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Abstract: We review conceptual aspects of inflationary scenarios able to produce primordial black
holes by amplifying the size of curvature fluctuations to the level required to trigger black hole
formation. We identify general mechanisms to do so, both for single- and multiple-field inflation. In
single-field inflation, the spectrum of curvature fluctuations is enhanced by pronounced gradients
of background quantities controlling the cosmological dynamics, which can induce brief phases of
non-slow-roll inflationary evolution. In multiple-field inflation, the amplification occurs through
appropriate couplings with additional sectors characterized by tachyonic instabilities that enhance
the size of their fluctuations. As representative examples, we consider axion inflation and two-field
models of inflation with rapid turns in field space. We develop our discussion in a pedagogical
manner by including some of the most relevant calculations and by guiding the reader through the
existing theoretical literature, emphasizing general themes common to several models.
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1. Introduction

Primordial black holes: history of the concept
Inflation, a short period of accelerated expansion in the very early moments of the

universe, has become one of the main pillars of modern cosmology [1,2]. Leaving aside
its success in addressing the puzzles of the standard hot Big Bang cosmology, inflation
provides an explanation for the quantum mechanical origin of structures such as galaxies
(including our own) and the anisotropies in the cosmic microwave background (CMB)
radiation [3]. In the last two decades, advances in observational cosmology and, in par-
ticular, observations of the CMB and of the large-scale structure (LSS) of our universe
have confirmed the predictions of inflation and arguably established its status as the main
theoretical framework describing the very early universe [4,5]. These successes notwith-
standing, CMB and LSS probes only provide us with information on the early universe
at the largest cosmological scales (10−4 . k [Mpc−1] . 10−1) corresponding to a small
fraction of the early stages of inflationary dynamics. Hence, while inflation provides us
with a consistent, testable framework to understand the initial conditions in the universe at
the largest scales, we do not have direct access to most of the inflationary dynamics or to
the evolution of the universe in the early post-inflationary era. Importantly, these stages
could be host to a number of interesting phenomena, including the production of stable
relics such as dark matter (see, e.g., [6] for a historical review of dark matter), which is
essential in understanding the world we observe today, as well as for establishing new
physics. Indeed, the existence of non-luminous, cold dark matter (CDM) that constitutes
a quarter of the total energy budget in the universe [7] is one of the most glaring pieces
of evidence beyond Standard Model physics [8]. The absence of signatures from collider
experiments, along with unsuccessful direct and indirect detection searches, have all made
the DM puzzle particularly compelling [9].
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An intriguing and economical explanation that might account for DM density in our
universe is a scenario wherein DM is made of compact objects such as primordial black holes
(PBHs). Pioneered by the works of Y. Zel’dovic and I. Novikov [10] and S. Hawking [11],
the initial ideas in this direction began with the realization that PBHs could form as a result
of the gravitational collapse of over-dense inhomogeneities in the early universe. In the
mid 1970s, it was realized in the works of B. Carr [12,13] and G. Chapline [14] that PBHs
could contribute to DM density and provide the seeds for the supermassive BHs populating
our universe [15]. Following these theoretical progressions, the interest of the scientific
community in PBHs increased in the mid 1990s with the reported detection of microlensing
events from the MACHO collaboration [16]. An immediate interpretation of these results
suggested the possibility that a significant fraction of mass density in our galaxy could
be composed of subsolar-mass PBHs. However, these considerations were later rendered
invalid by the findings of the EROS [17] and OGLE [18,19] collaborations, concluding that
only a small fraction of mass in the Milky Way could be in the form of PBHs.

Stimulated both by the absence of signals for well-motivated particle DM candi-
dates and the first detection of gravitational waves (GWs) from merging BHs by the the
LIGO/VIRGO collaboration [20], a second surge of interest in PBHs was ignited (see
Figure 1). In particular, different groups suggested that merging PBHs could be responsi-
ble for the observed GW signals, constituting a significant fraction of DM density in our
universe [21–23]. Since the first appearance of these articles, a significant amount of effort
has been pushed forward by the community to search for and constrain the abundance
of PBHs by utilizing their gravitational and electromagnetic effects on the environment
at small scales. Various experiments set stringent constraints on PBH abundance for the
solar- and subsolar-mass range, leaving a viable window for this scenario of tiny PBH
masses (10−17 . Mpbh [M�] . 10−12 (M� ' 1.98× 1033 gr)) as the totality of DM (see,
e.g., [24–26]).
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Figure 1. Total and relative number of manuscripts in the literature on arXiv from 1996 until today
related to various aspects regarding primordial black holes. Spikes of activity in the literature,
particularly after the mid 1990s due to claimed lensing events by the the MACHO collaboration and
GW detection by LIGO in 2015, are clearly visible. Data were extracted from https://www.benty-
fields.com/trending (accessed on 24 January 2023).

It should be noted that some of the constraints derived in the literature make specific
assumptions about the formation process and the subsequent evolution of PBHs (such as
monochromatic mass functions, clustering and accretion processes, etc.) and about other
model-dependent specifics (such as non-Gaussianity) that could relax or tighten these
constraints1. Since we mostly focus on the subject of inflationary model building, we will
not review these issues and aforementioned constraints, but the interested reader can find
more details in excellent reviews published recently, see e.g., [28–34].
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PBHs are likely to form well before the end of the radiation-dominated era (i.e., be-
fore the so-called matter–radiation equality) and behave like cold and collision-less mat-
ter. Therefore, they constitute an interesting DM candidate if they are massive enough
(Mpbh & 1015 g ' 10−18M�) to ensure a lifetime comparable with the age of the uni-
verse [35]2. In this context, a particularly appealing aspect of PBH dark matter is its
economical and minimal structure in the sense that this scenario does not require any
additional beyond-Standard-Model (BSM) physics (such as new particles and interactions),
provided that one alters the not-so-well-constrained early universe at small scales by in-
troducing a viable mechanism to account for the production of large density fluctuations
required for PBH formation.

Similar to the generation of CMB anisotropies, a compelling and natural source of these
perturbations in the early universe could be the quantum fluctuations that are stretched
outside the horizon during inflation. However, in order to generate such over-dense regions
that can collapse to form PBHs in the post-inflationary universe, one needs to devise a
mechanism to enhance, by several orders of magnitude, the inflationary scalar perturbations
at small scales (k � kcmb) (corresponding to late stages of inflation) far above the values
required to match CMB observations. As the observed temperature anisotropies prefer
a red-tilted power spectrum at CMB scales, this situation generally requires a blue-tilted
power spectrum or some specific features at scales associated with PBH formation.

In the context of canonical single scalar field inflation, the first ideas in this direction
appeared in works by P. Ivanov, P. Naselsky and I. Novikov [38] (see also [39]). In particular,
these authors showed that if the inflation potential has a very flat plateau-like region for field
ranges corresponding to the late stages of accelerated expansion, the inflationary dynamics
enters a “non-attractor” regime called ultra-slow-roll (USR) inflation [40]. This leads to
super-horizon growth of scalar perturbations [41–43] that can eventually trigger PBH
formation in the post-inflationary universe3. Many explicit single-field inflationary models
that exhibit similar local features were subsequently studied in the literature; for a partial
list of popular works, see, e.g., [46–56] (see also [57–63] for earlier constructions). In the
context of single scalar field inflation, another possibility to generate an enhancement in
the scalar power spectrum is to invoke a variation of the sound speed of scalar fluctuations,
for example, through a reduction in the speed of sound (c2

s ) [52,64,65] or through rapid
oscillation (c2

s ), which triggers a resonant instability in the scalar sector [66,67].
From a top-down model-building perspective, a rich particle content during inflation

is not just an interesting possibility, but appears to be a common outcome of many BSM
theories [68]. Since the early days of research on PBHs, multifield inflationary scenarios
have also attracted considerable attention as a natural way to realize enhancement in the
scalar perturbations at small scales. For instance, large scalar perturbations may arise
through instabilities arising in the scalar sector, e.g., during the waterfall phase of hybrid
inflation [57,69,70] or due to turning trajectories in the multiscalar inflationary landscape,
as reported recently in [71–78]. Another intriguing possibility in this context is to employ
axion-gauge field dynamics during inflation [79–86]. In these models, particle production
in the gauge field sector act as a source for the scalar fluctuations and can therefore be
responsible for PBH formation.

A common feature of all inflationary scenarios capable of producing PBH populations
is the inevitable production of a stochastic GW background (SGWB) induced through
higher-order gravitational interactions between enhanced scalar and tensor fluctuations
of the metric [87–89]. Interestingly, this signal may carry crucial information about the
properties of its sources, including the amplitude, statistics and spectral shape of scalar
perturbations (see, e.g., [90–98]) and could provide invaluable information about the
underlying inflationary production mechanism. Furthermore, since the resulting GW
background interacts very weakly with the intervening matter between the time of its
formation and today, it leads to a rather clean probe of the underlying PBH formation
scenario. This allows us to access inflationary dynamics on scales much smaller than those
currently probed with CMB and LSS experiments through space- and ground-based GW
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interferometers including the Laser Interferometer Space Antenna (LISA) [99,100], Pulsar
Timing Array (PTA) experiments [101,102] and DECIGO [103,104]. For a detailed review of
induced SGWB and the dependence of its properties on the post-inflationary expansion
history, see [105].

The structure of this review

If their origin is attributed to the large primordial fluctuations, PBHs may offer us a
unique window to probe inflationary dynamics at sub-CMB scales. In this work, focusing
mainly on the activity in the literature within the last few years, we aim to revisit and
review different inflationary production mechanisms of PBHs4 and their main predictions,
in a heuristic and pedagogical manner. The audience we have in mind is graduate students
or researchers in related fields who wish to learn about inflation and primordial black
holes and to be guided through the large literature on the subject by emphasizing common
conceptual themes behind many different realizations.

This review is organized as follows. In Section 2, we present a simplified, intuitive
picture of PBH formation in the inflationary universe and provide an approximate estimate
of the required conditions to produce PBHs from the perspective of inflationary dynamics.
In Section 3, we discuss ideas to enhance the curvature power spectrum within single-field
inflation, as required for PBH formation. These mechanisms exploit large gradients in
background quantities that are converted into an amplification of fluctuations. Besides
reviewing analytic findings, we also develop numerical analysis and provide a link to
a code for reproducing our results (see Notes 21). In Section 4, we focus on multifield
inflationary scenarios that can generate PBH populations including particle production
during axion inflation or sudden turns in the multiscalar inflationary landscape. Finally,
we end with a discussion on future directions in Section 5. We supplement this work with
several technical appendices, where we provide useful formulas and calculations used in
the main body of this work.

Conventions

Throughout this review, we work with natural units (h̄ = c = 1). We use the reduced
Planck mass defined as M2

pl = (8πG)−1 and retain it in the equations unless otherwise
stated. For time-dependent quantities, over dots and primes denote derivatives with
respect to cosmological time (t) and conformal time (dτ ≡ dt/a(t)), respectively, where
a(t) is the scale factor of the background FLRW metric (gµν = diag(−1, a2, a2, a2)).

2. PBH Formation in the Early Universe

We start by providing a physical description of PBH formation in the early universe,
as comprised of an early stage of inflation, followed by radiation and matter domination
(for a mini review of background cosmology, see Appendix A). Our aim is to set the stage
and relate basic properties of a PBH population—as their mass and abundance—with the
features of primordial curvature fluctuations originating from inflation. For this purpose,
in Section 2.1, we describe the mechanism of PBH formation in the post-inflationary
universe, emphasizing its nature as a causal process controlled by inflationary quantum
fluctuations. In Section 2.2, we discuss relevant concepts such as the threshold for collapse
into black holes and the corresponding mass and collapse fraction of PBHs relevant for a
computation of their abundance. Finally, in Section 2.3, we relate the PBH abundance to
primordial physics during inflation with the aim of determining the amplitude of scalar
fluctuations required to produce a population of PBHs with interesting consequences for
cosmology. All the concepts we discuss form the basis and motivations for our analysis of
inflationary mechanisms for PBH production, which we develop in Sections 3 and 4.

Y Main References: In compiling the materials for this section and to set the main frame-
work for our discussion, we benefited from the ideas presented in the reviews by C. Byrnes
and P. Cole [126] and M. Sasaki et al. [30], as well as the Ph.D. thesis of G. Franciolini [127].



