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Abstract: In this paper, radio frequency interference (RFI) mitigation by robust maximum likelihood
estimators (M-estimators) for typical radio astrophysical signals of, e.g., pulsars and fast radio bursts
(FRBs), will be investigated. The current status reveals several defects in signal modeling, manual
factors, and a limited range of RFI morphologies. The goal is to avoid these defects while realizing RFI
mitigation with an attempt at feature detection for FRB signals. The motivation behind this paper is
to combine the essential signal sparsity with the M-estimators, which are pertinent to the RFI outliers.
Thus, the sparsity of the signals is fully explored. Consequently, typical isotropic and anisotropic
features of multichannel radio signals are accurately approximated by sparse transforms. The RFI
mitigation problem is thus modeled as a sparsity-promoting robust nonlinear estimator. This general
model can reduce manual factors and is expected to be effective in mitigating most types of RFI, thus
alleviating the defects. Comparative studies are carried out among three classes of M-estimators
combined with several sparse transforms. Numerical experiments focus on real radio signals of
several pulsars and FRB 121102. There are two discoveries in the high-frequency components of FRB
121102-11A. First, highly varying narrow-band isotropic flux regions of superradiance are discovered.
Second, emission centers revealed by the isotropic features can be completely separated in the time
axis. The results have demonstrated that the M-estimator-based sparse optimization frameworks
show competitive results and have potential application prospects.

Keywords: fast radio bursts; pulsar signals; radio frequency interference; RFI mitigation/excision;
robust nonlinear filters; maximum likelihood estimators; sparse representation; wavelets; shearlets;
curvelets

1. Introduction

RFI originating from a variety of human-produced sources becomes one of the main
challenges in radio observation [1]. These sources are mainly made by human communi-
cation technologies, e.g., satellites, mobile base stations, navigation radars, cell phones,
televisions, and air traffic communications. Different types of RFI display different am-
plitudes and time–frequency distributions. Frequently, several types of RFI can appear
as a mixed form in groups of narrow and broad bands [1]. Channel saturation in some
perhaps successive channels caused by the transiently strong RFI is one of the most severe
cases of signal loss because no useful information can be identified in these channels. Thus,
the channel mask by some centrality measures (e.g., local median) is often applied for
narrow-band transiently strong RFI. The complexity of its overall distribution makes it
difficult to give a general model for the mitigation problem [2].

There are several categories in the discipline of RFI mitigation. The linear mitiga-
tion methods form the first category, including, for example, the principal component
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analysis (PCA) [3] and singular vector decomposition (SVD) [4,5]. Several typical exam-
ples from the category of thresholding methods are the cumulative sum (CUSUM) [6],
VarThreshold, and SumThreshold [1]. Other examples include a spectral kurtosis-based
thresholding method [7,8], a zero-DM filtering [9], and a pulsar phase and standard devia-
tion (PPSD) [10].

Over the last decade, a new category, including transform domain thresholding meth-
ods, has gained extensive applications. In contrast to the second category, these methods
usually threshold the transform domain coefficients. Sparse transforms play the role of
protagonists in this category. Maslakovic et al. (1996) [11] proposed to excise RFI based on
optimizing the entropy of discrete wavelet transform. Based on the wavelet transform, De-
morest et al. (2013) [12] introduced a plugin function psrsmooth into the toolbox of psrchive.
Both recent works [13,14] were based on sparse representation and optimization. Shan et al.
(2022) [13] focused on pulsar signal restoration by the idea of compressed sensing for the
masked channels in preprocessing. The work by Shan (2023) [14] was based on a LnCosh
filter, one of the M-estimators, to explore the nonlinear robust property. Both [14] and this
paper apply the M-estimators; however, this paper further extends the work of [14] by
various kinds of M-estimators and to feature representation for FRB signals.

The category of nonlinear methods can be classified into two branches. The first
branch is based on ML and neural networks (NNs), and the other one applies nonlinear
filters. Several examples of the first branch are as follows. Vos et al. (2019) [15] presented
an unsupervised ML approach by applying a generative adversarial network (GAN) to
separate the spectrogram into components of signal and RFI. Applications of deep neural
networks [16] and convolutional neural networks (CNNs) [17] start to prosper, e.g., a
U-Net (one type of CNN)-based RFI mitigation [18], and a robust CNN model for RFI
identification [19]. However, the learning and training processes of some ML techniques,
especially the traditional ones, are time-consuming and computationally expensive. The
second branch of nonlinear filtering is still marginal within subfields of time-domain
astronomy. In this branch, Hogden et al. (2012) [20] found that the Huber filter [21] is
effective at removing the broad-band RFI. However, research work related to this idea has
not been promoted. The framework proposed in this paper can be considered to be an
improved technique of the second branch by combining fast optimization algorithms with
sparse transforms.

For the task of RFI mitigation, two core factors need to be attentively considered.
First, the non-Gaussian nature of RFI is one root cause of the current defects. Second,
optimal approximation in such a case is a challenging task due to the vulnerability of radio
signals versus huge amplitudes and complex distributions of RFI. A pertinent scheme
specially targeted on the outlier attribute of RFI is necessary. In the scheme of this paper,
the M-estimators, which form one of the most important branches in the category of robust
estimators, will be introduced into RFI mitigation, and optimal approximation for signals
containing the astrophysical features will be accomplished by signal sparsity.

