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Abstract: We numerically study the evolution of the extrinsic energy density in the context of an
inflationary regime at the background level in a five-dimensional model using a Bayesian analysis
from a dynamic nested sampler (DYNESTY) code. By means of the Nash–Greene embedding theo-
rem, we show that the corresponding model provides an effective potential driven by the influence
of extrinsic geometry. We obtain a quintessential inflation that defines a model with a potential
V(φ) = e−α1φ(1− α2φ2), where α1 and α2 are dimensionless parameters. Using some known phe-
nomenological parameterizations, such as Chevallier–Polarski–Linder (CPL) and Barboza–Alcaniz
(BA) parameterizations, we show that the model reflects a slow-varying inflation preferring a thawing
behavior, suggesting an optimistic scenario for further research on the unification of inflation with
late cosmic acceleration.

Keywords: inflation; Nash–Greene theorem; gravitational field

1. Introduction

Cosmic inflation is one of the most fantastic mechanisms for understanding the evolu-
tion of the early universe, which underwent a rapid and exponential increase in the cosmic
scale factor shortly after the Big Bang. It proposes a simple solution to the horizon problem
by suggesting that far-reaching regions of the universe were in close proximity before
inflation occurred. Then, it explains why the universe appears homogeneous and isotropic
on large scales. Moreover, the so-called flatness problem that states, Why does the universe
seem to have a nearly flat geometry? is solved in the context of inflation since it naturally
leads to a flat universe [1]. It also provides an explanation of the formation of a large-scale
structure in the universe, including galaxies and galaxy clusters, by quantum fluctuations
in a peculiar scalar field dubbed as inflaton field during that cosmic inflationary period [2–9].

The nature of the inflaton field motivated the elaboration of a plethora of competing
cosmological models [10–19] due to the fact that the form of the inflation field is not
determined and the standard phenomenological model Λ cold dark matter (ΛCDM) with
the fluid parameter w = −1 rapidly decays at the end of the inflationary period [20]. Thus,
the inflaton field cannot be directly regarded as a cosmological constant Λ for the late
acceleration of the universe. An immediate issue arises whether the inflaton field should
be some form of a dark energy (DE) fluid: how does the equation of the state parameter w
significantly deviate from w = −1 during the inflationary era? In this paper, we make the
first steps to answer this question in the context of a modification of gravity by extra
dimensions. Apart from traditional models, such as the Arkani-Hamed–Dvali–Dimopoulos
(ADD) model [21], the Randall–Sundrum model [22,23], and/or the Dvali–Gabadadze–
Porrati model (DPG) [24], we explore the dynamical embedding of space-times as the
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main mathematical structure [25–40]. In Encyclopaedia Inflationaris [41], the reader can
find various types and classifications of inflationary models, such as supergravity brane
inflation, supersymmetry (SUSY), and brane inflation models.

The paper is organized into sections. The second and third sections summarize the
essentials of previously published results on the construction of the four-dimensional em-
bedded model and cosmological applications [26–28,31,39,40]. The fourth section presents
the fluid analogy necessary to make a comparison with phenomenological models. More-
over, we construct a model wherein the extrinsic curvature is thought as an inflaton field as
shown in the fifth section. By means of numerical analysis generating synthetic random
points using the DYNESTY [42,43] Python code, we constrain the parameters of our toy model.
To analyze how the related equation of state (EoS) evolves, we use Chevallier–Polarski–
Linder (CPL) [44,45] and Barboza–Alcaniz (BA) [46] parameterizations to distinguish
the present model as a thawing [47–49] or freezing [50–53] pattern. Thawing models are
conceived to be those that the fluid parameter as a function of the redshift w(z) in EoS
is moving away from −1, which means that DE density decreases over time, gradually
allowing the universe to accelerate more rapidly. On the other hand, in freezing models, DE
density remains approximately constant as the universe expands, with w(z) approaching
the value −1. Finally, the conclusion and prospects are presented in the Remarks section.