Universe 2023, 9, 203 5 of 78

2.1. PBH Formation as a Causal Process

An important concept in an expanding space–time is the horizon scale, which is crucial
for understanding the causal properties of the dynamics of perturbations that are responsible
for PBH formation. As an indicator of the rate of expansion of our universe, the Hubble
rate (H(t) ≡ ȧ(t)/a(t)) has dimensions of inverse length (or time−1 in natural units). This
makes the quantity H−1 (Hubble horizon) a natural candidate for a physical length scale in
an expanding universe. Commonly referred to as the Hubble distance, the quantity 1/H (or
c/H if one wishes to recover physical units) measures the distance that light travels within
one unit of Hubble time. Therefore, it can be considered a good proxy for a (time-dependent)
length scale controlling the size of a causal patch in our universe. Bearing in mind that we
relate physical quantities to comoving quantities by the scale factor (a(t)), a useful quantity
that guides us in this direction is the comoving Hubble horizon ((aH)−1) and, in particular,
its time evolution. When expressed in terms of the second derivative of the scale factor,
the time derivative of the comoving horizon can be written as

d
dt

(
1

aH

)
= − ä

a2H2 . (1)

Notice that during inflation, ä > 0; hence, the comoving horizon scale is a decreasing
function of time, whereas in a decelerating universe with ä < 0 (i.e., in the post-inflationary
universe before dark energy domination), this quantity is an increasing function of time.
The property that the comoving horizon decreases during an accelerated expansion is
perhaps the most important element to understand inflation as a solution of the horizon
problem of hot Big Bang cosmology and a framework for the quantum mechanical origin
of structures in our universe5. The time dependence of the comoving Hubble horizon is
controlled by the value of the background equation of state (w) (EoS) as (see Appendix A)

(aH)−1 ∝ a(1+3w)/2. (2)

Therefore, during inflation, w ' −1 and (aH)−1 ∝ a−1, while during the subsequent
phases of the radiation-dominated (RDU) and matter-dominated universe (MDU), the co-
moving horizon evolves as (aH)−1 ∝ a1 and (aH)−1 ∝ a1/2, respectively. The evolution of
the comoving horizon with respect to the logarithm-of-scale factor (ln(a)) is illustrated in
Figure 2.

When we study the statistical properties of fluctuations in Fourier space, we often
label a given perturbation mode with a comoving length scale (k−1) measured in units of
megaparsecs (Mpc = 3.26× 106 light years ' 3.1× 1019 km). Therefore, a crucial quantity
to conceptualize the behavior of perturbations in the inflationary universe is the ratio of the
wavelength of a given mode with respect to the size of the comoving Hubble horizon, i.e.,
(aH)/k. Fluctuations with wavelengths larger than the comoving horizon are referred to as
superhorizon modes (k < aH), while subhorizon perturbations satisfy k > aH. Each mode
crosses the horizon at k = aH. As shown in Figure 2, a typical fluctuation with a comoving
size of k−1 (horizontal lines) begins its life deep inside the horizon (typically as a quantum
fluctuation); then, it leaves the horizon to become a superhorizon mode, and, finally, it
re-enters the comoving horizon in the post-inflationary universe. Large-scale modes (with
smaller k) exit the horizon earlier than small-scale modes and re-enter the horizon at a later
time in the post-inflationary era. For definiteness, in Figure 2, we represent the behavior
of the comoving curvature perturbation (R) [129,130] (see [128] for a textbook discussion),
which plays an important role in our discussion.

In fact, apart from providing seeds for the observed cosmic microwave background
(CMB) anisotropies at large scales, the dynamics of curvature fluctuations (R) may also be
at play for PBH formation, provided that cosmological fluctuations exhibit specific ‘initial
conditions’ at small scales. For this purpose, denoting k = kpbh � kcmb as the comoving
momentum associated with PBH formation, we assume that the curvature power spectrum
at these small scales acquires an amplification well above the level required to match CMB
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observations: PR(kpbh) � PR(kcmb) ∼ 10−9 [4] (more on this later). Soon after the end
of inflation, i.e., after reheating6, the modes associated with the enhancement (e.g., modes
with a comoving size of k−1

pbh) become the seeds of density perturbations in the RDU:

PR(kpbh)
1/2 ∼ δρ

ρ
. (3)

Since the comoving Hubble scale grows with respect to comoving scales in the RDU,
the characteristic scale of perturbations eventually becomes comparable to the comoving
horizon at a = af, where kpbh = (aH)f (the subscript f indicates PBH formation time). At this
point, gravitational interactions can trigger the collapse of over-dense regions if the latter have
a sufficient over-density above a certain collapse threshold (see the discussion below).

Notice that at subhorizon scales, the radiation pressure can overcome the gravitational
collapse. Therefore, the production of PBHs effectively occurs around horizon re-entry.
This implies that the concept of horizon re-entry is crucial for our understanding of PBH
formation as a causal process. In fact, only when the physical wavelength of a perturbation
becomes comparable to the causal distance (1/H) is gravity able to communicate the
presence of an over-density and to initiate gravitational collapse. A schematic diagram that
summarizes the discussion presented above is illustrated in Figure 2.

In what comes next, we briefly discuss relevant quantities such as the threshold
for collapse and the mass and collapse fractions of PBHs, which are important for the
computation of the current PBH abundance.
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kpbh < aH

Figure 2. A sketch of the time evolution of curvature fluctuations (R) (labeled by a comoving scale
(k−1)) with respect to the comoving Hubble horizon (dotted lines) ((aH)−1) in the early universe.
In the post-inflationary universe, areh denotes the reheating time, aeq refers to the time of matter–
radiation equality, aMDE refers to matter–dark energy equality and a0 denotes the value of the scale
factor today. The blue horizontal line indicates the comoving size of a representative small-scale
perturbation responsible for PBH formation. If the power spectrum associated with these modes is
enhanced during inflation, they can transfer their energy to density perturbations during radiation
domination and ignite PBH formation upon horizon re-entry at a = aform ≡ af.

2.2. The Relevant Quantities for PBH Abundance

The threshold for collapse

The first criterion of the collapse threshold—defined as δc hereafter—for PBH formation
was formulated by B. Carr in 1975 using a Jeans-type instability argument within Newtonian
gravity [13]. In Carr’s estimate, an over-density in RDU would collapse upon horizon
re-entry if the fractional over-density of the perturbation is larger than the sound speed
square of density perturbations (c2

s ), which is a measure of how fast a pressure wave caused
by the over-density can travel from the center to the edge of a local fluctuation. In the RDU,
the speed of sound of perturbations satisfies c2

s = w = 1/3 so that its square is directly
related to EoS. This result implies that a perturbation can collapse to form PBHs if its over-
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density is larger than the pressure exerted by the radiation pressure7. Implementing general
relativistic effects, the second analytical estimate was derived in [132], obtaining δc ' 0.4
during the RDU. These results notwithstanding, further studies in this direction have found
that the threshold depends on the initial profile of curvature perturbation [133–136]8.

At this point, we emphasize that a more precise criterion for the threshold of collapse is
provided in terms of the so-called compaction function (which is a measure of excess mass
within a given spatial volume; see, e.g., [135,139]) the maximum value of which results
in δc. In this prescription, we note that contrary to the simplistic argument presented in
Appendix B, there is no one-to-one correspondence between the threshold value and the
peak over-density ((3) δ ≡ δρ/ρ), although they are related; see, e.g., [140]. Keeping this
in mind, in the rest of this work, we will continue to refer to the threshold using the δc
notation as commonly practiced in the literature.

An accurate characterization of the threshold requires a dedicated analysis of the
evolution of perturbations in the non-linear regime after horizon re-entry, which can be
done with the help of numerical simulations (see, e.g., [141] for a review). Utilizing the peak
of the criterion of compaction function as the definition of the threshold (δc), simulations
performed in the radiation fluid for different primordial perturbation profiles lead to a
range of values (δc = 0.4− 2/3) depending on the shape of the density peak [135,142].
Although in general, threshold depends on the shape of the primordial perturbation,
refs. [142,143] showed the existence of an approximate universal value for the threshold
that depends only on the type of ambient fluid and geometry. For a detailed account of the
threshold and its history, we refer the reader to a recent review [141].

The mass of PBHs

The characteristic mass of PBHs can be related to the mass contained within the
Hubble horizon at the time of formation (a = af) through an efficiency factor (γ = 0.2),
as suggested by the analytical model developed in [13]:

M(f)
pbh = γ MH

∣∣∣∣
a=af

= γ M(eq)
H

(
M(f)

H

M(eq)
H

)
=

(
af

aeq

)2
γ M(eq)

H . (4)

In this formula, MH(t) ≡ 4πρ(t)/(3H(t)3) is the time-dependent horizon mass, where
the sub/superscripts “f” and “eq” denote quantities evaluated at the time of PBH formation
and matter–radiation equality, respectively; we use the standard relations H2 ∝ ρ ∝ a−4

during the RDU. Noting that the horizon mass at the time of equality is given by M(eq)
H '

2.8× 1017 M� [90], Equation (4) informs us that PBHs, contrary to astrophysical black holes,
can, in principle, span a wide range of masses, depending on their formation time with
respect to matter–radiation equality.

Making use of the time-dependent horizon mass as above, we can relate the PBH mass
at formation to the characteristic size of the perturbations that leave the horizon during
inflation and are responsible for PBH formation. For this purpose, we first rewrite the PBH
mass at formation as

M(f)
pbh =

(
ρf

ρeq

)1/2(
Heq

Hf

)2
γ M(eq)

H . (5)

Using the property of entropy conservation (gs(T) T3 a3 = constant) and the scaling
property of the energy density with respect to the temperature of the plasma during the
RDU (ρ ∝ g∗(T) T4), Equation (5) can be re-expressed as the following relation

M(f)
pbh(kpbh) =

(
g∗(Tf)

g∗
(
Teq
)
)1/2(

gs
(
Teq
)

gs(Tf)

)2/3(
keq

kpbh

)2

γ M(eq)
H ,

'
( γ

0.2

)( g∗(Tf)

106.75

)−1/6
(

kpbh

3.2× 105 Mpc−1

)−2

30M� . (6)
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In the second line, we assume that the effective number of relativistic degrees of
freedom in energy density and entropy are equal, i.e., we set g∗(T) = gs(T) and take
g∗(Teq) ' 3.389 with keq ' 0.0104 Mpc−1, accordingly with the latest Planck results [7].
Equation (6) indicates that for masses of PBHs that can be associated with recent LIGO
observations (Mpbh ' 30M�), the peak scale of perturbations responsible for PBH forma-
tion is much smaller compared to CMB scales (kpbh � kcmb). For subsolar-mass PBHs,
the corresponding peak scale for PBH formation becomes progressively smaller. For
example, considering the currently allowed sublunar range (Mmoon ' 3.7× 10−8 M�)
of PBH masses (10−17 . Mpbh[M�] . 10−12), which are objects that can account for
the totality of dark matter, the range of scales associated with PBH formation is quite
small: 1012 . kpbh [Mpc−1] . 1015. See Table 1 for an easier-to-visualize summary of
these considerations.

Elaborating on Equation (6), we can also derive a rough relation between the PBH mass
at formation with the the number of e-folds (Npbh) at which the PBH-forming modes leave the
horizon during inflation. For this purpose, we first notice that kpbh/kcmb = (aH)pbh/(aH)cmb,
where the values of the Hubble rate and scale factor should be evaluated at the scales of
horizon exit during inflation (see Figure 2). Assuming a roughly constant slow-roll pa-
rameter (ε ≡ −Ḣ/H2 � 1) between the horizon exit time of modes associated with
CMB and PBH formation, respectively, we can relate the Hubble and the scale factor as
Hpbh = Hcmb e−ε(Npbh−Ncmb) and apbh = acmb eNpbh−Ncmb , where Npbh > Ncmb so that we
count e-folds forward in time with respect to the horizon exit of the CMB mode10. Using the
last two relations, we find kpbh/kcmb ' e(Npbh−Ncmb)(1−ε); once plugged into Equation (6),
assuming kcmb = 0.002 Mpc−1, we find

M(f)
pbh(Npbh) ≈ 7.7× 1017M� e−2(Npbh−Ncmb)(1−ε)

( γ

0.2

)( g∗(Tf)

106.75

)−1/6
. (7)

Modes that leave the horizon much later compared to CMB scales have Npbh − Ncmb � 1;
therefore, the exponential in Equation (7) can considerably reduce the overall large normal-
ization, leading to small PBH masses.