Signal features are essential in parameter identification of radio sources and limita-
tion setting on intrinsic physical emission mechanisms. Considering the time–frequency
distributions of radio flux, typical signal features can be classified into isotropic (or quasi-
isotropic) features [22,23] and anisotropic ones [24]. The isotropic ones of high-energy
radio sources usually appear in the form of narrow-band flux (without consideration of
frequency mask of some narrow bands), e.g., isotropic flux regions of the downward fre-
quency drifting of FRBs, i.e., the narrow-band processes emitted at multiple descending
frequencies. The task of this paper is to detect the isotropic narrow-band processes not only
in low frequencies but also in high frequencies. The anisotropic features are reflected in, e.g.,
the curve-like dispersion relationship of pulsar signals and the elongated flux extensions
of FRB signals in the time–frequency domain. For FRB signals at high frequencies, the
anisotropic features are elliptical, and signals at low frequencies are roughly curve-like. In
our opinion, these two classes of features have a common essence of sparsity in transform
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domains. Thus, sparse representation (e.g., wavelets [25–29]) can be applied to accomplish
the tasks of feature approximation and detection.

This paper tries to build a robust nonlinear estimation framework covering different
classes of M-estimators by exploring the essential sparsity of the astrophysical features with
wavelets and geometric wavelets. Thus, the work in [14] is extended. An assumption is
that signals from, e.g., pulsars and FRBs, are sparse in transform domains. The motivation
is to combine the sparsity with the nonlinear robust property of the M-estimators. The
goal is to avoid the current defects when we mitigate RFI in pulsar and FRB signals. This
paper is organized as follows. The M-estimators are reviewed in Section 2. Section 3 gives
several astrophysical features and interprets the sparse representation. Section 4 shows the
mitigation model. Experimental results are given in Section 5. Finally, the conclusions are
drawn in Section 6.

2. A Review of the M-Estimators

The three main branches of the robust estimators are formed by the L-estimators, R-
estimators, and M-estimators. The L-estimators are defined as linear combinations of order
statistics of the observations, resulting in their simple expressions (e.g., the sample median
and trimmed mean (α-trimmed mean) [30,31]) and robust statistics. The R-estimators
are based on waste ranking and involve parameter estimation based on ranks of residu-
als [32,33]. The R-estimators classify a sample by a mapping of n real numbers and are
resistant to outliers. Compared with the M-estimators, the L- and R-estimators belong to
nonparametric statistical approaches and are convenient in calculation. However, defini-
tions of the robust properties of the L- and R-estimators are difficult to obtain a priori [31].
On the contrary, this problem does not exist with the M-estimators. The shapes of the
M-estimators are defined by fixed functions [31], which are simpler to handle. Thus, they
are preferred, although they are sometimes computationally expensive. The robustness
of the M-estimators lies in the fact that they are less sensitive to outlier deviations due to
their intrinsic mathematical structures. One of the most typical estimators in the branch
of the M-estimators is the Huber estimator, which has interpreted the generalization of
the M-estimators. Huber (1973) [34] extended the idea of the M-estimators in solving
the regression problem through minimizing a function of residuals, and this function has
some popular properties, e.g., continuous and symmetrical, strictly positive and integrable,
increasing monotonous, smooth and preferentially convex.

Suppose f i, i = 1, . . . , n denote a population of measurements following a probability
function pi, f̂ i are the estimated variables, and errors εi represent the random white Gaus-
sian noise (WGN). The maximum likelihood formulation assumes that εi are uncorrelated
so that the measurements are independent and the respective covariance matrices con-
taining the variance values of the measurements are diagonal. Thus, the joint probability
function p can be represented as a product of the individual probability functions pi, i.e.,

max
f̂

p = max
f̂

n

∏
i=1

pi. (1)

To facilitate calculation, a logarithm operator is applied such that

max
f̂

n

∏
i=1

pi = −min
f̂

n

∑
i=1

lnpi. (2)

Generally, the M-estimators can be built from Equation (2). For example, the weighted least
square (WLS) estimator (or L2 estimator; [35]) is derived from the normal distribution

min
f̂

n

∑
i=1

1
2
( f i − f̂ i)

2

σ2
i

= min
f̂

n

∑
i=1

1
2

ε̄2
i , (3)
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where ε̄i denote the standardized residuals weighted by the standard deviations σi. Another
example is the Cauchy estimator, which is built based on the Cauchy distribution

min
f̂

n

∑
i=1

ln(1 + ε̄2
i ). (4)

A generalization of the maximum likelihood objective function was first proposed by
Huber (1964) [21]. Then, the idea of M-estimators was extended by Huber (1973) [34] in
solving the regression problems by defining

min
f̂

n

∑
i=1

ρ

(
f i − µi

σi

)
= min

f̂

n

∑
i=1

ρ(ε̄i), (5)

which minimizes a smooth, symmetrical and monotonic [33] function ρ of residuals, where
µi and σi denote the mean value and standard deviation of the i-th variable in the sample
set. One can estimate µi with the help of some iterative procedures [36]. The influence
function [37] is a qualitative measure of robustness [38,39], and is defined as ψ = ∂ρ(ε̄)

∂ε̄ ,
which is the first partial derivative of the objective function ρ with respect to the stan-
dardized residual ε̄. According to the descending behaviors of the influence functions, de
Menezes et al. (2021) [33] summarized the classification of the M-estimators in detail. The
non-robust M-estimators, e.g., the WLS estimator, have an unlimited influence function ε̄.
The quasi-robust M-estimators (see Page 101 of [35]) refer to the ones that are more robust
than the WLS estimator but without strict robustness. This paper will not cover these two
classes of estimators.