2. Essentials on Embeddings

We define a model endowed with a gravitational action S in the presence of confined mat-
ter fields wherein a four-dimensional embedded space-time is embedded in five dimensions as

S = − 1
2κ2

5

∫ √
|G|

(
5R+ L∗m

)
d5x , (1)

where κ2
5 is a fundamental energy scale on the embedded space, and the curly 5R de-

notes the five-dimensional Ricci scalar of the bulk given by the summation of the four-
dimensional Ricci scalar R and the deformation scalar Q and has the simple form 5R = R + Q.
Moreover, L∗m denotes the bulk source Lagrangian in five dimensions. Since gravity should
only propagate in the bulk, L∗m is localized in the four-dimensional embedded space and
obeys the confinement condition

κ2
5T∗µν = −8πGTµν , (2)

κ2
5T∗µa = 0 ,

κ2
5T∗ab = 0 ,

from the components of TAB of the energy–momentum tensor of the bulk. The terms of
T∗µν, T∗µa, and T∗ab denote the energy–momentum of the tangent (tensor), vector, and scalar
components of TAB. Concerning notation, capital Latin indices are fixed to 5 to reinforce
the notation of a five-dimensional space. Small-case Latin indices refer to the only one extra
dimension fixed to 1. All Greek indices refer to the embedded space-time running from 1
to 4. Ordinary matter and gauge fields are represented by Tµν, and G is the gravitational
Newtonian constant. From the set of equations in Equation (2), L∗m reduces to the confined
four-dimensional Lagrangian Lm related to Tµν as

Tµν = − 2√
|g|

δ
(√
|g|Lm

)
δ gµν , (3)

where gµν is the metric and |g| is the absolute value of gµν. Detailed demonstrations of the
fundamental field equations, from a bulk of five or in arbitrary dimensions, can be found
in Refs. [26–28,31,40]. In this work, in search of constructing a viable physical model, we
consider the extrinsic curvature as a main character of cosmic dynamics. Mathematically
speaking, besides the metric gµν, such new curvature is a pivotal element in the embedding
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of geometries. As traditionally defined in [54], the nonperturbed extrinsic curvature
kµν reads,

kµν = −X A
,µ ηB

,νGAB . (4)

The definition in Equation (4) essentially means a measure of bending of the embedded
geometry; i.e., it reflects how a normal unitary vector ηA in the embedded space deviates
from the tangent plane. Let the coordinate X define a regular map X : V4 → V5. Such
a local map states that a Riemannian manifold V4 is isometrically embedded in a larger
five-dimensional Riemannian bulk space V5. The term GAB is the bulk metric

GAB =

(
gµν 0
0 1

)
. (5)

Another pivotal relation is Nash’s deformation formula given by

kµν = −1
2

∂gµν

∂y
, (6)

where y is an arbitrary spatial coordinate. Nash’s deformation formula is the pivot result of
Nash’s embedding theorem of 1954 applied to non-Euclidean metrics [55]. In 1956, Nash
generalized his former results to Riemannian metrics [56]. Decades later, Nash’s theorem
was expanded to non-Riemannian metrics by Greene [57]. From a physical point of view,
Equation (6) localizes gravity closer to the four-dimensional embedded space, imposing a
strong bending (warping) geometrical constraint.

Nash’s results in Equation (6) is the capital element to obtain a solution to well-known
Gauss and Codazzi equations given by

5RABCDZA
,αZB

,βZC
,γZD

,δ = Rαβγδ+ (kαγ kβδ− kαδ kβγ) , (7)
5RABCDZA

,αZB
,βZC

,γηD = kα[β;γ] , (8)

where 5RABCD denotes the five-dimensional Riemann tensor, and Rαβγδ is the four-dimensional
Riemann tensor. The coordinate ZA

,µ is a perturbed coordinate in the sense that ZA
,µ = X A

,µ +

δy ηA
,µ. The semicolon sign in Equation (8) represents the ordinary covariant derivative with

respect to the metric gµν and kα[β;γ] ≡ kαβ;γ− kαγ;β. The importance of Equations (7) and (8)
is that they reflect the integrability conditions for the embedding explicitly relating the
bulk and embedded space, and they are the starting point to obtain the induced field
equations [26–28,31,40].