Table 1. Range of PBH mass(es) vs. the corresponding wave number(s) (kpbh) (see Equation (6)) of
the primordial modes, together with the approximate horizon crossing time measured with respect
to e-folding number of the pivot scale kcmb = 0.002 Mpc−1 leaves the horizon during inflation,
∆N ≡ Npbh − Ncmb > 0 (see Equation (7)). The first row refers to the corresponding quantities for
a typical supermassive black hole (SMBH), such as Sagittarius A∗ in the center of our galaxy [144].
The third row refers to asteroid-mass PBHs that can still account for a significant fraction (or all)
of DM density today [26]. The corresponding mass of the PBHs in terms of the Earth’s mass
(M� ' 3.33× 105 M⊕) and the mass of Mount Everest (MEverest = 8.1× 1014 kg ' 4.1× 10−16 M�)
are given in the last two columns on the right.

Mpbh [M�] ∆N kpbh [Mpc−1] Mpbh [M⊕] Mpbh [MEverest]

106 14 103 1011 1021

100–102 18–21 105–106 105–107 1015–1017

10−17–10−12 34–40 1012–1015 10−12–10−7 10−2–103

PBH abundance

After discussing possible masses for PBHs and how they depend on the dynamics of
inflation, we analyze the notion of abundance of PBHs relative to the energy density of other
species. We can compute this quantity during two epochs: today and at PBH formation.
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When considering the present-day fraction of PBH density, it is a common practice to
relate the PBH abundance to present-day dark matter density, introducing the quantity

fpbh ≡
Ωpbh

Ωdm
, (8)

where for each species (i), we define Ωi ≡ ρi,0 /ρc,0 , with subscript “0” denoting quantities
evaluated today and ρc,0 = 3H2

0 M2
pl representing the critical density. Planck measurements

provide the following value for the dark matter abundance [7],

Ωdmh2 = 0.120± 0.001, (9)

in terms of h = 0.6736 ± 0.0054, which measures the Hubble rate (H0) in units of
100 km s−1 Mpc−1.

We can then relate fpbh today to the density fraction of PBHs at the epoch of their
formation, denoting this quantity with β. In fact, since we assume that PBH formation
takes place during the RDU and sinc after formation, the PBH density scales as ρpbh ∝ a−3,
we can write

β ≡
ρpbh

ρ

∣∣∣∣
a=af

=
ρpbh,f

ρpbh,0

ρc,0

ρf

Ωdm fpbh =
ρpbh,f

ρpbh,0

ρc,0

ρeq

ρeq

ρf

Ωdm fpbh,

' 1
2

af
aeq

Ω−1
m Ωdm fpbh (10)

where Ωm is the current matter density in the universe. In (10), we normalize the scale
factor today as a0 = 1 and use the fact that the total energy density evolves as ρ ∝ a−4 for
af < a < aeq and ρ(aeq) = 2ρm,0 a−3

eq . Using the conservation of total entropy (gs(T) T3 a3 =
constant), we can re-express the factor af/aeq appearing in Equation (10) as follows:

af
aeq

=
Teq

Tf

(
gs(Teq)

gs(Tf)

)1/3

,

' 3.17× 10−9
( γ

0.2

)−1/2
(

g∗(Tf)

106.75

)−1/12

M(f)

pbh

M�




1/2

, (11)

where we make use of Equation (5) to relate Teq/Tf to the mass of PBHs at formation, and, as
before, we assume g∗(T) = gs(T). Finally, plugging (11) into (10) and implementing Planck
measurements on Ωdm (9) and Ωm (see Equation (A18)), we directly relate the abundance of
PBHs at formation (β) to their present-day fraction ( fpbh) in terms of the PBH mass at formation:

β ' 1.33× 10−9
( γ

0.2

)−1/2
(

g∗(Tf)

106.75

)−1/12

M(f)

pbh

M�




1/2

fpbh . (12)

Therefore, we learn that in the case in which PBH abundance accounts for the total
DM density today ( fpbh → 1), the fraction of the total density in the form of PBHs (β) at the
time of their formation takes extremely small values when considering an interesting range
of masses (M(f)

pbh). This situation reflects the fact that PBH formation in the early universe
is a very rare event. There is also another way to parameterize β in terms of the (relative)
number of collapsing regions to form PBHs. This approach is especially useful to relate the
PBH abundance to the statistical properties of primordial fluctuations, as we discuss below.

Collapse fraction of PBHs at formation

The PBH abundance at formation can also be interpreted as the fraction (β) of local
regions in the universe that has a density larger than a certain threshold. The standard
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treatment for estimating β is based on the so-called Press–Schechter model of gravitational
collapse, which is widely used in the literature on large-scale structure formation [145]11,

β ≡
ρpbh

ρ

∣∣∣∣
a=af

≡
∫ ∞

∆c
P(δ) dδ, (13)

where P(δ) is the probability distribution function (PDF), which describes the likelihood
that a given fluctuation has an over-density δ; we assume that a perturbation will collapse
to form a BH if its amplitude is larger than a critical value (∆c). Notice that ∆c is the critical
density contrast and, in general, cannot be identified with the threshold ∆c 6= δc, where the
latter can be defined as the peak value of the compaction function and can be related to an
averaged density contrast [141]. Note also that an alternative, more accurate approach to
compute the PBH abundance requires the use of the PDF of the compaction function (see,
e.g., [149]). A discussion of this approach and the actual relation between ∆c and δc would
bring us outside the pedagogical purposes of this review. For a detailed account of the use
the PDF of the compaction function and the influence of resulting non-linearities on the
PBH abundance, we refer the reader to [149] and references therein. For more details on the
relation between ∆c and δc, see also the review [141]. Keeping an eye on the recent progress
in the literature on these issues, we will continue to identify ∆c = δc for estimates of β in
this and the next section and continue to work with a PDF on over-density δ.

Let us assume that the latter follows a Gaussian distribution,

PG(δ) =
1√
2πσ

e−(δ−µ)2/2σ2
, (14)

where µ is the mean and σ2 is the variance of the distribution. In Figure 3, we represent
two Gaussian PDFs that have the same mean value and two different variances satisfying
σ2

2 > σ2
1 . As the second distribution is more “spread” with a larger variance compared

to the first one, the probability of an over-density larger than the critical threshold (δc) is
larger, as is PBH abundance β at formation, since the integral in Equation (13) has more
support within the integration limits δ ∈ [δc, ∞]. Hence, we can expect that the quantity (σ)
plays an important role in estimating the PBH abundance.

Figure 3. Two Gaussian PDFs of the over-density field (δ) with different variances (σ2
2 > σ2

1 ). Since
the second distribution has a larger variance, the area under the curve above the critical threshold
(δc ≤ δ ≤ ∞) is larger, leading to larger PBH abundance (β) (13) at formation.
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Using (12) and (13), we can estimate the required variance (σ2) of (14) that can give
rise to a large population of PBH today, as controlled by the quantity (β). Focusing on a
distribution with zero mean µ = 0 in (14) and integrating (13), we have

β =
∫ ∞

δc

dδ√
2πσ

exp
(
− δ2

2σ2

)
=

1
2

Erfc
(

δc√
2σ

)
' σ√

2πδc
exp

(
− δ2

c
2σ2

)
, (15)

where Erfc(x) = 1−Erf(x) is the complementary error function, and in the last equality, we
take δc � σ. As we will learn shortly, this is a good approximation for all practical purposes.
As concrete examples, substituting Equation (15) into Equation (12), we infer that a solar
mass PBH population with fpbh = 10−3 requires δc/σ ' 7, whereas for a population with

M(f)
pbh = 10−12M� and fpbh = 1, we need δc/σ ' 7.9. Assuming a threshold of δc = 0.4,

these results translate into σ ' 0.06 and σ ' 0.05, respectively. Notice also from (15) that
the PBH abundance at the time of formation is exponentially sensitive to the variance of
the distribution. We will dwell more on this dependence below. However, first, we discuss
the implications of these findings in terms of the amplitude of scalar fluctuations generated
during the phase of cosmic inflation.

2.3. Relating PBH Properties to Primordial Scalar Fluctuations

We now examine how to relate the notion of PBH abundance to the properties of
the comoving curvature fluctuation (R) [129,130], as produced in the early universe by
cosmic inflation. R is conserved on super Hubble scales as the modes evolve from the
inflationary phase to the RDU. We start by connecting the amplitude ofRwith the fractional
over-density (δ), which triggers PBH formation, as we learned in our previous discussion.
Working in Fourier space with Taylor expansion at the leading order in a gradient expansion
(controlled by the small parameter k/aH) and at a linear order inR, one finds [135]:

δ(~x, t) ' 2(1 + w)

(5 + 3w)

∇2R(~x)
(aH)2 + . . . =⇒ δk ' −

4
9

(
k

aH

)2
Rk, (16)

where w = 1/3 is used during the RDU, and . . . denotes terms of higher order (O(R2)) in
the curvature perturbation12. Defining the power spectrum of a Fourier variable (Xk) as

〈XkXk′〉 =
2π2

k3 PX(k) δ(3)(~k +~k′), (17)

the relation between the power spectrum of over-density and curvature perturbation is
then given by

Pδ(k) '
16
81

(
k

aH

)4
PR(k). (18)

In the computation of the density contrast, one should typically use a window function
(W) to smooth δ(~x, t) on a scale (R ≈ k−1 ≈ (aH)−1) (e.g., on scales of size k−1

pbh at horizon
re-entry, as shown in Figure 2) relevant to PBH formation. Therefore, the variance of density
contrast can be related to the primordial power spectrum as [30,152]13

σ2(R) ≡ 〈δ2〉R =
∫ ∞

0
d ln q W2(q, R)Pδ(q) '

16
81

∫ ∞

0
d ln q W2(q, R) (qR)4 PR(q) (19)

whereW is the Fourier transform of a real space-window function. Popular choices for
W include a volume-normalized Gaussian or a top-hat window function, the Fourier
transforms of are respectively given by

W(k, R) = exp
(
− k2R2

2

)
, W(k, R) =

3 sin(kR)− 3kR cos(kR)
(kR)3 . (20)
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When selecting a curvature power spectrum (Pδ) characterized by a narrow peak
around the wave number kpbh, the integral in (19) can be approximated as σ2 ∼ Pδ(kpbh).
Then, utilizing (18) at horizon entry (k ' aH) (i.e., at the time of PBH formation), since
81/16 ∼ 5, we can roughly relate the variance (σ) to the primordial curvature power
spectrum as

PR(kpbh) ∼ 5 σ2 . (21)

Finally, recall our considerations after Equation (15): a Gaussian PDF of δ requires
σ ' 0.06 (σ ' 0.05) for M(f)

pbh = M� (M(f)
pbh = 10−12M�) to generate a population of

fpbh = 10−3 ( fpbh = 1) today. Hence, we can estimate the amplitude of the scalar power
spectrum needed at scales relevant for PBH formation:

PR(kpbh) ∼ 5 σ2 ∼ 10−2 for Gaussian fluctuations. (22)

This estimate holds for a wide range of subsolar PBH masses. This implies that we
need a very large amplification of the curvature spectrum between large CMB and small
PBH formation scales:

∆PR ≡
PR(kpbh)

PR(kcmb)
∼ 107 , (23)

and the task is to produce such amplification in a controllable way by an appropriate
inflationary mechanism.

It is worth pointing out that this estimate does not change much for even smaller-mass
PBHs with M(f)

pbh < 10−12M� because the power spectrum has a logarithmic sensitivity to
the PBH fraction (β). In order to see this, we can invert the expression (15) and use (22) to
relate the primordial power spectrum of curvature perturbations to β as

PR(kpbh) ∼ 5σ2 ∼ 5 δ2
c

2 ln(1/β)
. (24)

Now, as an extreme case, we can consider the smallest PBHs (M(f)
pbh ' 10−18M�) that

can survive until today (not yet eliminated by Hawking radiation), which have the tightest
available observational constraints, restricting their current abundance to fpbh . 10−9 [32].
Plugging these values into (12), PBH fraction at formation gives β . 10−28, which, in turn,
leads to the constraintPR(kpbh) . 6× 10−3 in (24) for a threshold of δc = 0.4. Therefore, we
conclude that for Gaussian perturbations and for any PBH mass of interest, the amplitude
of the scalar power spectrum relevant for PBH formation requires PR ∼ 10−2 for any
potentially observable PBH fraction ( fPBH) today. The discussion presented above informs
us that a small change in the amplitude of the power spectrum leads to a difference of many
orders of magnitude in the fraction of regions collapsing into PBHs, as clearly implied by
the exponential dependence of β on PR in (24). Similarly, a small change in the choice of
threshold (δc) could lead to very different estimates in terms of β. For example, focusing on
a fixed value of variance (σ2 ' 0.05) as relevant for PBH formation, β (15) can change by
various orders of magnitude if we reduce the threshold (δc) by about 20%. In fact,

β(δc = 0.4)
β(δc = 1/3)

' 10−5 , (25)

demonstrating how tuned the conditions are for producing a cosmologically interesting
population of PBHs.