Another class includes three kinds of robust M-estimators. The robust monotone
M-estimators have convex influence functions, and typical examples are the Huber [21]
and Zhang [40] estimators. Robust ones with decreasing influence functions are classified
as redescending ones. According to Holland and Welsch (1977) [41], the redescending
estimators can be further classified as soft-redescending (or pseudo-convex; e.g., the Cauchy
and Welsch estimators [35]) and hard-redescending (or quasi-convex; e.g., the Biweight [35],
Andrews [42] and Smith [43] estimators) ones depending on whether a certain influence
function is approximately null or exactly null for high outlier values. Table 1 lists seven
M-estimators belonging to the three kinds, and they will be applied in this paper.

Table 1. Robust M-estimators.

M-Estimators Functions Tuning Parameters

Huber (monotone) ρH (x) =

{
1
2 x2, | x |≤ cH,

cH | x | − c2
H
2 , | x |> cH,

cH = 1.345

Zhang (monotone) ρZ (x) = x2

2+cZ|x| cZ = 0.814

Cauchy (soft-redescending) ρC(x) =
c2

C
2 ln

(
1 + x2

c2
C

)
cC = 2.3849

Welsch (soft-redescending) ρW (x) = c2
W
2

[
1− exp

(
− x2

c2
W

)]
cW = 2.9846

Biweight (hard-redescending) ρB (x) =


c2

B
6

[
1−

(
1− x2

c2
B

)3
]

, | x |≤ cB,

c2
B
6 , | x |> cB,

cB = 4.6851

Andrews (hard-redescending) ρA (x) =

{
c2

A

[
1− cos

(
x

cA

)]
, | x |≤ πcA,

2c2
A, | x |> πcA,

cA = 1.338

Smith (hard-redescending) ρS (x) =


c2

S
4

[
1−

(
1− x2

c2
S

)2
]

, | x |≤ cS,

c2
S
4 , | x |> cS,

cS = 3.6732
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3. Sparse Representation and Features of Radio Signals
3.1. Sparse Representation

Assume that f has the property of “sparsity”, i.e., f is N-sparse in a basis or a frame
Θ, such that f can be expressed by N non-zero coefficients in Θ, i.e., ‖Θu‖0 = ‖α‖0 = N,
where α denote the coefficients under the sparse transform Θ. In most cases, natural signals
are not strictly sparse. Thus, the assumption of “sparsity” can be relaxed to “compress-
ibility” if most of the energy in Θf = α is contained in its largest N coefficients. Wavelets
have been successfully applied to the detection of isotropic features. For example, the
isotropic undecimated wavelet transform (IUWT) or starlet [22] has gained remarkable
successes in galaxy images and has been proven to be well adapted to typical isotropic
astronomical features in most cases [23]. Although two-dimensional (2D) wavelets can
also be applied to the detection of curve-like features [43,44], being tensor products and
separable extensions of 1D wavelet bases, they have a limited capability in isolating the
directional information presented in natural signals. By contrast, shearlet [45,46] is specially
designed to capture directional information of anisotropic features efficiently. Let f̂ N be
the N-term shearlet approximation of f , shearlet is theoretically optimal in representing
piecewise smooth objects with the second-order continuously differentiable singularities
(i.e., C2-singularities) by an asymptotic approximation error C(logN)3N−2, N → ∞, which
is close to the optimal rate O(N−2). However, the approximation error for a wavelet rep-
resentation decays by O(N−1) as N increases. Although curvelet [47,48] also allows an
optimal sparse representation for C2 curves and is the only other system known to satisfy
similar approximation properties, it cannot form an affine system as the shearlet does.
This is because curvelet is not obtained by applying dilations and translations to a single
generating (or mother) function [49], and the angle in its triple indexes is defined in polar
coordinates. What motivates us are the above representation and approximation abilities
of the sparse transforms well suited to specific radio features. Appendix A gives a short
review for the construction of the shearlet. For detailed theories and applications of the
wavelets and curvelet, one can refer to [22,23] and [47–49], respectively. Figure 1 takes the
dispersion relationship of a simulated pulsar signal as an example and gives a diagram to
interpret the principles of sparse representation. The upper and lower halves of the signal
are represented by the wavelet and shearlet, respectively. The squares and ellipses denote
the spatial supports of wavelet and shearlet bases fitting the signal on different scales (from
coarser to finer scales, the red, orange, and blue colors are used, respectively), where j

is a scale, 2−
j
2 and 2−j are the lengths of the long and short axes of the spatial supports,

respectively.

3.2. Examples of Astrophysical Features

The distributions of radio flux can be measured in different directions. If the distri-
bution properties of a feature in all directions are the same, it indicates that the feature
is independent of direction and is called isotropic. If the properties and directions are
closely related, i.e., the properties of different directions are significantly different, one
obtains an anisotropic feature. This subsection discusses several isotropic and anisotropic
astrophysical features in multichannel time–frequency radio signals. These features not
only directly reveal the basic properties and propagation effects but also are typically
tailored for sparse transforms.
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1. Dispersion relationship. Search processes for radio astrophysical sources in multi-
channel signals consist of looking for dispersed pulses. In observed signal profiles,
different observing frequency channels correspond to different amounts of dispersions.
The dispersion frequency relationship [50,51] at νa (which is the central frequency of
channel a) is calculated as

∆ta ' DC× (ν−2
ref − ν−2

a )×DM, (6)

where DC = 4.15× 103 (MHz2 · pc−1 · cm3 · s) is the dispersion constant, and νref =
(ν1

L+ν2
H)

2 is the reference frequency, which is chosen to be the center frequency of the
broad band (with νL and νH as the central frequencies of the lowest and highest
channels). The dispersion measure is defined as DM (pc · cm−3) =

∫ d
0 nedl, where

ne is the electron number density, l is the path length along the line-of-sight, and d
is the distance to a radio source. This dispersion relationship is a widely presented
feature in multichannel radio signals. The dispersion effect generates curve-like
signals with typical C2 singularities. In this paper, the shearlet will be first applied
in RFI mitigation of pulsar signals, and it is expected to guarantee accurate sparse
representation and approximation for this feature.

