−B−2(1− y)3

4ζ2r2
s

×(
y− B− A + 2

B− A− 2

)
(A18)

Since all these expressions do not contain any singularity for y ∈ [y∗, 1), the tidal forces in
Equations (A8) and (A10) are finite everywhere in this range. It is important to note that the
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tidal forces may have opposite signs in the two sheets across the throat, but they remain
finite on the two asymptotically flat sheets that form the MTB wormhole.

Furthermore, it should be noted that all the calculations between Equations (A15)
and (A18) are extendible to the Campanelli–Lousto solution provided that B < −1, in which
case a Brans wormhole has been established to exist [24,31]. Our conclusion regarding the
finite tidal forces is therefore applicable to Brans wormholes as well.
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