Collapse fraction vs. curvature perturbation

While it is customary to use the smoothed density contrast at horizon crossing to
estimate the number of collapsing regions, it is also possible to work directly with the
comoving curvature perturbation to approximately compute the PBH fraction (β) at the
time of formation. In this case, there is no need of to rely on the smoothing procedure of
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subhorizon fluctuations provided by the window functions [152,153]. Interestingly, as we
will see later, this approach also provides a way to assess the effects of large primordial
non-Gaussianity that might be present in some of the PBH-forming inflationary scenarios.

To understand the role of the primordial curvature fluctuation (R), we approximate
its variance with the power spectrum σ2

R ≈ PR. Using the Press–Schechter approach with
a Gaussian PDF for the curvature fluctuation spectrum, the fraction of collapsing regions at
formation can be estimated as

βG =
∫ ∞

Rc
dR e−R

2/(2σ2
R)

√
2πσR

' 1
2

Erfc
( Rc√

2PR

)
, (26)

whereRc is the threshold. To roughly estimateRc, we can assume an almost scale-invariant
power spectrum ofR for a logarithmic range of wave numbers relevant to PBH formation.
Making use of a Gaussian window function in (19) gives, in this case, σ2

R = 〈R2〉 ' 8PR/81.
Finally, plugging the latter into (15), and comparing the resulting expression with (26), we
obtain [152]:

Rc ≈
9

2
√

2
δc. (27)

For a density threshold of δc = 0.4, the relation presented above givesRc ' 1.3, which
we set as the fiducial value for the estimates below. Following these considerations and
using the formulas derived so far—in particular Equations (12) and (26)—we can then
repeat the previous estimates and determine the approximate amplitude of the power spec-
trum required for PBH formation. The result is that for Gaussian primordial fluctuations,
a sensible PBH population today requires PR ∼ 10−2. These findings confirm our earlier
results of Equation (22).

The case of non-Gaussian curvature fluctuations

So far, we have assumed that primordial fluctuations obey Gaussian statistics in order
to estimate the amplitude of the power spectrum required for PBH formation. Since PBHs
are expected to form through extremely rare large fluctuations (see Figure 3), any small
deviations in the shape of the tail of the fluctuation distribution—which essentially depend
on the amount of non-Gaussianity (i.e., skewness of the PDF)—can have a significant
impact on the PBH abundance [153–161]. For the sake of obtaining a lower limit on the
amplitude of the PBH-forming curvature power spectrum, we now consider scenarios with
large primordial non-Gaussianity. A particularly interesting case of this type occurs if the
main source of the curvature perturbation results from a higher-order interaction, where
the distribution ofR can be modeled as a χ2 distribution (see, e.g., [79,153,162]):

R = g2 − 〈 g2 〉, (28)

where g is a Gaussian random variable (〈g〉 = 0) with variance σ2
g ≡ 〈 g2 〉. The PDF ofR

in this case can be determined by making a change of variable PNG(R) = PG(g)|dg/dR|,
which takes the following form

PNG(R) =
e−(R+σ2

g )/2σ2
g

2
√

2π(R+ σ2
g) σg

. (29)

Making a change of variable to a quantity t through the definition σ2
g t = R+ σ2

g −→
dR = σ2

g dt, the fraction of regions in the universe that can collapse to form PBHs can be
estimated as

βNG =
∫ ∞

Rc
dR PNG(R) '

1
2

Erfc

(√
1
2
+
Rc√
2PR

)
, (30)
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where in the last step, we approximate the variance as 〈R2〉 = 2〈g2〉2 = 2σ4
g ≈ PR, in order

to express βNG in terms of the curvature power spectrum14. We can now compute the
amplitude of the curvature power spectrum required for PBH formation when the statistics
of fluctuations are strongly non-Gaussian. Using (12), together with (30), a population of
solar mass PBHs with fpbh = 10−3 requires PR ' 1.5× 10−3, whereas for a population of

PBHs with M(f)
pbh = 10−12M� and fpbh = 1, we find PR ' 9× 10−4 ' 10−3. Hence, we

conclude that the required amplitude of the power spectrum is roughly given by

PR(kpbh) ∼ 10−3 for non-Gaussian fluctuations. (31)

Compared to the case of Gaussian distributed curvature perturbation (see Equation (22)),
we learn that the required amplitude of the power spectrum is reduced by about one order
of magnitude. Therefore, a curvature perturbation with a smaller amplitude can produce
the same amount of PBH abundance if non-Gaussianity is present (see Equation (28)).
In particular, forR2

c � PR, which is typically satisfied by a satisfactory approximation, we
can disregard the 1/2 factor in (30). Compared with Equation (26), the power spectrum
required to generate the same collapse fraction of PBHs in both cases can be related as

PRNG '
2
R2

c
P2
RG

. (32)

To further illustrate these points, in Figure 4, we show the quantity (β) both for Gaus-
sian and non-Gaussian cases, represented as a function of the curvature power spectrum.
We learn from the figure that in the non-Gaussian case, within a phenomenologically
relevant interval of β (see, e.g., (12)), a given value of the power spectrum leads to a much
larger value of β. We emphasize that we focus on a specific type of non-Gaussian distri-
bution (namely χ2) to estimate the amplitude of the power spectrum required for PBH
formation; therefore, the derived results could change for milder cases depending on the
amplitude and sign of the non-Gaussianity (i.e., depending on whether the PDF in (26) is
positively or negatively skewed) [153].

10−2 10−1 100

√PR /Rc

10−29

10−24

10−19

10−14

10−9

10−4 βG

βNG

Figure 4. Fraction of the universe that collapses into PBHs as a function of the power spectrum. For a
phenomenologically interesting interval of β (see, e.g., (12)) values, in the non-Gaussian case, we
need a smaller amplitude of the power spectrum in order to generate the same amount of PBHs at
horizon re-entry.

2.4. Brief Summary and the Path Ahead

Let us summarize the arguments that we have reviewed so far. We computed the
required amplitude of the small-scale primordial power spectrum (PR(kpbh)) required
to generate a sizable population of PBHs that can account for all or a fraction of DM
density. The typical small scale of PBH formation (kpbh) is related to the BH mass through
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Equation (6) (see Table 1 for examples). Compared with the power spectrum at large CMB
scales, we need a

∆PR ≡
PR(kpbh)

PR(kcmb)
∼ 106 − 107 (33)

enhancement in the spectrum amplitude between small and large scales, depending on the
statistics obeyed by the primordial curvature perturbation (see Equations (22) and (31)).

We also learned that the PBH abundance is extremely sensitive to the amplitude of
the primordial curvature spectrum. Notice that the results we reviewed are derived for
the case of PBHs produced during the RDU; if early phase transitions or early phases of
non-standard cosmology occur, the corresponding modified equations of state can also
considerably influence the properties of the PBH population [143,163]. An interesting
example is the QCD phase transition, which can lead to a high peak in the distribution of
solar-mass PBHs several orders of magnitude larger than the corresponding values in the
RDU [164,165].

There are various opportunities to improve and elaborate on these results. In our
considerations, we assumed that PBHs form at a particular mass (Equations (4) and (6)), for
example, by means of a sharply peaked primordial power spectrum; moreover, we ignored
the effects of clustering [22,166–169] and mergers [170–172] on the PBH abundance and evo-
lution. As shown in [140,173,174], assumptions about the shape of the primordial spectrum
may alter the PBH abundance and the corresponding clustering properties. Another topic
of debate concerns the use of over-density (δ) versus the curvature perturbation (R) when
computing the PBH abundance (see, e.g., [175] for a discussion on these issues). In light
of the discussion presented above, we emphasize that the calculations we carried out in
this section should be regarded as rough order-of-magnitude estimates, requiring more
precise numerical analysis. Furthermore, in discussing the effects of non-Gaussianities on
PBH formation, we stress that we computed the corresponding power spectrum only for
an extreme example of χ2 non-Gaussian statistics. For a detailed analysis of the impact of
primordial non-Gaussianity on PBH formation and abundance, we refer the reader to the
general discussion in [176]. An additional phenomenological consequence of PBH-forming
inflationary scenarios is the inevitable production of a stochastic gravitational wave (GW)
background [87,88]. In fact, an enhanced spectrum of curvature fluctuations, as needed to
produce PBH, acts as a source of GW [89]. The characterization of this GW background (see,
e.g., [93,94,96]), along with the properties of its scalar sources (see, e.g., [92,97,177]) and the
corresponding forecasts for its detection, is an important avenue for the experimental
probing of PBH-forming inflationary models. We refer the reader to [105] for a detailed
recent review of scalar-induced GW backgrounds.

All the topics mentioned above are being actively developed by the PBH community.
The arguments and results we reviewed in this section are sufficient for introducing our
specific purpose, which is to review the theoretical foundation of inflationary scenarios
leading to PBHs. In the following sections, we discuss different conceptual ideas and
concrete inflationary mechanisms for obtaining the enhancement (33) of the curvature
power spectrum, as needed to generate PBHs. We focus on the inflationary theory aspects
only, without computing the resulting PBH abundance, as well as other phenomenological
properties that are already covered in various recent complementary reviews [28–34].

3. Enhancement of Scalar Perturbations during Single-Field Inflation

We now focus our attention on inflationary scenarios able to lead to PBH formation.
As we learned in the previous section, such scenarios are characterized by a significant
enhancement in the curvature power spectrum at a scale (kpbh) (which depends on the
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PBH mass) much smaller with respect to CMB scales (kcmb). The condition to satisfy is
Equation (23), which we rewrite here as:

PR(kpbh)

PR(kcmb)
∼ 107 . (34)

We classify inflationary models as single-field (this section) or multifield type (next
section) depending on whether the mechanism responsible for the enhancement in the
scalar fluctuations relies on a single- or multifield scenario. In general, existing inflationary
mechanisms amplify the spectrum of curvature fluctuations by means of significant gra-
dients in the background evolution of fields responsible for inflation. In this section, we
phrase our discussion as model-independently as possible, mostly focusing on conceptual
aspects of the problem. We aim to discuss the dynamics and the general properties of curva-
ture fluctuations in inflationary models leading to PBHs and refer to specific representative
scenarios when necessary.
Y Main References: Our discussion in this section is based on [41,42,52,64].

3.1. The Dynamics of Curvature Perturbation

In order to analyze the behavior of the scalar power spectrum in single-field scenarios,
we consider the second-order action of scalar perturbations around an inflationary phase
of evolution. The background metric corresponds to a (quasi) de Sitter background with a
nearly constant Hubble parameter (H). Cosmological inflation is controlled by a slow-
roll parameter (ε ≡ Ḣ/H2) satisfying ε � 1, with ε = 1 corresponding to the condition
required to conclude the inflationary process. We work with conformal time (τ ≤ 0) during
inflation (see, e.g., [178] for a classic survey of inflationary models).

The dynamics of scalar fluctuations can be formulated in terms of the comoving
curvature perturbation (R) [129,130], the second-order action (at the lowest order in deriva-
tives)15 of which takes the following form (see, e.g., [64])

S(2)
R =

1
2

∫
dτ d3x

2 a2(τ)M2(τ) ε(τ)

c2
s (τ)

[
R′2 − c2

s (τ)(~∇R)2
]

. (35)

In this formula, cs is the sound speed of the curvature perturbation, M is an effective
time-dependent Planck mass and ε is the aforementioned slow-roll parameter.

First, we present a few initial words to contextualize single-field models aimed to pro-
duce PBHs, leading to a set of dynamics of curvature perturbation controlled by action (35).
The simplest option to consider is PBH-forming models with unit sound speed and constant
Planck mass characterized only by the shape of the potential (V(φ)). As mentioned in the
Introduction, models in this class require a potential characterized by a flat , plateau-like
region (see, e.g., [46–53,55] for a choice of works studying this possibility; we will dis-
cuss its implications for the dynamics of curvature perturbations in the next subsection).
PBH-forming potentials with the required characteristics can find explicit realizations, for
example, in models of Higgs inflation [47,185–187],alpha attractors [188,189] and string
inflation [51,52,190]. Considering more complex possibilities, PBH-generating models
that exploit a time dependence for the sound speed are based on non-canonical kinetic
terms for the inflation scalar, such as K-inflation [191,192] (see, e.g., [64–67,193–197] for
concrete examples and Section 3.3 for some of their implications). Finally, scenarios with
a time-dependent effective Planck mass can be generated by non-minimal couplings of
the inflation scalar with gravity, as in the Horndeski action [198] and its cosmological
applications to G-inflation scenarios [199]. Realizations of PBH-forming models in setups
with non-minimal couplings belonging to the Horndeski sector include [200–203]. To the
best of our knowledge, early universe models based on the more recent covariant DHOST
actions [204–206] have not yet been explored in the context of PBH model building.