2. In FRB signals, the isotropic narrow-band superradiance, and directional time–frequency
extensions (including extensions around the downward frequency drifting; distor-
tions by the scattering effect). The dispersion effect will not be considered for the
dedispersed FRB signals applied in this paper. Around the isotropic flux areas of
superradiance, there are curve-like and local elliptical time–frequency extensions.
Accurate approximation for these extensions helps to explore the changing trend of
energy envelope and energy distribution morphologies.
Subbursts in FRB signals have characteristic frequencies that drift lower at later times
in the total burst envelope. FRB spectra with downward frequency drifting differ
from those smooth and wide-band spectra of typical pulsars and radio-emitting
magnetars. The dynamical and relativistic model proposed by Rajabi et al. (2020) [52]
can explain the downward frequency drifting in multicomponent bursts according
to Dicke’s superradiance. According to [52], superradiance occurs in a medium
moving at relativistic speeds. This will cause narrow-band processes to be emitted at
multiple descending frequencies in FRBs. In this paper, the narrow-band flux regions
are regarded as isotropic (or quasi-isotropic) features and will be characterized by
wavelets. The anisotropic drifting extensions with diffusing energy will be represented
by curvelet.
The scattering effect can temporally broaden the FRB signals and induce multi-path
propagation, resulting in later arrival times for the signal portions traveling longer
path [51]. Scattering tails can be seen in a large proportion of FRB signal profiles.
Aggarwal et al. (2021) [53] modeled the components of the FRB spectra as the con-
volution of a Gaussian function (with a median width of 230 MHz) with a one-sided
exponential function. The scattering measure (SM) SM =

∫ d
0 C2

ne(l)dl defines the dis-
tribution of free electrons along the line-of-sight, where C2

ne(l) indicates the strength
of the fluctuations along the line-of-sight. The scattering effect reflected in the profiles
complicates the signal shapes, but it can be fitted along with the signal portions
by the highly directionally sensitive needle-shaped base functions of curvelet on
different scales.



Universe 2023, 9, 488 7 of 20

Figure 1. A diagram of multiscale sparse representation using spatial supports of wavelet bases by
tensor product (upper half of the signal) and the directional needle-shaped base functions of shearlet
(lower half of the signal), respectively, for the dispersion relationship of a pulsar signal.

4. Mitigation Model for Multichannel Radio Signals

Suppose that an observed multichannel signal profile f ∈ RI1×I2 consists of the radio
signal of interest y ∈ RI1×I2 , the RFI r ∈ RI1×I2 , and the random GWN ε ∈ RI1×I2 , i.e., f =
y + r + ε. To avoid the susceptibility of the LS estimator to the presence of RFI outliers [54],
a robust M-estimator with a nonnegative penalty function can be directly applied

min
y∈RI1×I2

ρ( f − ŷ) + λQ(ŷ), (7)

where ŷ denotes the approximation of y. Assume that the multichannel radio signals are
sparse in transform domains, a sparsity-promoting `1-norm Q = ‖Θŷ‖1 is well suited
to assist the reconstruction. The first term aims to ensure that the approximated signal
ŷ is close to the observed one f in the sense of robust estimation, and the second term
is to guarantee that ŷ is sparse under the sparse analysis of Θ. Thus, λ is a regulariza-
tion parameter determining the tradeoff between data fidelity and sparsity. To solve the
nonlinear problem in Equation (7) with a sparsity-promoting term, a linearization process
should be supplemented. Thus, the theory of pseudo-data [55] is applied, then one obtains
p = y + ρ′( f−y)

2 , where p is the pseudo-data of y. Then, the problem can be solved by an
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algorithm of, e.g., the gradient projection [56,57], Newton [58], ISTA, or FISTA [59]. In this
paper, the FISTA algorithm is taken as an example

p̂k = ẑk +
ck MTρ′( f −Mẑk)

2
,

ŷk+1 = T −1τ(T p̂k),

tk+1 =
1+
√

1+4(tk)2

2 ,
ẑk+1 = ŷk +

(
1 + tk−1

tk+1

)
(ŷk+1 − ŷk).

where k is the step of iteration, ck is a decreasing update factor. If the maximum iteration
step of FISTA is kM, then ck = 1− k

kM
. Due to the huge difference between signal portions

and RFI (especially for pulsar signals), the standard deviation can be directly calculated
from the original time–frequency domain over the pseudo-data, i.e., σ(p) = MAD(p)

0.6745 , and
MAD(x) = median|x −median(x)|. The threshold τ is calculated by τ = q · ck · σ(p),
where q is a parameter that can be adjusted, and T and T −1 are the sparse transform
and its inverse transform. M is a 2D mask in the preprocessing. Its entries are zeros
on the positions of the zero set channels and ones on the others. For details about the
preprocessing strategy, one can refer to [14].

In the tests of pulsar signals, a shearlet is used to realize the optimal representation
and approximation. In the tests of FRB signals, the wavelets and curvelets are applied.
The thresholds of shearlet and curvelet are calculated according to their default settings
with τ(p) as inputs. The threshold of the wavelet is calculated as τ(p) = q · σ(p) without
the decreasing update factor. In most cases of this paper, the q for wavelet is set to 3.
According to the framework (7), an evaluation indicator termed signal to interference and
noise ratio (SINR; in dB) is applied, and it is defined as SINR = 10log10(var(p)/mse),
where mse = mean

(
( f − p)2). Please note that this definition is based on the theory of

pseudo-data.