3. Friedmann–Lemaître–Robertson–Walker (FLRW) Embedded Cosmology

From integration of Equations (7) and (8), one obtains the induced four-dimensional
nonperturbed field equations as

Gµν −Qµν = −8πGTµν , (9)

kµ[ν;ρ] = 0 , (10)

where Tµν is the energy–momentum tensor of the confined sources, G is the gravitational
Newtonian constant, and Gµν is the four-dimensional Einstein tensor. The deformation
tensor Qµν is given by

Qµν = kρ
µkρν − kµνh− 1

2

(
K2 − h2

)
gµν , (11)

where the mean curvature is given by h2 = h·h and h = gµν kµν. The quantity K2 = kµνkµν

is the Gaussian curvature. By direct derivation, Equation (11) is conserved in the sense that

Qµν;µ = 0 . (12)
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Once the field equations of Equations (9) and (10) are set, we obtain the background
cosmic evolution from the usual four-dimensional line element of the FLRW metric given by

ds2 = a2
(

dr2 + r2dθ2 + r2 sin2 θdφ2
)
− dt2 , (13)

where a ≡ a(t) is the scale factor and t is the physical time. As shown in previous
works [27,31], the solutions of Equations (9) and (10) are summarized as

kij =
b
a2 gij (i, j = 1, 2, 3) , (14)

k44 =
−1
ȧ

d
dt

b
a

, (15)

k44 = − b
a2

(
B
H
− 1
)

, (16)

K2 =
b2

a4

(
B2

H2 − 2
B
H

+ 4
)

, h =
b
a2

(
B
H

+ 2
)

, (17)

Qij =
b2

a4

(
2

B
H
− 1
)

gij, Q44 = −3b2

a4 , (18)

Q = −(K2 − h2) =
6b2

a4
B
H

, (19)

where Q is the deformation scalar given by the contraction gµνQµν = Q, and H ≡ H(t) = ȧ
a

is the Hubble parameter. Defined as an “extrinsic” copy of the Hubble parameter H, we
have the cosmic bending parameter B = B(t) ≡ ḃ

b . The obtainment of these results is
shown in detail in Refs. [27,31]. The warping or bending function b(t) is given by

b(t) =
b0

aβ0
0

a(t)β0 , (20)

where the parameter b0 denotes the current value of b(t) and a0 is the current value of the
scale factor.

4. The Fluid Analogy

We obtain the hydrodynamical equations for a perfect fluid in comoving coordinates
as the same way as in the usual general relativity (GR) framework. Thus, the stress energy
tensor Tµν has the standard form

Tµν = (ρ + p)uµuν + pgµν ; uµ = δ4
µ , (21)

and the conservation equation

ρ + 3H(ρ + p) = 0 , (22)

from Tµν;µ = 0. Hence, one obtains the resulting Friedmann equation as

H2 =
8
3

πGρ +
b2

a4 , (23)

where ρ ≡ ρm(t) is the nonperturbed matter density. Using Equations (20) and (23), we have

H2 =
8
3

πGρm(0)a
−3 +

b2
0

a2β0
0

a2β0−4 , (24)
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where ρm(0) is the current value of matter energy density. With respect to the cosmological
parameters Ωi =

8πG
3H2

0
ρi(0), i identifies the density species, and considering only matter and

extrinsic species, we write the Hubble evolution H(z) simply as

H(z) = H0

√
Ωm(z) + Ωext(z) , (25)

where H(z) is the Hubble parameter in terms of the redshift z = 1−a
a . The matter density

parameter is denoted by Ωm(z) = Ωm(0)(1 + z)3. The term Ωext(z) = Ωext(0)(1 + z)4−2β0

stands for the density parameter associated with the extrinsic curvature. The cosmological
parameters Ωm(0) and Ωext(0) = b2

0/H2
0 a2β0

0 denote the present value of the matter and
extrinsic contributions, respectively. The current warp (bending) of the universe denoted
by b0 has the same dimension as H0 that is the current value of a Hubble constant in units
of km·s−1 Mpc−1. If Ωext(z) vanishes with b0 → 0, one obtains GR limit as a background
with the recovery of Einstein equations. For a flat universe, we have Ωext(0) = 1−Ωm(0).

To obtain an effective cosmological model in order to make tests with real data, an
effective “extrinsic fluid parameter” wext must be set. We define a “fluid analogy” by means
of an effective equation of state (EoS) as

wext = −1 +
1
3
(4− 2β0) , (26)

in which the equality wext = w happens if β0 = 1
2 (1− 3w), where the dimensionless fluid

parameter w defines an EoS related to pressure p and energy density ρ as w = p
ρ . Thus, one

defines the dimensionless Hubble parameter E(z) ≡ H
H0

that reads

E2(z) = Ωm(0)(1 + z)3 + Ωext(0)(1 + z)3(1+w) , (27)

which resembles an XCDM fluid [58].