Interestingly, despite the many distinct concrete realizations, all single-field scenarios
rely on a few common mechanisms to enhance the spectrum of curvature fluctuations,
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which exploit the behavior of background quantities. We are now going to discuss these
mechanisms in a model-independent way. We treat M, cs and ε as appearing in action (35)
as time-dependent quantities controlled by the single scalar background profile that drives
inflation. To start with, it is convenient to redefine the time variable in action (35) to adsorb
the time-dependent cs into a rescaled conformal time and impose an equal-scaling condition
of time and space coordinates:

dτ̄ = csdτ =⇒ S(2)
R =

1
2

∫
dτ̄ d3x z2(τ̄)

[
R′2 − (~∇R)2

]
, (36)

with a prime indicating a derivative with respect to τ̄, the rescaled conformal time. Impor-
tantly, we introduce a so-called time-dependent ‘pump field’ (z(τ̄)) as

z2(τ̄) =
2 a2(τ̄) M2(τ̄) ε(τ̄)

cs(τ̄)
. (37)

The dynamics ofR are strongly tied to the time dependence of the pump field (z(τ̄))
and, more generally, to the behavior of the background quantities (M, ε, cs) that constitute it.

To analyze the evolution mode by mode, we work in Fourier space and write the
Euler–Lagrange mode equation for curvature perturbation derived from the action (36):

1
z2(τ̄)

[
z2(τ̄)R′k(τ̄)

]′
= −k2Rk(τ̄), (38)

where k ≡ |~k| is the magnitude of the wave number that labels a given mode. This is a
differential equation involving derivatives along the time direction acting on the function
Rk(τ̄) depending on both time and momentum (k).

To express its solution, we implement a gradient expansion approach (see, e.g., [41,42,52]),
starting from the solution in the limit of small k/(aH) and including its momentum-
dependent corrections, which solve (38) order by order in a k/(aH) expansion. This
approach is particularly suitable for our purpose of describing scenarios in which the
size of small-scale curvature fluctuations (k/(aH), large) differs considerably from that of
large-scale curvature fluctuations (k/(aH), small) (see condition (23)). Indeed, a gradient
expansion allows us to better understand the physical origin of possible mechanisms that
raise the curvature spectrum at small scales.

The most general solution of Equation (38), up to second order in powers of k/(aH),
is formally given by the following integral equation16

Rk(τ̄) = R(0)
k


1 +

R(0) ′
k

R(0)
k

∫
τ̄

τ̄0

dτ̄′

z̃2(τ̄′)
− k2

∫
τ̄

τ̄0

dτ̄′

z̃(τ̄′)2

∫
τ̄′

τ̄0

dτ̄′′ z̃2(τ̄′′)
Rk(τ̄

′′)

R(0)
k


, (39)

where the sub- and superscripts 0 denote a reference time, and a tilde over a time-dependent
quantity indicates that it is normalized with respect to its value at τ̄ = τ̄0.

Typically, we are interested in relating the late time curvature perturbation at τ̄ to the
same quantity computed at some earlier time (τ0). For this purpose, it is convenient to
identify τ̄0 as the time coordinate evaluated soon after horizon crossing and R(0)

k as the
mode function computed at τ̄0. In order to enhance the spectrum of curvature fluctuations
at small scales (recall the PBH-forming condition of Equation (23)), we can envisage two
possibilities. One option is to exploit the structure of Equation (39), making sure that
its contributions within the square parentheses become increasingly important as time
proceeds after modes leave the horizon. In this way, we generate a sizable scale dependence
forRk(τ̄) after horizon crossing, with the possibility of amplifying the small-scale curvature
spectrum. Alternatively, we can design methods that lead to significant scale dependence
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already at horizon crossing, i.e., for the quantity R(0)
k , which then maintains its value at

superhorizon scales. We explore both these options in Sections 3.2 and 3.3, respectively.
To develop a quantitative discussion, it is convenient to introduce the so-called slow-

roll parameters as

η ≡ d ln ε

dN
, s ≡ d ln cs

dN
, µ ≡ d ln M2

dN
(40)

where, in our definition, we make use of the relation between e-foldings and the time
coordinate (τ̄: dN = Hdt = (aH/cs)dτ̄).

In standard models of inflation based on inflationary attractor dynamics, one imposes
the so-called slow-roll conditions throughout the entire inflationary period, corresponding
to the requirements

η, s, µ,
dη

dN
,

ds
dN

,
dµ

dN
� 1, (41)

which imply that the pump field always grows in time z2 ∝ (−τ̄)−2 as τ̄ → 0 (see Equation (37)).
As a consequence, the second and third terms in the general solution (39) decay as (−τ)3

and (−τ)2, respectively in the late time limit ((−τ) → 0). Hence, they can be identified
as decaying modes17 that rapidly cease to play any role in the dynamics of curvature
perturbations. This is a regime of a slow-roll attractor, wherein soon after horizon crossing,
the curvature perturbation settles into a nearly-constant configuration (R(0)

k ), the spec-
trum of which is almost scale-invariant. In this case, the momentum-dependent terms in
Equation (39) do not have the opportunity to raise the curvature spectrum at small scales.

Hence, in order to produce PBHs, we need to go beyond the slow-roll conditions of
Equation (41), as first emphasized in [207]. Before discussing concrete ideas to do so,
in view of numerical implementations, as well to improve our physical understanding, it is
convenient to express the curvature perturbation (Equation (38)) in a way that makes more
manifest the role of slow-roll parameters in controlling the mode evolution. We introduce a
canonical variable (vk) defined as

vk(τ̄) = z(τ̄)Rk(τ̄) . (42)

Plugging this definition into Equation (38), we obtain the so-called Mukhanov–Sasaki
equation, which reads

v′′k (τ̄) +
(

k2 − z′′

z

)
vk(τ̄) = 0, (43)

where
z′′

z
= 2

(
aH
cs

)2 [
1 + Θ

]
. (44)

Expanding the derivatives of z (37) in terms of the slow-roll parameters of Equation (40),
we define

Θ ≡ −1
2
(ε + s) +

3
4
(η − s + µ) +

1
8
(η − s + µ)2 − 1

4
(ε + s)(η − s + µ)

+
1
4

(
dη

dN
− ds

dN
+

dµ

dN

)
. (45)

Standard slow-roll attractor scenarios correspond to situations in which Θ is negligibly
small; the quantity in Equation (44) then reads 2 τ̄−2, leading to a scale-invariant curvature
power spectrum. To break the scale invariance of curvature perturbation, we need to
consider a sizable time-dependent Θ. We note that the expression (45) is exact and does not
assume any slow-roll hierarchy as Equation (41). Hence, it can be used to study the system
beyond slow roll, as we will do in the following section.
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3.2. Enhancement through the Resurrection of the Decaying Mode

The idea
An interesting mechanism to enhance the curvature perturbation at superhorizon

scales is suggested by the structure of the integrals within the square parentheses of
Equation (39). Suppose that for a brief time interval, a given mode (k) experiences a
background evolution during which the pump field (z) rapidly decreases after the horizon
exit epoch (τ̄0). Then, the ‘decaying’ mode can increase, and the integrals in the parentheses
of Equation (39) can contaminate the nearly constant solution (R(0)

k ), eventually leading to a

late-time value (Rk(τ̄)� R(0)
k ) on superhorizon scales. This situation signals a significant

departure from the attractor slow-roll regime discussed after Equation (41). In fact, in this
case, the criterion for the enhancement of the curvature perturbation can be explicitly
phrased in terms of the derivative of the pump-field transiently changing sign during a
short time interval during inflation:

z′

z
=

aH
cs

[
1 +

η − s + µ

2

]
< 0 . (46)

This condition implies that the combination of the slow-roll parameters (η − s + µ)
should be of order O(1) and negative during some e-folds during inflation, violating the
slow-roll conditions (41). In particular, we require

η − s + µ < −2 . (47)

If Equation (46) is satisfied, the slow-roll conditions (41) are not satisfied, and the contribu-
tions within parentheses in Equation (39) can increase. Strong time gradients of homogeneous
background quantities, which lead to condition (47), can then be converted into a small-scale
amplification of the curvature power spectrum. As discussed in [64], the expression (46),
along with the considerations mentioned above, generalizes to a time-dependent sound speed
and Planck mass according to the arguments first developed in [41,42].

Model building parameterization of the non-attractor phase

To illustrate a viable model that can generate a seven-order-of-magnitude enhancement
required for PBH formation—see Equation (23)—we focus on canonical single-field models
(cs → 1, M→ Mpl and s→ 0, µ→ 0) in order to simplify our analysis. The background
evolution for the single scalar field driving inflation is

φ̈ + 3Hφ̇ + V′(φ) = 0 , (48)

where V(φ) is the scalar potential, and the time derivatives are carried on in coordinate time
(t). The non-slow-roll dynamics are controlled by the properties of the potential (V), as we
are going to discuss, and by its consequences for the behavior of the inflation velocity (φ̇).

Since in these scenarios, the pump field can be parameterized purely in terms of the
slow-roll parameter (ε) as z = a

√
2ε Mpl (see, e.g., Equation (37)), the linear dynamics ofRk

(Equation (39)) are dictated by the first slow-roll parameter, the evolution of which is, in turn,
determined by the sign and amplitude of the slow-roll parameter η. Hence, the criterion
required to realize the desired growth in the spectrum can be simply parameterized as a
condition of the second slow-roll parameter as η < −2 in (47).

From a concrete model-building perspective, scalar potentials (V(φ)) that can induce
this type of dynamics include a characteristic ‘plateau’ within a non-vanishing field range
(∆φ 6= 0) [38,39,208]. This property gives rise to phases of transient non-attractor dynamics
of ultra slow-roll (USR) [40,43,44] or constant-roll (CR) [45,209,210] evolution, depending
on the shape profile of the potential around the aforementioned feature. In particular,
for USR evolution, the potential typically has a very flat plateau with V′ ' 0, whereas
for constant-roll evolution, V′ < 0 so that the field climbs a hill by overshooting a local
minimum18. As the scalar field, during its evolution, traverses such a flat region with
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negligible potential gradient, the acceleration term (φ̈) is balanced by the Hubble damping
term in the Klein–Gordon Equation (48), and the inflation speed is no longer controlled
by the scalar potential. This phenomenon significantly changes the values of the inflation
velocity (φ̇) during the transient non-attractor phase and inevitably leads to the violation of
one of the slow-roll conditions:

φ̈ + 3Hφ̇ + V′(φ) = 0 =⇒ η = −6− 2V′

φ̇H
+ 2ε; (49)

hence, η ' −6 (η < −6) for transient USR (V′ = 0) and CR (V′ < 0) phases 19. We
emphasize that since the non-slow-roll inflationary era is characterized by a large negative
η for a brief interval of e-folds, the pump field, as well as the first slow-roll parameter (ε),
quickly decays during this stage as required for the activation of the decaying modes. In fact,

d ln ε

dN
≡ η =⇒ z2 ∝ ε ∝ e−|η|∆N , (50)

where, for simplicity, we assume a constant η during the non-attractor phase. For explicit
inflationary scenarios that can realize such transient phases in the context of PBH formation,
see, e.g., [49,51,52,211]. Nevertheless, it is worth pointing out that, although possible,
explicit constructions of suitable inflationary potentials involve a high degree of tuning
to render the potentials extremely flat for a small region in the field range and ensure
an appropriate transition for the scalar velocity among different epochs (see, e.g., the
discussion in [50], as well as the comments at the end of this section).