5. Experimental Results
5.1. Pulsar Signals

In the tests of pulsar signals, observations were made with the Nanshan 26-m Radio
Telescope, which has a dual-channel cryogenic receiver with a reference frequency (or
center frequency) of νref = 1556 MHz. For practical observations, a broad band from
1300.5 to 1812 MHz with a total bandwidth of 512 MHz is applied. The digital filter
bank is configured to 1024 × 0.5 MHz channels and 8-bit sampling. Signal profiles of
PSRs J1645−0317 (Figure 2), J1136+1551 (Figure 3), J0814+7429 (Figure 4), and J0332+5434
(Figure 5) are selected. They are folded data with 30 seconds integrated into one phase. All
M-estimators applied in this test have already been shown in Table 1. Tuning parameters
of the estimators are specified by their default values in Table 1. Unless otherwise specified,
the following tests of FRB signals with wavelets and curvelet will always use this parameter
setting. For pulsar signals with shearlet, the values of parameter q have been examined in
repeated experiments for better SINR values. For J0332+5434, the Zhang estimator uses
q = 6 and the others use q = 3. For other pulsar signals, the Huber one uses q = 3, and the
other estimators apply q = 6. Empirically, the selected q of the methods make them work
well. Generally speaking, the higher the q, the more RFI is removed. However, higher q
will also lead to oversmoothed or excessively attenuated mitigation results, and valuable
details for astrophysical purposes will be lost.

In the mitigation process, the preprocessing can only obtain just-visible signals to
naked eyes. From Figures 2–5, by visual inspection, one can see that most types of RFI
can be successfully removed, especially the narrow-band transient and quasiperiodic RFI.
Actually, when the mitigation is proceeding with a fixed threshold, most types of RFI are
removed gradually. Significantly, the types of quasiperiodic and long-period RFI are too
obstinate to eliminate.
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Figure 2. RFI mitigation of a signal profile of J1645−0317 by seven typical M-estimators, i.e., the
Andrews, Biweight, Cauchy, Huber, Smith, Welsch, and Zhang estimators.
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Figure 3. RFI mitigation of a signal profile of J1136+1551 by the seven M-estimators.

Generally speaking, by visual inspection of the four figures, one can see that among
the M-estimators, the monotone ones (Huber and Zhang) show the best results, and the soft-
redescending ones (Cauchy and Welsch) perform at a middle level. In the soft-redescending
estimators, the Cauchy one has a performance close to those of the monotone ones, and the
Welsch estimator performs similarly to the hard-redescending ones, which give relatively
poor performances. Table 2 shows that the Huber estimator has the strongest robustness
to RFI, and the trend reflected by the SINR values is consistent with that of the visual
inspection. The Cauchy estimator performs well for pulsar signals with wider relative
pulse widths in one phase (e.g., it has the best SINR values for PSRs J1136+1551 and
J0814+7429). The proposed frameworks overcome the current defects in an obvious fact
that most types of RFI have been removed for almost all the M-estimators in the applied
pulsar signals.
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Figure 5. RFI mitigation of a signal profile of J0332+5434 by the seven M-estimators.

Table 2. A quantitative evaluation in terms of the SINR (in dB) for the seven M-estimators in RFI
mitigation for PSRs J1645−0317, J1136+1551, J0814+7429, and J0332+5434.

J1645−0317 J1136+1551 J0814+7429 J0332+5434

Andrews 1.73 1.63 4.40 2.11
Biweight 1.76 1.69 4.52 2.15
Cauchy 2.60 5.41 9.15 0.94
Huber 5.40 5.17 7.83 5.75
Smith 1.33 1.27 4.07 1.75
Welsch 2.37 2.42 7.60 2.79
Zhang 0.81 2.63 7.18 4.55
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Figure 6 shows dedispersed pulses by the seven estimators for the processed profiles of
J0332+5434. A randomly selected band containing 50 consecutive channels is dedispersed,
and the channels are added up. The iteration numbers are also shown in each panel. By
visual inspection throughout the panels, the monotone estimators, i.e., Huber and Zhang
estimators, perform the best.

0.3 0.45 0.6

Phase

0

500

Original signal

0

500

Andrews
Iter 100

Biweight
Iter 100

Cauchy
Iter 100

Huber
Iter 100

Smith
Iter 100

Welsch
Iter 100

Zhang
Iter 100

0

500
Iter 200 Iter 200 Iter 200 Iter 200 Iter 200 Iter 200 Iter 200

0

500
Iter 300 Iter 300 Iter 300 Iter 300 Iter 300 Iter 300 Iter 300

0

500

D
ed

is
pe

rs
ed

 p
ul

se
s 

of
 5

0 
ch

an
ne

ls

Iter 400 Iter 400 Iter 400 Iter 400 Iter 400 Iter 400 Iter 400

0

500
Iter 500 Iter 500 Iter 500 Iter 500 Iter 500 Iter 500 Iter 500

0

500
Iter 750 Iter 550 Iter 750 Iter 750 Iter 550 Iter 750 Iter 750

0.3 0.45 0.6
0

500
Iter 1000

0.3 0.45 0.6

Iter 600

0.3 0.45 0.6

Iter 950

0.3 0.45 0.6

Phase

Iter 1000

0.3 0.45 0.6

Iter 600

0.3 0.45 0.6

Iter 950

0.3 0.45 0.6

Iter 950

Figure 6. Dedispersed pulses of the processed profiles of J0332+5434 for a randomly selected band
containing 50 consecutive channels. The seven estimators are applied, and the iteration steps are in
the upper left corner of each panel.