5. Extrinsic Curvature as an Effective Inflaton Field

Besides Equations (26) and (27), we can explore the effective fluid approach rewriting
Equation (9) in the form

Rµν −
1
2

Rḡµν = −8πGT̄total , (28)

where T̄total
µν = T̄µν +

1
8πG T̄ext

µν . The quantity T̄ext
µν

.
= Qµν denotes the extrinsic contribution.

Mimicking Equation (21), we write T̄ext
µν as

T̄ext
µν = ( p̄ext + ρ̄ext)uµuν + p̄ext ḡµν, uµ = δ4

µ , (29)

where uµ is the comoving four velocities. It is worth noting that the deformation tensor
Qµν is independently conserved as shown in Equation (12), so is T̄ext

µν . We stress that the
dynamical embedding naturally warrants the influence of the bulk over the embedded
space, such as quantities Qµν with a mixture of intrinsic and extrinsic terms, as shown
in Equation (11). As a consequence, T̄ext is conserved unless an exotic matter-energy source
is added. This result differs from a DE fluid in standard rigid brane-world models [22–24],
where T̄ext is not conserved due to the necessity of the bulk–brane energy exchange.

From the conservation of Equation (29), we obtain

dρ̄ext

dt
+ 3H(ρ̄ext + p̄ext) = 0 . (30)

In a perfect fluid analogy with Equation (22), ρ̄ext denotes the nonperturbed “extrinsic”
energy density given by

ρ̄ext(a) = ρext(0)a
−3(1+w) , (31)
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where the current “extrinsic” energy density is ρext(0) =
3b2

0
8πGa1−3w

0
. Therefore, the “extrinsic”

pressure p̄ext is straightforwardly calculated by Equation (30) to obtain

p̄ext(a) = wρext(0)a
−3(1+w) . (32)

When b0 → 0, the extrinsic curvature ceases, and T̄ext
µν , ρ̄ext(a), and p̄ext(a) vanish, and the

GR limit is reached. Alternatively, one writes the related Friedman equation in the form

H2 =
8
3

πG(ρ̄m + ρ̄ext) . (33)

5.1. The Extrinsic Inflaton Field

Since ρ̄ext plays a role in driving the late accelerated expansion as explored in [27,31],
the same energy density ρ̄ext should have the dynamics of a scalar field potential energy
density V(φ) during early inflationary periods generated by the “extrinsic scalar” field φ.
Hence, the related Lagrangian Lφ is defined as

Lφ =
1
2

φ̇2 −V(φ) . (34)

The form written in Equation (34) shows that the field φ is spatially homogeneous; then it
only depends on the cosmic time t. In addition, the related energy momentum of such a
field is written as

Tφ
µν = ∂µφ ∂νφ + gµν

(
1
2

φ̇2 −V(φ)

)
. (35)

From the conservation of Equation (35), i.e., Tφ
µν;µ = 0, one obtains the correspondence relations

ρ̄ext = ρ̄φ =
φ̇2

2
+ V(φ) , (36)

p̄ext = p̄φ =
φ̇2

2
−V(φ) , (37)

where the dot symbol denotes an ordinary derivative with respect to the cosmic time t. The
forms of Equations (36) and (37) couple with the inflation dynamics given by V(φ) to the
background evolution. Then, the quantities ρ̄ext and p̄ext can be written as a function of the
extrinsic scalar field φ.

In terms of fluid analogy given by Equation (26) and the direct sum of
Equations (36) and (37), and using Equations (31) and (32), one obtains

φ̇(a) =
√

ρext(0)(1 + w)a−
3
2 (1+w) . (38)

Using the relation φ̇ = aH φ
da and the inflation condition H2(a) ∼ 8πG

3 ρext(a), we integrate
Equation (38) to obtain the potential φ(a) as

φ(a) =

√
|3(1 + w)

8π
| Mpl ln a , (39)

where we denote the Planck mass as Mpl =
1√
G

. We consider the initial conditions φini = 0
and aini = 1. Putting the solution of Equation (39) in Equation (36), one obtains a potential
V(φ) in the form

V(φ) = V0e−α0φ/Mpl . (40)

For the sake of notation, we denote the quantity α0 in Equation (40) as α0 =
√
|24π(1 + w)|.