After this general discussion of model building, in the analysis that follows, we do not
need to work with an explicit form of potential (V(φ)) to analyze the enhancement through
the non-attractor dynamics. Instead, we exploit the general idea we are discussing in a
model-independent way and model PBH-forming inflationary scenarios as a succession of
distinct phases that connect smoothly with one another, each parameterized by a constant
η (related approaches are developed in [212–216]). Our perspective encompasses the
important features of scenarios based on the idea of transient resurrection of the decaying
mode at superhorizon scales, satisfying Equations (46) and (47). In order to capture the
transitions among phases, we multiply each phase by the smoothing function [217]:

σ(N, ∆) =
1
2

[
tanh

(
N − Ni

∆

)
− tanh

(N − N f

∆

)]
, (51)

where N denotes e-folds; Ni and N f are the e-folding numbers at the beginning and end of
the constant η phase, respectively; and ∆ signifies the duration of the smoothing procedure.
Keeping this smoothing prescription in mind, the inflationary evolution can be divided
into three phases:

• Phase I. The initial phase of inflationary evolution is characterized by a standard
slow-roll (SR) regime, where ε, η � 1 and ε < η at the pivot scale (kcmb = 0.05 Mpc−1)
(assuming that modes at the pivot scale exit the horizon at the beginning of evolution
(Nb = 0)) in order to match Planck observations [4];

• Phase II. As the scalar field starts to traverse the flat plateau-like region in its potential,
its dynamics eventually enter the non-attractor era, lasting a given number of e-folds
of evolution. This phase is characterized by a large negative η < −6, during which
the first slow-roll parameter (ε) decays exponentially:

ε(N) ≡ exp
[∫ N

60
η(N′)dN′

]
; (52)

• Phase III. The final phase of evolution ensures a graceful exit from the non-attractor
phase into a final slow-roll epoch, leading to the end of inflation. Since ε decays quickly
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in the non-attractor era, this final phase is characterized by a hierarchy between the
slow-roll parameters:

η � ε (53)

where η > 0. We typically require a large positive η to bring back ε from its tiny values
at the end of the non-attractor era, towards the value (ε = 1) needed to conclude
inflation. To capture this behavior accurately, we split the final phase of evolution into
two parts, parameterizing η as

η(N) = η
(1)
III σ1(N, ∆) + η

(2)
III σ2(N, ∆) . (54)

The relevant parameter choices to model the dynamics can be found in the third
column of Table 2.
We note that our choice of η in the initial stage of the Phase III and in Phase II is
not a coincidence; in most of the single-field modes, there exists a correspondence
that relates the η values in Phase II and Phase III, i.e., ηIII = −6 − ηII, which is
a consequence of Wands’ duality [218]. We will elaborate the consequence of this
correspondence in the context of the power spectrum below, in particular for modes
that exit the horizon as the background evolves from Phase II to Phase III.

Table 2. Parameter choices that characterize the background evolution of η smoothed by the
function (51) in each phase. Note that the final phase of evolution is divided into two in orders to
accommodate the end of inflation with ε = 1 at Nend = 60.

Phase I Phase II Phase III

η 0.02 −6.30 0.30 3.00

Ni 0.00 33.2 35.7 55.0

Nj 33.2 35.7 55.0 65.0

ν 1.00 0.50 1.00 2.00

In light of the discussion presented above, we can characterize the full background
evolution using the Hubble hierarchy in (52) and H(N) = Hend exp [−

∫ N
60 ε(N′)dN′],

where Hend denotes the Hubble rate at the end of inflation, where Nend = 60.
For a representative set of parameter choices (see Table 2), in Figure 5, we show an

example of background evolution in which we plot ε, η and z′/z. The right panel of the
figure makes manifest that the background evolution leads to z′/z < 0 for a short interval
of e-folds (N = 33–35.7), as highlighted by the red region in the plot. In accordance with our
discussion so far, this behavior is appropriate for triggering a significant enhancement in the
power spectrum of curvature perturbation through the resurrection of the decaying mode.

0 10 20 30 40 50 60
N
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10−6

10−4
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100

102

Phase I II Phase III

ε

|η|
31 32 33 34 35 36 37 38

N

−2

−1

0

1

2
—— z′/z

aH

← z′/z < 0 →

Figure 5. (Left) panel: evolution of ε and η in e-folds through the successive phases outlined in
the main text. The green region indicates the range of e-fold numbers where η < 0, corresponding
roughly to the beginning and end of the non-attractor phase. (Right) panel: the time evolution of
z′/z = aH(1 + η/2), with z′/z < 0 in the region highlighted in red.
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Numerical analysis

Having obtained the background evolution, we are ready to describe mode evolution
to obtain the power spectrum of curvature perturbation towards the end of inflation20:

PR(k, Nend) =
k3

2π2

∣∣∣∣
vk(Nend)

z(Nend)

∣∣∣∣
2

, (55)

where to study the evolution of curvature perturbations, we make use of the canonical
variable (vk) and consider the Mukhanov–Sasaki system of Equations (43)–(45) after setting
s = µ = 0. In general, it is not possible to find full analytic solutions for this system of
equations, and a numerical analysis is needed. However, as we will explain soon, interesting
properties of the resulting curvature spectrum can be derived and understood analytically.
We implement the numerical procedure explained in detail in the technical Appendix C,
which solves the Mukhanov–Sasaki equation with Bunch–Davies initial conditions, and we
provide a Python code that reproduces our numerical findings21. The resulting power
spectrum is represented in Figure 6; it manifestly grows in amplitude towards small scales,
exhibiting a peak at around kpeak ' 1012 Mpc−1 � kcmb. Notice that the spectrum grows as
k4 towards its peak and is characterized by a dip preceding the phase of steady growth [212].
We will have more to say soon about these features.

10−2 101 104 107 1010 1013 1016

k [Mpc−1]

10−10

10−8

10−6

10−4

10−2
PR(k)

PR(k) via eq. (C.10)

107 109 1011 1013 1015

k [Mpc−1]

10−10

10−8

10−6

10−4

10−2
PR(k)

PR ∝ k4

PR ∝ kηII+6

Figure 6. Power spectrum of curvature perturbation in the three-phase model described in the main
text. The pale green region separated by the vertical lines denotes the range of modes that exit the
horizon during the non-attractor era, whereas the light blue regions denote the range of modes that
cross the horizon during the initial and final slow-roll era, respectively.

Interestingly, for the system under consideration, the bulk of the enhancement can be
attributed to the active dynamics of the would-be ‘decaying modes’, i.e., the second and
third terms of Equation (39). To show this explicitly, we study superhorizon solution of the
curvature perturbation in Appendix C by applying the Formula (A38), which is a special
case of Equation (39) applied to the canonical single-field scenario we discuss here. For a
grid of wave numbers that exit the horizon during the initial slow-roll era, the amplitude of
the power spectrum obtained in this way is shown by blue dots in Figure 6. The accuracy
of these locations with respect to the full numerical result (black solid line) confirms our
expectation that decaying modes in (39) play a crucial role for the enhancement of the
curvature perturbation for this scenario. In the right panel of Figure 6, we zoom in on the
growth and the subsequent decay of power spectrum following the peak.

The features of the spectrum: analytic considerations

Besides the numerical findings presented above, we can derive general analytic results
for the spectrum of curvature fluctuations in scenarios activating the would-be decaying
modes through a brief non-attractor era.

We start by noticing that for modes that leave the horizon during the initial slow-roll
stage (leftmost light blue region in Figure 6), the spectrum shows characteristic features
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such as the presence of a dip, followed by an enhancement parameterized by a spectral
index of ns − 1 = 4 during the bulk of the growth [95,212,224–226]. The dip is physically
caused by a disruptive interference between the ‘constant’ mode of curvature fluctuation
at superhorizon scales and the ‘decaying’ mode that is becoming active and ready to
contribute to the enhancement of the spectrum. The position and depth of the dip are
analytically calculable in terms of other features of the spectrum, at least in a limit of short
duration of the non-slow-roll epoch. It is found that the position of the dip in momentum
space is proportional to the inverse fourth root of the enhancement of the spectrum, and the
depth of the dip is proportional to the inverse square root of the enhancement of the
spectrum [226]. These relations are valid for any single-field models that enhance the
spectrum through a brief deviation from the standard attractor era, including cases with
a time-varying sound speed and Planck mass. They are accompanied by consistency
conditions on the squeezed limit of non-Gaussian higher-order point functions around the
dip [227–229], as expected in single-field scenarios22.

While in the considerations of the previous paragraph, we considered modes leav-
ing the horizon during the first stage of slow-roll evolution, we can also derive analytic
results for what happens during the non-attractor epoch. In fact, for modes that exit the
horizon deep in the non-attractor era (light green region in the middle of Figure 6) and
the following final slow-roll era, the spectrum behaves as expected in a standard slow-roll
phase, with spectral index

ns − 1 = −2ε− η ' −ηIII = 6 + ηII . (56)

(Recall that the latin numbers II and III relate to the phases of evolution; see Equations (52)
and (54).) This behavior is a manifestation of the duality invariance of perturbation spec-
tra within distinct inflationary backgrounds, called Wands’ duality (see, e.g., [218,231]).
Wands’ duality can be understood by noticing that the structure of the Mukhanov–Sasaki
Equation (43) is unchanged by a redefinition of the pump field that leaves the combination
z′′/z invariant:

z(τ̄) → z̃(τ̄) ≡ z(τ̄)
(

c1 + c2

∫ τ̄ dτ̃

z(τ̃)

)
⇒ z̃′′

z̃
=

z′′

z
(57)

where c1,2 are arbitrary constants. If z(τ̄) controls a phase of the slow-roll attractor, z̃ ∝ 1/τ̄,
a dual phase whose pump field (z ∝ τ̄2) as given by Equation (57) describes a non-attractor
era. Although the statistics of the canonical variable (vk) are identical in the two regimes,
the amplitude of the curvature perturbation spectrum (Rk) increases in the non-attractor
epoch. In scenarios in which the parameter η is considerably larger than the other slow-roll
parameters, Wands’ duality (57) analytically prescribes the relation (56), in agreement with
the numerical findings plotted in Figure 6. Subtleties can arise in joining attractor and
non-attractor phases, since consistency conditions can be violated [232] due to the effects of
boundary conditions at the transitions between different epochs. All these considerations
are relevant for our topic, given the sensitivity of PBH formation and properties on the
shape of the spectrum near the peak.

For further detailed accounts of the characterization of the interesting features
in the power spectrum of PBH-forming single-field scenarios, we refer the reader
to [95,212,214,215,217,224–226,233].

Stochastic inflation and quantum diffusion

While, so far, we have focused on the predictions of the second-order action (35),
non-linearities and non-Gaussian effects can play an important role in the production of
PBHs, as we learned in Section 2.3. For the case of ultra-slow-roll (USR) models based
on non-attractor phases of inflation, there are sources of non-Gaussianity associated with
stochastic effects during inflation.
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The stochastic approach to inflation pioneered by Starobinsky [234] constitutes a pow-
erful formalism for describing the evolution of coarse-grained superhorizon fluctuations
during inflation. It is based on a classical (but stochastic) Langevin equation, which reads
in canonical single-field inflation (N is the number of e-folds, and we assume constant
sound speed and Planck mass):

dφ

dN
= − V′

3 H2 +
H
2π

ξ(N) . (58)

Here, φ represents a coarse-grained version of superhorizon scalar fluctuations; V′ is
the derivative of the inflationary potential, which leads to a deterministic drift for the coarse-
grained superhorizon mode; and ξ is a source of stochastic noise acting on long-wavelength
fluctuations caused by the continuous kicks of modes that cross the cosmological horizon
and pass from sub- to superhorizon scales during inflation.

Besides the physical insights that it offers, the inflationary stochastic formalism [234–242]
offers the opportunity to obtain accurate results for the probability distribution function
controlling coarse-grained superhorizon modes beyond any Gaussian approximation. As a
classic example, by solving the Fokker–Planck equation associated with (58), the seminal
work [238] analytically obtained the full non-Gaussian distribution functions for certain
representative inflationary potentials, going beyond the reach of a perturbative treatment
of the problem.

Returning to the discussion of a USR inflationary evolution for PBH scenarios, we can
expect that stochastic effects can be very relevant in this context (see, e.g., [241,243–251]).
In fact, since the amplitude of scalar fluctuations are amplified, the stochastic noise can
increase relative to that under slow-roll inflation. Moreover, during USR, the derivative
of the potential (V′ = 0), the classical drift is absent, and the stochastic evolution is
driven by stochastic effects only. Various researchers have studied this topic by solving the
stochastic evolution equations [252–255] and found that non-Gaussian effects can change
the predictions of PBH formation, depending on the duration of the USR phase. In fact,
the stochastic noise modifies the tails for the curvature probability distribution function,
which decays with an exponential (instead of a Gaussian) profile23 and, consequently, tends
to overproduce PBHs. Refs. [252–255] set constraints on the duration of the USR phase,
which (depending on the scenario) can last, at most, a few e-folds before overproducing
PBHs. There has been increased activity surrounding these subjects, and we refer the
reader to the aforementioned literature for details on the state of the art with respect to this
important topic.