5.2. FRBs

FRBs, especially the repeating ones [60,61] show complex and varying time–frequency
structures, e.g., multiple-burst structures with separated components in time, and highly
varying temporal-spectral subburst structures [62] with finite bandwidths in a certain
burst (or component). In our opinion, these characteristics reflect an essential sparsity.
The scientific goal or motivation is to discover the masked or broken components that
cannot be easily identified under the RFI and random GWN by only averaging the sum
of given numbers of consecutive channels and time sample bins. This task is expected to
be accomplished by the M-estimators with the aid of the sparsity-promoting optimization
algorithms. Two kinds of sparse transforms, i.e., the wavelets and curvelets, will be first
introduced into RFI mitigation and feature detection for FRB signals. This work can be
considered to be an extended application of our recent work [14] to the field of signal
processing of FRBs.

The Breakthrough Listen published an observation series 1 of 21 detected bursts in one
hour for FRB 121102. The purpose is to reveal the approximation accuracy and recovery
efficiency of sparse transforms for FRB signals by applying a data set with well-known
typicality. A commonly used preprocessing is to obtain summations of specified numbers
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of neighboring data bins in both the frequency and time axes and average the summations
over the numbers on the axes. For the original FRB signal with high resolution and low
signal-to-noise ratio (SNR), the preprocessing helps to improve the SNR value and balance
the two aspects. For most of the files with the original signal size of 19,456 frequency
channels and 2048 time bins (except the files 11L and 12B), several groups of division ratios
for the frequency and time axes, i.e., (4.75, 1), (9.5, 2), (19, 4), (38, 8) and (76, 16), are set for
preprocessing, and their corresponding resolutions in (MHz, µs) and sizes of frequency
channels and time bins are (0.86875, 10.1) with 4096 × 2048, (1.7375, 20.2) with 2048 × 1024,
(3.475, 40.4) with 1024 × 512, (6.95, 80.8) with 512 × 256, and (13.9, 161.6) with 256 × 128,
respectively. In this subsection, for all tests with wavelets, the decomposition scale and the
thresholding parameter are set to J = 3 and q = 3, respectively. For wavelets and curvelet,
the parameters of the M-estimators are the same as those of the frameworks using shearlet.
Generally speaking, lower decomposition scales will cause poor mitigation results, and
higher scales will lead to over-smoothing. A scale J = 5 is properly chosen in [23] for the
denoising tests of the starlet.

First, in Figure 7, a test is carried out for FRB 121102-11A to analyze the effect of
different compromises between resolutions and SNR values on the mitigation results. This
point is important because whether one prefers high resolutions or high SNR values should
be decided by the specific detection tasks. The Huber estimator is applied in this test. By
visual inspection, the curvelet can give prominence to the flux regions with anisotropic
features caused by the downward drifting and scattering effect (middle). The overall
contours of directional flux distributions of some burst components buried under RFI
and GWN can be clearly identified. The 2D wavelet db8 (the vanishing moments order
is 8) belonging to the family of Daubechies wavelets is taken as an example to provide
multiscale characterizations for the isotropic flux regions (bottom).
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Figure 7. RFI mitigation results for FRB 121102-11A with four resolutions (top) with the Huber
estimator by the respective sparse transforms of curvelet (middle) and db8 wavelet (bottom).
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Table 3 shows the corresponding resolutions of the columns in Figure 7 and the
respective SINR (in dB) values for db8 wavelet and curvelet. From Table 3, one can see that
the higher the resolutions, the lower the SINR values of the mitigation results.

Table 3. A quantitative evaluation of RFI mitigation efficacy in terms of the SINR (in dB) for FRB
121102-11A under four resolutions. The Huber estimator is applied.

Resolutions (MHz, µs) (0.86875, 10.1) (1.7375, 20.2) (3.475, 40.4) (6.95, 80.8)

Signals −26.5026 −17.6826 −6.6232 −1.9036
Results of curvelet −8.5827 2.2026 8.4972 11.4321
Results of db8 wavelet −2.0663 −0.6488 −0.1546 −0.0494

Figure 8 gives detailed scenes of the dedispersed dynamic spectra for two portions of
the signals in Figure 7. By visual inspection, one can make analyses from two aspects, i.e.,
the isotropic and anisotropic distributed flux regions. For the isotropic flux, the bottom left
of Figure 8a shows a processed result by db8 wavelet with a higher resolution, and one
can see that the finer details can be extracted. From this result, a conclusion can be made
that the flux centers of the two closest components (near 7000 MHz) can be completely
separated without consideration of the surrounding anisotropic diffusing energy. The
wavelet can also provide accurate sparse approximations for the isotropic subbursts. A
trend of the subbursts of FRB 121102-11A in the frequency axis reveals that the higher
the frequency, the more intense the changes in the varying subbursts in one component
with smaller effects from the drifting and scattering. In the bottom left of Figure 8a, in
high-frequency components with elliptic shapes affected by the downward frequency
drifting, the superradiance can still be reflected in several narrow-band regions emitted
at multiple descending frequencies and being very close to each other. This discovery
benefits from the approximation ability of wavelets for isotropic features. The anisotropic
flux mainly contains extensions in the time–frequency domain. The scattering effect, which
gradually broadens the components, is obviously recognized and can be calculated for
further astrophysical purposes, which will be our future work. The flux extensions of
different components in the time–frequency domain can overlap with each other. Figure 9
also shows the dedispersed dynamic spectra of the two portions of FRB 121102-11A with
resolution 2. The Huber estimator is applied. The clean curves given by the subpanels
not only show the components but also clearly reflect the effects of scattering (top curves)
and superradiance (right curves). Please note that the curves are only summed in the
subpanel areas.