The models of such exponential form produce a power law inflation (PLI), first introduced
in Refs. [59–61]. For the time being, this type of potential has strong constraints imposed
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by Planck data [62] and is ruled out at more than 2-σ confidence regions. Moreover, PLI
inflation requires a graceful exit in the slow-roll approximation. In such a model, the first
slow-roll Hubble parameter is constant that leads to an eternal inflation [41]. Such potential
was also studied in the context of M-theory [63] and RSII scenarios [64]. Due to the strong
constraints on PLI, based on Equation (40), our numerical study will take an effective
quintessential dimensionless potential V(φ)e f f to generalize Equation (40), such as

V(φ)e f f = VPLI(φ) + VLMI(φ) , (41)

where VPLI(φ) denotes our PLI potential given by Equation (40). The quantity VLMI(φ) de-
notes a phenomenological potential that defines the so-called logamediate inflation (LMI) [65,66]
in the form

VLMI(φ) = V0 γ3

(
φ

Mpl

)γ2

e
−γ1

(
φ

Mpl

)γ4

, (42)

in which (γ1, γ2, γ3, γ4) are free dimensionless parameters. For our purposes, we need to
impose on Equation (40) V0 = Ṽ0 = 1, α0 = α1, and φ = φ̃Mpl . A similar adaptation is
applied to Equation (42) with V0 = Ṽ0 = 1, γ1 = α1, γ2 = 2, γ3 = −|α2| (α2 > 0), γ4 = 1,
and φ = φ̃Mpl . Hence, the resulting potential V(φ)e f f is given by

V(φ)e f f = Ṽ0 e−α1φ̃(1− α2φ̃2) . (43)

We point out that (α1, α2) are dimensionless parameters. Assuming that the field should

roll in a direction wherein
∂V(φ)e f f

∂φ = 0, starting at φ = φmin = 1, one obtains the condition
α2 = | α1

2−α1
| > 0. For our purposes, the positivity of α2 warrants a logistic equation set in

the domain of real numbers. Therefore, the model turns again as being a one-parameter
model from an extrinsic origin. This guarantees a reheating phase without relying on
any approximation in a future work. It is worth noting that when an extrinsic curvature
vanishes α1 = α0 = 0, then α2 = 0, and inflation ceases.

To study the evolution of the effective fluid parameter w and the characteristics of
the potential V(φ)e f f , we adopt a dynamical system approach as in the works of Clemson
and Liddle [67] and Pantazis, Nesseris, and Perivolaropoulos [68]. In the latter, they use a
quintessence potential of the form

V(φ) = e−β1φ(1 + β2φ) , (44)

where β1 and β2 are free dimensionless parameters with β1 > β2. For comparison purposes,
such potential will be also taken into account as a reference in contrast with Equation (43).

5.2. Numerical Parameter Estimation

In order to obtain the parameter estimation of our toy model by the potential in
Equation (43), we define a “true” model that produces a close curve pattern with the
adopted priors to the reference model in Equation (44).

As shown in Figure 1, we have a comparison between the potentials from Equation (44)
(blue line) and our model defined by Equation (43) (black line). They present a similar
pattern with the same peak height, and the latter model presents a narrower basis of its
curve (black line). Both cases positively respond to a remote future passing through an
accelerated phase.
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Figure 1. Comparison between the potentials from Equation (44) (blue line) and Equation (43) (black
line) that indicates a close overall pattern of such potentials. The blue line was produced by adopted
parameters {(β1, β2) = (5, 1.2)}, as shown in Ref. [68]. The black line was produced by the adopted
priors that define our “true” model with the values {(α1, α2) = (4, 2)}.