3.3. Growth in the Power Spectrum When the Decaying Modes Are Slacking

Slow-roll violation without triggering decaying modes

We learned in the previous subsections that a possible way to enhance the spectrum
of fluctuations at small scales with respect to its large-scale counterpart is to amplify the
k-dependent corrections to the constant-mode solution (R(0)

k ) within the parentheses of
Equation (39).

However, as we anticipated in the paragraph following Equation (39), we can also
design scenarios in which an enhanced time dependence of the slow-roll parameters leads
to a scale-dependent curvature power spectrum at horizon crossing, even without exciting
the decaying mode at superhorizon scales. The idea is to still make sure that the pump field
(z(τ)) increases with time—hence, conditions (46) and (47) are not satisfied, the decaying
mode remains inactive and the terms within parentheses in Equation (39) can be neglected.
However, at the same time, each individual slow-roll parameter changes considerably
during a short time interval during inflation. The derivatives of slow-roll parameters can be
large; they can contribute significantly to the quantity (Θ) controlling the Mukhanov–Sasaki
equation, and they can influence the scale dependence of the curvature spectrum at horizon
crossing (see Equations (43) and (45)).
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We start this section by setting the stage and derive formulas to describe this possibility.
We then present an explicit realization of this scenario. It is convenient to work with the
canonical variable (vk) defined through Equation (42), and solve the Mukhanov–Sasaki
system in the form of the set of Equations (43)–(59). We assume that the pump field (z)
is monotonic and always increasing with time, and we identify the sound horizon of
fluctuations as aH/cs '

√
z′′/(2z)24. We can identify two asymptotic regimes for each

mode k: (i) an early-time regime, when each mode is deep inside the horizon; and (ii) a
late-time regime, when the modes are stretched to become a superhorizon. On the one
hand, in the former regime, the modes satisfy k2 � z′′/z and behave as the standard
vacuum fluctuations in Minskowski space time

vk(τ̄) =
e−ikτ̄

√
2k

, for k2 � z′′

z
. (59)

On the other hand, later during inflation, the fluctuations are stretched outside the
horizon, entering the second regime and eventually satisfying k2 � z′′/z, with a solution
given by

vk(τ̄) ' C1,k z +D2,k z
∫ dτ̄′

z2(τ̄′)
+O(k2), (60)

where the finite k2 corrections to this solution can be derived in a similar fashion as in (39).
Recall that we are now interested in attractor background configurations; hence, we can
neglect the last two terms in Equation (60) that rapidly decay. Shortly after horizon crossing,
the canonical variable settles into the solution vk = z C1,k. Using the field redefinition (42), we

can identify the constant mode as the curvature perturbation at late times (C1,k = Rk = R(0)
k ).

In order to determine its expression, we match the solutions sometime around horizon
crossing (τ̄ = τ̄0), and we obtain

|C1,k|2 = |R(0)
k |2 =

1
2k

1
z(τ̄0)2 =

1
2k

cs

a2M22ε

∣∣∣∣
τ̄=τ̄0

. (61)

The horizon-crossing time can be conveniently expressed as a leading contribution in
a WKB approximation [64]:

k2 =
z′′

2z

∣∣∣∣
τ̄0

=

(
aH
cs

)2
(1 + Θ)

∣∣∣∣
τ̄0

, (62)

with Θ given in Equation (45). Collecting there results, we can write the late-time power
spectrum for curvature fluctuations as

PR(k) ≡
k3

2π2

∣∣∣∣
vk(τ̄)

z

∣∣∣∣
2

=
k3

2π2

∣∣∣R(0)
k

∣∣∣
2
=

H2

8π2 ε cs M2 (1 + Θ)

∣∣∣∣
τ̄0

. (63)

From (63), we observe that rapid changes in the background quantities (ε, cs, M) and
slow-roll parameters constituting the quantity (Θ) of Equation (45) as a function of τ̄0 can
then translate into a scale-dependent amplification of the power spectrum. As we will
see, this situation leads to a scale-dependent enhancement in the power spectrum realized
through the ‘constructive interference’ of the time-dependent background parameters
(ε, cs, M).

An explicit realization

We now review a possible realization of this scenario, closely following the discus-
sion presented in [64]. We focus on the generalized single-field framework discussed in
Section 3.1, and we consider background dynamics that include simultaneous pronounced
dips in the time-dependent profiles for the parameters ε, cs, M2. We then study the power
spectrum by numerically solving numerically the Mukhanov–Sasaki equation for curvature
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perturbations (see Appendix C), and we compare the result with the analytical expressions
discussed in Section 3.1 (see, e.g., (63)).

To analyze a representative scenario in this category, we parameterize the three time-
dependent quantities (X = {ε, cs, M2}) as [64]

log10 X(N) = (na − n∗) tanh2
(

N − N∗
σ

)
+ n∗. (64)

Each of these quantities tends to 10na asymptotically away from N∗ in both directions,
|N − N∗| � σ and becomes equal to 10n∗ at N∗ while staying around the neighborhood of
this value for a number of e-folds determined by σ. Notice that we are interested in features
of the inflationary dynamics that affect modes at scales much smaller than the CMB pivot
scale. Hence, we can assume N∗ � 1, where modes associated with CMB scales leave the
horizon at N ' 0, while inflation ends at Nend = 60. A representative set of parameter
choices that leads to a localized decrease in the slow-roll parameters is presented in Table 3.
The resulting background evolution and the behavior of z′/z are shown in the left and
right panels of Figure 7, respectively. We observe from the right panel of the figure that
z′/z > 0 is always satisfied during inflation, suggesting (as expected) that the decaying
modes do not grow over time. Using the parameterization (64), we then numerically solve
the Mukhanov–Sasaki equation, following Appendix C.

Table 3. Parameter choices that characterize the background evolution of the time-dependent
parameters (ε, cs, M̃ = M/Mpl).

X na n∗ N∗ σ

ε −2.0 −4.0 36.0 2.0

cs 0.0 −2.0 35.5 2.5

M̃2 0.0 −3.0 34.8 4.0
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Figure 7. (Left) panel: evolution of ε, cs, M̃2 = M2/M2
pl in e-folds characterized by the expression (64)

with the parameter choices presented in Table 3. (Right) panel: time evolution of (46) in units of
aH/cs to illustrate the fact that the decaying modes do not grow for the background presented in the
left panel.

Our results for PR(k, Nend) are presented in Figure 8. In the left panel, we notice that
the expression (63) accurately describes the behavior of the power spectrum towards its
peak, confirming our expectation that the constant growing mode is responsible for the
enhancement. Notice the absence of a dip proceeding the growth (which characterizes the
scenario shown in Figure 6). This is in agreement with our interpretation presented in the
previous section; the dip is due to disruptive interference between ‘growing’ and ‘decaying’
modes, while in this context, the decaying mode is not active. On the other hand, as shown
in the right panel of the figure, the power spectrum exhibits oscillations for scales following
the peak. As we discussed in Note 24, this is due to multiple horizon crossing of modes
within certain momentum scales, leading to excited states and oscillations in the spectrum.
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We illustrate this phenomenon in Figure 9—for two neighboring modes labeled by red
and purple dots in Figure 8—where we plot k versus

√
|z′′/z| as a function of e-folds.

As shown in the right panel of Figure 9, although these modes are neighboring, they exhibit
non-trivial behavior before their final horizon exit (N ' 40) so that their asymptotic values
(N → Nend) differ considerably, giving rise to the sizable modulations in the late-time
power spectrum (see Figure 8), as discussed in [64].

Besides [64], the ideas discussed in this subsection for enhancing the spectrum at
small scales are further realized in [65]. Conceptually similar frameworks include a sound
speed resonance scenario proposed in [66]—which can be explicitly realized within a DBI
inflation model [67]—and a parametric resonance model discussed within the single-field
canonical inflation framework [257].
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Figure 8. The full power spectrum of curvature perturbation for the background model presented in
Figure 7 (left). The blue dots represent the accuracy of the Formula (63) in describing the rise of PR
towards its peak. As shown by the red dotted line, the spectral index on the rise satisfies ns − 1 . 3/2.
The power spectrum for scales following the peak illustrates the oscillations in the amplitude at those
scales (right).
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Figure 9. (Left): The occurrence of multiple horizon crossing for the neighboring modes labeled by
red and purple dot in Figure 8. (Right): Evolution of the modes that exhibit multiple horizon crossing
(same color coding as in the left panel). The vertical lines illustrate the final horizon crossing time for
each mode.

3.4. Brief Summary

We find it remarkable that many distinct single-field models of inflation built with the
aim of producing PBHs share common features in the properties of the resulting power
spectrum because the enhancement of the curvature spectrum at small scales is the result
of few mechanisms common to several scenarios. We identified the idea of resurrecting
the decaying mode of curvature fluctuations at super Hubble scales by increasing the
absolute value of the slow-roll parameter (η)—see Section 3.2—and the idea of having very
rapid changes in the values of slow-roll parameters (keeping them relatively small)—see
Section 3.3.
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The resulting properties of the curvature spectrum might be essential for testing single-
field models of inflation at small scales, thanks to their predictions for the PBH population
properties, as well as for the spectrum of gravitational waves induced at the second order
in perturbations [87,88]. In fact, the latter is a very interesting topic that is relevant and
well-studied for single-field models; we refer the reader to [105] for a detailed review.

Nevertheless, the existing explicit scenarios of single-field inflation, which are able
to generate an appreciable PBH abundance, typically suffer from severe fine-tunings on
the choices of the parameters characterizing their Lagrangians, for example, in producing
sufficiently flat plateau regions of their potential and in ensuring regular transitions be-
tween attractor and non-attractor eras during the inflation process (see e.g., the discussion
in [50] and [258] for a scenario that can partially ameliorate the tuning involved). More-
over, as we learned in Section 2.2, the resulting PBH population can be very sensitive to
the details of the spectrum profile and to the presence of primordial non-Gaussianities.
The latter should, to a certain extent, be generated in many concrete single-field realizations
(see Section 3.2) and render particularly delicate the task of making precise theoretical
predictions. In fact, large non-Gaussianities might not only change the predictions for PBH
production but can also impose restrictions on single-field model building due to large
one-loop corrections [259–262] (see [263]).

It is then interesting to try to consider PBH inflationary scenarios in contexts in which
more than one field acquires dynamics during inflation. The hope is to find qualitatively
new ideas for the production of PBHs or, alternatively, more natural realizations of known
mechanisms in order to amplify the primordial curvature spectrum at small scales. It is
possible that multiple fields affect the predictions on the statistics of curvature fluctuations
with respect to single-field models, with important implications for PBH formation. We
review this topic in the following section.

4. Enhanced Primordial Power Spectrum in Multifield Models

Despite the remarkable agreement of single-field, slow-roll inflation with the CMB and
the LSS data [4], the fundamental nature of inflation continues to elude us. In particular, it is
very important to know whether additional fields took part in the dynamics of inflation, be-
sides the scalar driving cosmic expansion. In fact, while current cosmological observations
do not provide hints of isocurvature fluctuations associated with extra inflationary degrees
of freedom, it might also be the case that additional fields play a role during epochs of
inflation that are not well probed by current large-scale surveys. The formation of PBHs oc-
curring at small scales can be sensitive to isocurvature fluctuations and represent a valuable
probe of inflationary multifield dynamics. Multifield inflation can offer new possibilities for
the production of PBHs, exploiting novel, distinctive ways of converting large gradients of
background quantities into the spectrum of curvature fluctuations. Moreover, when used
in tandem with the techniques discussed in the previous section, multifield models might
alleviate some of the fine-tuning issues the occur in single-field scenarios (see the discussion
in Section 3.4). For these reasons, in this section, we review a selected set of theoretical
frameworks aimed at enhancing the curvature spectrum at small scales25 by using tools
that specifically involve more than one field during inflation, in particular the tachyonic
behavior of field dynamics in some extra sectors during inflation.