In RFI mitigation for FRB 121102-11A with the curvelet transform as the sparsity-
promoting term in Equation (7), Table 4 carries out comparisons among seven M-estimators
with six signal sizes (or resolutions). From the SINR values, one can see that the monotone
estimators (including the Huber and Zhang ones) perform the best. The Cauchy estimator,
one of the soft-redescending ones, has strong stability against the change in resolution. The
hard-redescending ones can also give satisfying results.

Table 5 provides a comparison among detection results of the superradiance effect on
FRB signals, and seven wavelets are selected, i.e., a biorthogonal spline wavelet bior4.4
(with the vanishing moment orders 4 for reconstruction and 4 for decomposition), a coiflet
wavelet coif5 (with the vanishing moment order 5 for both scale and wavelet functions),
the db8, the discrete Meyer wavelet dmey, a Fejer–Korovkin filter fk8 (with the vanishing
moment order 8), a reverse biorthogonal spline wavelet rbio2.8 (with the vanishing moment
orders 2 for decomposition and 8 for reconstruction), and a symlet wavelet sym8 (with the
vanishing moment order 8). One detection can be regarded as one piece of flux around
one descending frequency where a narrow-band process has been emitted due to the
superradiance. There are two ways to design the detection scheme. First, one can use a
LocalMaximaFinder object in python or matlab to find local maxima in the time–frequency
signals and set parameters of the maximum number, neighborhood size (width, height),
and screening threshold. To show finer details, the signal with a size 4096 × 2048 or a
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resolution (1.7375 MHz, 20.2 µs) is used. In this paper, they are empirically set to 20, (35,25)
and 210.5 for this resolution. Then, a step method is applied to find the coordinates of the
local maxima. Second, one can also use the screening method in [63]. In repeated tests,
we find that these two methods can obtain similar results, and the first scheme is applied
in this paper. Table 5 lists three M-estimators with better mitigation efficiency, i.e., the
Cauchy, Huber, and Zhang estimators. The two values of each group denote the numbers of
detected isotropic flux regions that correspond to the high- and low-frequency portions in
Figure 8, respectively. As monotone estimators, the Huber and Zhang estimators perform
the best, and the Huber one can detect the most physically realistic number of flux regions.
A weak link of the Zhang estimator is that it has higher extra detection, i.e., for this signal,
once or twice, it often identifies one flux area as two. The Cauchy one has higher missing
detection. Among the seven wavelets, the db8 has more detected regions; however, the
rbio2.8 performs poorly.
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Figure 8. Zooming-in details of the dedispersed dynamic spectra of two portions of the signals in
Figure 7 with the sparse transforms of curvelet (top rows of (a,b)) and db8 wavelet (bottom rows
of (a,b)).
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Figure 9. Line plots for the dedispersed dynamic spectra of the two portions of FRB 121102-11A
processed by the nonlinear robust framework applying the Huber estimator with curvelet (left panels
of the top and bottom) and db8 wavelet (right panels of the top and bottom). The top and right
subpanels show the 1D bursts as summed across frequencies and flattened spectra integrated in time.

Table 4. A quantitative evaluation in terms of the SINR (in dB) for seven M-estimators in RFI
mitigation for FRB 121102-11A with six signal sizes.

Original Andrews Biweight Cauchy Huber Smith Welsch Zhang

4096 × 2048 −29.57 −14.37 −14.42 −2.57 −8.43 −14.49 −14.02 −5.97
2048 × 1024 −23.03 −6.37 −7.37 −2.47 2.20 −8.30 −5.08 2.22
1024 × 512 −16.77 5.63 5.73 −2.46 8.50 5.63 2.84 7.76
512 × 256 −11.52 8.03 8.04 −2.41 11.43 8.04 8.15 11.12
256 × 128 −6.93 8.25 8.22 −2.48 10.03 8.19 8.21 10.02
128 × 64 −1.63 9.64 9.50 −2.60 10.26 9.52 9.66 10.18

Table 5. Recognized isotropic flux regions by seven wavelets. The Cauchy, Huber, and Zhang
estimators are applied.

Wavelets bior4.4 coif5 db8 dmey fk8 rbio2.8 sym8

Cauchy 10, 6 10, 10 8, 11 11, 11 8, 12 2, 1 9, 10
Huber 14, 12 15, 18 16, 19 15, 18 15, 19 9, 6 14, 17
Zhang 16, 6 16, 18 16, 18 15, 19 15, 20 11, 8 14, 19

Figure 10 shows intuitive figures only for the db8 wavelet with the three estimators in
Table 5. The parameter q is set to 3 for all estimators. The db8 wavelet with the Huber and
Zhang estimators can provide relatively complete detection results. The Cauchy estimator
has a higher ratio of missing detection. This is due to the performance differences among
M-estimators in RFI mitigation for certain types of radio data. From Figure 10, one can
see that there are highly varying isotropic features hidden in the high-frequency flux
distributions. Their changes are much more severe than feature changes in low frequencies.
In the low-frequency distributions, distances between the isotropic energy regions are
elongated without consideration of channel zero settings. An intuitive trend is that as
q increases, the number of detected regions decreases, and the missing detection ratio
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increases. On the contrary, as q decreases, the number of detected regions increases, and
the false detection ratio increases.
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Figure 10. A demonstration of the recognized flux regions in the two image portions by the db8
wavelet with the Cauchy, Huber, and Zhang estimators.

6. Conclusions

The joint effect of signal sparsity and robust nonlinearity of the M-estimators in RFI
mitigation of radio astrophysical signals of pulsars and FRBs has been investigated. The
LS term denoting data fidelity in the general Lagrangian form of the sparsity-promoting
optimization framework has been replaced by a robust M-type penalty. The novelty is
that the sparse transforms and M-estimators are first applied to RFI mitigation and feature
detection for FRB signals. This paper focuses on the isotropic and anisotropic features
presented in typical radio astrophysical signals, such as the dispersion relationship and
directional extensions.