In order to use the DYNESTY [42,43] Python code for estimating Bayesian posteriors and
evidences, we adopt priors for the “true model” set as {(α1(true), α2(true), f(true) = (4, 2, 1.7)},
where the quantity f is defined as a mechanism to control the variance in the resulting
Gaussian distributions. To estimate the values of the parameters α1 and α2 on how they
can approximate to the “true” values, we define a prior transform uθ = (ua f 1, ua f 2, u f ) as

α1 = 5ua f 1 + 0.5; (45)

α2 = 2.5ua f 2 + 0.5; (46)

ln f = 2.8u f − 1. (47)

We start generating n = 30000 synthetic random points and 8000 live points for better
efficiency. On the other hand, under the circumstances we have defined, during the runs,
we noted that generating larger random points does not change the results. To estimate
both evidence and posteriors, DYNESTY dynamically allocates points in the runs. Each point
also carries information of their covariances. It allows for creating a variable number of
Ki live points at each iteration i to realize a change in a prior volume Xi. From Numpy 5000
random seeds and the celerite [69] library for a scalable Gaussian process, we obtained
a total of 144659 interactions in the final of the runs. We have that the prior volume and
evidence are controlled when the variation ∆ ln Xi ≈ Ki, as shown in Figure 2.

In Figure 3, we show the posteriors in the contour plots with the values of the pa-
rameters (α1, α2, f ). In the lower panels, we have confidence regions for marginalized
posteriors. In the upper panels, the estimated values of the parameters and their Gaussian
distributions are shown. In both panels, the vertical lines indicate the values of the “true”
model, defined by the priors, and horizontal lines indicate the estimated values for the
model parameters.
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Figure 2. In the left panels, we have the control of the prior volume ln Xi of random points that
shrinks exponentially over time to determine the evidence. The right panels show the posteriors
(Gaussian distribution of the parameters). In both sets of panels, the red lines denote the priors (“true”
values) adopted in the code.

Figure 3. Contour plot for the marginalized posteriors for (α1, α2, ln f ) parameters at 10%, 40%, 65%,
and 85% confidence levels. Vertical dashed lines mark the 2σ region, while horizontal lines indicate
the mean values of the marginalized parameters.
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Using the logarithmic Jeffrey’s scale [70] to input a qualitative classification of the
evidence, our results indicate barely worth-mentioning evidence against the model as com-
pared with the “true” model with roughly X ∼ 10−7 for the Bayes factor that is well
accommodated in the range 0 ≤ X < 1.1. As traditionally known, Jeffrey’s scale classifies it
as weak evidence against the model with the interval 1.1 ≤ X < 3. The range 3 ≤ X < 5
indicates strong evidence disfavoring the competing model. Finally, very strong evidence
against the competing model is achieved at X ≥ 5.

5.3. Dynamical System and Comparison with the Potentials

Following Refs. [67,68], one constructs a dynamical system with the coordinates

x =
φ̇√
6H

, (48)

y =

√
V

3H2 , (49)

λ =
−V′

V
, (50)

where the prime sign (′) indicates an ordinary derivative with respect to the scalar field φ.
The variables (x, y, λ) can be written in the form of an autonomous system as

dx
dN

= −3x +

√
3
2

λy2 +
3
2

x(1 + x2 − y2) , (51)

dy
dN

= −
√

3
2

λxy +
3
2

y(1 + x2 − y2) , (52)

dλ

dN
= −
√

6λ2(Γ− 1)x . (53)

The quantity N is the number of e-foldings of inflation that is commonly defined as the
logarithm of the scale factor a(t) such as N = N0 + ln a. The term N0 denotes the number
of the e-folds set by the current time. The quantity Γ is defined in terms of the related
potential as

Γ =
VV′′

V′2
, (54)

in which the double prime symbol (′′) denotes an ordinary second derivative with respect
to the scalar field φ. From Equation (36), and using Equations (48) and (49), one obtains

Ωext(x, y) = x2 + y2 , (55)

for a locally universe flat space curvature. Defining a corresponding effective equation of
the state γext, one writes

γext = 1 + w =
2x2

x2 + y2 . (56)

By direct calculations of Equations (48)–(50), with the initial value of λini = α1, we
obtain the logistic equation

dλ

dN
= 2
√

6(λ− (
√

α2 + α1))
2x . (57)

In Figure 4, we show the resulting curves from the models of Equation (44) (black lines) and
our model defined by Equation (43) (red lines), showing the evolution for the dynamical
variable λi running from 0.1 to 1, denoted by the outer and inner curves, respectively.
The curves were obtained, setting the values of Ωext = Ωφ = 0.68 and the thawing initial
conditions to both models as N0 = −15, xi = 10−5, yi = 10−3. As a result, the evolution of
the curves of our model begins earlier than the reference model in Equation (44) shown by
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the red lines. In both cases, the semicircles reach the x-axis at ∼0.82. The curves close to
this value are compatible with the models of late cosmic acceleration of the universe. The
origin represents an initial point in an early matter domination universe.

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x(N)

y(
N
)

Figure 4. Comparison between the potentials from Equation (44) (black lines) and Equation (43)
(red lines) that shows the evolution of the related autonomous systems. The outer continuous
blue line and the dashed blue line semicircles represent the x-axis with x ∼

√
Ωext ∼ 0.82 and

Ωext = Ωφ = 0.68, respectively.

Henceforth, we use the estimated values of the parameters of out model to evaluate
how a resulting EoS of an effective w(z) evolves. For this matter, we adapt the publicly
code provided in [68]. The set of equations of Equations (48)–(50) has the initial conditions
N0 = −15, xi = 10−5; yi = 10−3, λ[N0] = α1 for thawing models. For freezing models, one
defines N0 = Log[10−6], xi = −0.5; yi = 0.1, λ[N0] = 0.1. We use CPL parameterization as
a function of the redshift written as

w(z) = w0 + wa
z

1 + z
, (58)

where (w0, wa) are parameters used to evaluate how w(z) tends to depart away or converge
to ΛCDM values. In conjunction with CPL, we use BA parameterization, which is given by

w(z) = w0 + wa
z(1 + z)
1 + z2 . (59)

We adopt the maximum value for the redshift as zmax = 2 and the maximum number of
iterations i as imax = 50.

In Figure 5, we have comparisons between CPL and BA parameterizations of the
effective model in Equation (43) (with the values of Figure 5). Thus, we have a test adopting
generic thawing and freezing models by means of Equations (48)–(50), and we obtain
similar results as in Ref. [68]. The model prefers a thawing behavior from CPL (blue line)
and BA (red line) parameterizations that are closer to numerical points (dotted line). When
plotting the freezing pattern for the model, we obtained curves out of range with a large
difference from the numerical curve, and they were omitted.
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Figure 5. Behavior of numerical curves (dotted line) produced from the related autonomous system
of the model preferring a thawing pattern of CPL (blue line) and BA (red line) parameterizations.

6. Remarks

We investigate the extrinsic curvature as an inflaton scalar field. The starting point lies
in the correlation of the model parameter that is constrained for both accelerated regimes.
For instance, the dark energy accelerated regime relies on w < −1/3; then we expect
w > −1/3 for inflationary regimes in accordance with Figure 5. We also present a fluid
approach in order to provide a better understanding of the related dynamics with a relation
between the model parameter β0 and the fluid parameter w, as shown in Equation (26).
Our intent is to construct the basis of a geometrical model that fully relies on gravitational
interactions. In this paper, we focus our attention on the inflationary period obtaining a
logarithm inflaton field that generates an exponential potential in Equation (40). This form
of potential creates a PLI mechanism that has strong constraints imposed by Planck data [62].
Then, we have proposed an effective form for a new potential defined in Equation (43) to
generalize Equation (40). We have numerically restrained our model parameters by means
of a Bayesian analysis obtained from random points using the DYNESTY code. Establishing a
quintessential potential from a reference model of Equation (44) used in Ref. [68], we have
obtained the related autonomous system of equations for forecasting models compatible
with the universe evolution. Moreover, we have shown a comparison with CPL and BA
parameterizations of our model that prefers a thawing cosmic scenario.

In this paper, we have considered all the cosmic components to be immutable. The
numerical analysis gave us an optimistic scenario for further studies on the unification of
inflation with late cosmic acceleration. The stability of the present model in this numerical
evaluation allows us to use more realistic contexts to produce red spectra with a scalar
spectral tilt and a small tensor-to-scalar ratio. As a subject of a future work, we will consider
the full perturbation equations of the model in a scenario with a matter-sourced anisotropic
stress and a series of latest astronomical data from cosmic microwave background radiation
(CMB) experiments, such as Planck collaboration.
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