Several classes of M-estimators and sparse transforms are applied to accomplish the
comparative studies. The tests of pulsar signals show efficiency in RFI mitigation and
approximation for signals containing the dispersion relationship. Results about the di-
rectional extensions are demonstrated in the tests of FRB 121102-11A. Wavelets, such as
db8, are used for the isotropic flux distributions, and a feature detection test is carried
out. There are two discoveries made by wavelets for the high-frequency components of
FRB 121102-11A. First, there are also highly varying isotropic narrow-band energy regions
hidden in the high-frequency flux, revealing the superradiance at multiple descending
frequencies. Second, from the mitigation results with wavelets for the isotropic features,
the high-frequency emission centers can be completely separated in the time axis without
consideration of the diffusing energy of the anisotropic extensions. From the experimental
results, we can conclude that sparse transforms are well adapted to radio astrophysical sig-
nals with isotropic and anisotropic features. A proper choice for the class of M-estimators is
crucial to both features and the monotone estimators (e.g., Huber and Zhang) are preferred.

Several open problems are presented as our future concerns. Besides the signals of
pulsars and FRBs, will the proposed frameworks still be effective when they are applied
to spectra of other types of radio events? e.g., the magnetars, rotating radio transient
sources, and solar FRBs. Besides the M-estimators mentioned in this paper, are there other
robust frameworks that can solve the problem of RFI mitigation, or are even better than the
proposed ones?
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Appendix A

The continuous shearlet transform of a function f ∈ L2(R2) can be defined as a

mapping on a horizontal cone CH := {(ω1, ω2) ∈ R2 : |ω1| ≥ 2, |ω2

ω1
| ≤ 1} in the

frequency plane
SHH

ψ ( f )(a, s, z) = 〈 f , ψH
a,s,z〉, (A1)

where the analyzing base function

ψH
a,s,z(x) = |detMH

a,s|−(
1
2 )ψH((MH

a,s)
−1(x− z)) (A2)

is called a shearlet and is generated by an anisotropic dilation Aa =

(
a 0
0 a

1
2

)
, a > 0, a

shearing of the nonexpansive matrix Bs =

(
1 −s
0 1

)
, s ∈ R, and a translation z ∈ R2 of

the generating function or the mother shearlet ψH . MH
a,s = Bs Aa =

(
a −a

1
2 s

0 a
1
2

)
. For ω =

(ω1, ω2) ∈ R2, ω1 6= 0, ψH is defined in the frequency domain as ψ̂H(ω) = ψ̂1(ω1)ψ̂2(
ω2
ω1

),
where the hat superscript denotes the Fourier transform. ψ1 ∈ L2(R2) is a smooth odd
function and satisfies the (generalized) Calderòn condition

∫ ∞
0 |ψ̂1(aξ1)|2 da

a = 1 for a.e.
ξ1 ∈ R, and suppψ̂1 ⊂ [−2,− 1

2 ] ∪ [ 1
2 , 2]. ψ2 is a smooth even function and satisfies

‖ ψ2 ‖2= 1 and suppψ̂2 ⊂ [−1, 1]. Then,

f (x) =
∫
R2

∫ 3
2

− 3
2

∫ 1
4

0
〈 f , ψH

a,s,z〉 = ψH
a,s,z(x)

da
a3 dsdz. (A3)

The formulae for CH can be similarly defined so that the transform can be extended to
all f ∈ L2(R2). For coarse scale, an isotropic C∞-window ς(x) ∈ L2(R2), is introduced
to represent the functions with frequency support ω ∈ [−2, 2]2. ς satisfies ς̂(ω) = 1 for

ω ∈
[
− 1

2 , 1
2

]2
, and ς̂(ω) = 0 outside ω ∈

[
− 1

2 , 1
2

]2
. For f , one has f (x) =

∫
R2〈 f , ςz〉ςzdz,

where ςz(x) = ς(x− z). Then, f can be continuously represented using window functions
ςz at coarse scales, the set of horizontal shearlets ψH

a,s,z and vertical ones ψV
a,s,z at finer scales.

The discrete shearlet transform can be obtained by discretizing the dilation aj :=

2−2j, j ∈ J ,J = [0, . . . , J − 1], shearing sj,k := k2−2j,−b2
j
2 c ≤ k ≤ b2

j
2 c and only a finite

number of discrete translations zp :=
(

p1
I1

, p2
I2

)
, p = (p1, p2) ∈ Z2, and zp is independent

of the dilation and shear parameter. J is the scale set and J := b 1
2 log2max{I1, I2}c is the
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number of considered scales. I1 and I2 are the size of a digital images f ∈ RI1×I2 which is
sampled on a discrete grid and p1 = 0, . . . , I1 − 1, p2 = 0, . . . , I2 − 1. The shearlet becomes

ψH,V
j,k,p(x) := ψH,V

aj ,sj,k ,zp(x) = a−
3
4 ψH,V(MH,V−1

aj ,sj,k
(x− zp)). (A4)

For the low-frequency domain, one has ςp(x) = ς(x− zp). For a digital image f sampled
on a discrete grid, its discrete shearlet system on the cones can be derived as(

SH{ζ,ψH ,ψV} f
)
=
(
〈 f , ζp〉,

〈
f , ψH

j,k,p

〉
,
〈

f , ψV
j,k,p

〉)
(A5)

Note
1 http://seti.berkeley.edu/frb121102/technical.html (accessed 8 April 2022).
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