First, in Section 4.1, we review PBH scenarios based on axions interacting with gauge
fields during inflation, exploiting a mechanism based on particle production during in-
flation. This possibility is well-motivated by particle physics constructions, and it has
been thoroughly explored in the literature; we make efforts to carefully review the state of
the art, discussing opportunities and challenges for PBH formation in this context. Then,
in Section 4.2, we review multifield inflationary scenarios in which the rise in the spectrum
is a result of large isocurvature perturbations induced by a curved inflationary trajectory
traversing a rich multifield moduli space.

Y Main References: In the discussion presented in Section 4.1, we benefit from the works
presented in [79–82,85,86], while the material presented in Section 4.2 is based on [72,73].
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4.1. Enhanced Scalar Perturbations from Axion-Gauge Field Dynamics

Axions [269,270] are pseudoscalar particles theoretically introduced in studies of parti-
cle physics theories beyond the Standard Model. First motivated by scenarios addressing
the strong CP problem in terms of a Peccei–Quinn mechanism [271,272], they find natu-
ral realizations in string theory (see, e.g., [273]), as well as many useful applications in
cosmology—see, e.g., [274] for a comprehensive review. The possibility of using the physics
of axions to produce PBHs is very interesting, given their strong theoretical and experi-
mental motivations that enable connections between particle physics, quantum gravity
and cosmology. In this section, we review several representative ideas and their realizations
in this context.

Axion fields, denoted here as χ, correspond to Goldstone bosons of Peccei–Quinn
(PQ) global symmetry spontaneously broken at a scale dubbed f . Their Goldstone nature
equips axions with a shift symmetry χ → χ+constant, which is valid at all orders in
perturbations. The shift symmetry makes them interesting inflation candidates, as their
potential is naturally very flat [275]. The PQ symmetry suffers from a chiral anomaly, which
breaks the shift symmetry and assigns axions a potential (V(χ)) through non-perturbative
contributions in field theory, or monodromy effects in string theory (see, e.g., [68] for
a review). The chiral anomaly implies that axions interact with gauge vectors through
higher-dimensional operators. This property is essential for our arguments. The typical
structure of an axion Lagrangian considered for cosmological purposes reads

L = −1
2

∂µχ ∂µχ−V(χ)− 1
4

Fµν Fµν − gcs

4 f
χ Fµν F̃µν . (65)

The axion χ is equipped by a kinetic term and a potential term (V(χ)). The potential is
often a polynomial function of the axion field, at least for small values of χ26. As anticipated,
the Lagrangian (65) also includes a U(1) gauge field (Aµ) with field strength (Fµν), coupling
to the axion through a dimension-5 gauge-preserving operator

Lint = − gcs

4 f
χ Fµν F̃µν , (66)

where f is the PQ symmetry-breaking scale, and gcs is a dimensionless coupling constant.
The dual field strength appearing in Equation (66) is F̃µν ≡ ηµνρσFρσ/(2

√−g), and the
alternating symbol η is 1 for even permutations of its indices and −1 otherwise (starting
with η0123 = 1). The dimension-5 operator (66) is especially important for our argu-
ments. As we review below, this axion–vector coupling leads to a tachyonic instability in
the gauge sector, which exponentially enhances one of the helicities of the gauge vector
modes and produces a large amount of gauge quanta [280]. The energy adsorbed in the
production of vector modes is carried away from the axion kinetic energy, which slows
down its evolution; this is good news for axion inflationary models, since the axion can
slowly roll, even along steep potentials [281]. Moreover, the inverse decay of enhanced
gauge quanta into axion fluctuations (schematically, A + A → χ) can amplify curvature
perturbations [282,283] and lead to a large curvature spectrum at small scales at a level
able to produce PBHs [79]. We refer the reader to [284] for a review on axion inflation
written one decade ago, which includes many of the topics mentioned above. We now
focus on reviewing the consequences of these ideas for scenarios amplifying curvature
fluctuations, in addition to covering opportunities and challenges put forward in the most
recent literature on this subject.

Amplification of gauge field fluctuations

When considering a dynamical axion field with a time-dependent background profile
(χ̄(t)), the dimension-5 axion-vector interaction of Equation (66) leads to a copious produc-
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tion of vector fluctuations. This property can be understood by considering the equation of
motion (EoM) for the gauge field mode functions (See Appendix D) [281]

∂2
x A± +

(
1± 2ξ

x

)
A± = 0, ξ ≡ − gcs ˙̄χ

2H f
(67)

where A± corresponds to the gauge vector polarizations, and we define a dimensionless
time variable (x ≡ −kτ = k/(aH)), as well as the effective dimensionless coupling (ξ)
between the spectator axion and the gauge field. Without loss of generality, we work within
the following conditions

ξ > 0 and ˙̄χ < 0 . (68)

Hence, the axion rolls along its potential from large positive to small values of χ̄ ≥ 0.
Notice from (67) that the dimension-5 operator of Equation (66) introduces a time-

dependent mass term in the dispersion relation of the U(1) field, which changes sign
depending on the helicity (λ = ±). This property reflects the parity-violating nature
of the dimension-5 interaction. When the gauge modes are deep inside the horizon
((x = k/(aH) � 1)), the time-dependent correction term is negligible, and both vector
polarizations obey a standard dispersion relation as in Minkowski space. However, as the
modes stretch outside the horizon, the correction becomes dominant for x = k/(aH) . 2ξ,
leading to an instability for one of the circular polarizations of the gauge fields. In our con-
ventions (68), only the A− state experiences a tachyonic instability, while A+ is unaffected.
The dynamics of the axion-like field controlled by the axion velocity ( ˙̄χ 6= 0), therefore
induces a significant production of helical vector fields.

The nature of gauge field production and its consequences as a source for scalar
perturbations are sensitive to the scalar potential (V(χ)), since this quantity determines the
profile of the axion background velocity ( ˙̄χ). The dynamics of the curvature perturbations,
as generated through the axion-gauge field dynamics, depend on whether we identify
the axion field as the inflation or whether it belongs to some extra spectator sector during
inflation. In what comes next, we arrange our discussion so as to clearly distinguish
between these possibilities. We consider the following scenarios:

1. Section 4.1.1 As a first possibility, we identify the axion (χ) with φ that drives inflation:
χ = φ. Then, the order parameter ( ˙̄φ) controlling the gauge-field production increases
over time, generating scalar perturbations through an inverse vector decay: δA +
δA → δφ. We refer to this scenario as “Smooth Axion Inflation”; models that can
be considered in this category are studied in [79–82]. Such scenarios suffer from
dynamical instabilities associated with large back-reaction effects from the gauge
fields on the axion evolution.

2. Section 4.1.2 In certain axion-inflation models, the axion potential has special fea-
tures located far away from the field range corresponding to scales affecting CMB
physics. A sudden increase in the axion inflation velocity occurs at their location,
with enhanced scalar perturbations amplified at small PBH scales through inverse
vector decay. This possibility was first discussed in [81], while further developments
were studied in [83,86]. We refer to scenarios producing PBHs by exploiting localized
particle production as “Bumpy Axion Inflation”, and we analyze how they address
the instabilities mentioned above.

3. Section 4.1.3 A final possibility corresponds to gauge field production in a hidden
sector through the dynamics of an axion spectator field. This case also allows one
to address the aforementioned dynamical instabilities, given that the back-reaction
effects from the vector sector can be placed under control. Depending on the shape of
the spectator axion potential, such a scenario can lead to localized peaks in the scalar
curvature power spectrum [81,85]. We refer to this scenario as “Spectator axion-gauge
field dynamics”.

We build our discussion mainly in terms of representative, concrete examples, present-
ing the main results and relegating technical details to appendices.
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4.1.1. Smooth Axion Inflation

In the first scenario, we identify the axion (χ) as the inflaton φ: χ → φ to study the
behavior of scalar perturbations in a setup described by Lagrangian (65). We assume that
the profile for the scalar potential (V(φ)) is sufficiently flat to support inflation. In this case,
the effective coupling (ξ), as defined in Equation (67), adiabatically increases during the
inflationary process:

ξ ≡ gcs

√
ε

2
Mpl

f
, (69)

where ε is the standard slow-roll parameter. The amplified gauge-field mode function
can be analytically expressed as [281] (recall that the axion speed has a negative sign; see
Equation (68)):

A−(τ, k) ' 1√
2k

(−kτ

2ξ

)1/4
exp(πξ − 2

√
−2ξkτ), ξ ≡ − gcs ˙̄φ

2H f
. (70)

The slowly changing time-dependent parameters (ξ and H) in Equation (70) are
evaluated at the epoch of horizon crossing. The amplification of gauge field modes is
maximized when the size of the mode is comparable to the horizon, −kτ ∼ O(1).

In fact, the analytic expression in (70) is valid within the interval (8ξ)−1 � −kτ � 2ξ.
For the values (ξ ∼ O(1)) we are be interested in, this range corresponds to a phase during
which the gauge modes grow and then remain frozen to their maximal value before being
diluted away by universe expansion. We proceed by discussing the time evolution of the
relevant quantities in this setup. For concreteness, we focus on a representative example.
For a more detailed account of the gauge field amplification by the slowly rolling scalar, we
refer the reader to Section 2.1 of [285] or Appendix B of [286].

Background evolution in a concrete example

As the effective coupling (ξ) of Equation (70) increases during inflation, the enhanced
vector modes eventually lead to a sizable back-reaction on the background evolution of
the axionic inflation field. This fact can significantly affect the homogeneous dynamics of
the system.

The back-reaction is mainly controlled by the vector-dependent friction term in the
equation of motion for the homogeneous inflation field [281]. This phenomenon implies
that the gauge field amplification occurs at the expense of the inflation velocity ( ˙̄φ). We
consider a situation characterized by a transition between standard slow-roll dynamics in
the early stages of inflation and a new attractor regime at late stages, when the gauge field
enhancement dominates the Hubble friction [287] (see the cautionary remark towards the
end of this section).

The aforementioned friction effect induced by the gauge-mode production can be
analyzed considering modified Klein–Gordon and Friedmann equations:

¨̄φ + 3H ˙̄φ + V′(φ̄) =
gcs

f
〈~E · ~B〉 ,

3H2M2
pl =

1
2

˙̄φ2 + V(φ̄) +
1
2

〈
~E2 + ~B2

〉
, (71)

where we introduced ‘electric’ and ‘magnetic’ field contributions27, as discussed in detail
in Appendix D (see, in particular, Equation (A63)). Using the solutions (70) for gauge-
field modes, the expectation values for the electric and magnetic fields can be computed
analytically [281,286], finding (see Appendix D)

〈~E · ~B〉 ' 2.1× 10−4 H4

ξ4 e2πξ , ρA ≡
1
2
〈~E2 + ~B2〉 = 1.4× 10−4 H4

ξ3 e2πξ . (72)
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The quantity (ρA) corresponds the total energy density contained in the gauge field
fluctuations. Using the evolution Equation (71), we can identify the conditions correspond-
ing to a small back-reaction of the vector modes into the background evolution. They are
3H| ˙̄φ| � gcs〈~E · ~B〉/ f and ρA � 3H2M2

pl, which can be expressed as

ξ−3/2eπξ � 79
˙̄φ

H2 , −→ negligible back-reaction on φ equation ,

ξ−3/2eπξ � 146
Mpl

H
, −→ negligible back-reaction on the Friedmann equation . (73)

Assuming that inflation starts in a standard slow-roll regime, the relation
φ̇ =
√

2εHMpl � HMpl implies that the first condition in (73) is more demanding than the
second. When these conditions are not met, we enter into an inflationary phase character-
ized by a strong back-reaction of gauge modes, which goes beyond the standard slow-roll
inflationary attractor.

To concretely illustrate the back-reaction of the gauge field production on the homo-
geneous background evolution of inflation, we focus on a modified version of the linear
monodromy-type potential [276] that interpolates between V ∝ φ and V ∝ φ2 from large to
small field values around the global minimum:

V(φ) = λM4
pl



√√√√1 +

φ2

M2
pl
− 1


, (74)

where λ is a dimensionless parameter that fixes the overall amplitude of the potential.
Assuming negligible back-reaction in the beginning of inflation, λ can determined by
enforcing the standard normalization of the power spectrum in the slow-roll regime for a
given choice of φin using

PR(kcmb) =
H2

8π2εM2
pl
' V(φin)

24π2εV(φin)M4
pl
≡ 2.1× 10−9. (75)

We then numerically solve Equation (71) utilizing (72) by setting the coupling between
the inflation and the gauge fields to its maximally allowed value28 by Planck: gcsMpl/ f = 48
(see e.g., [289]). Note that for a given initial value of the scalar field, this number can be
translated to an initial value of the effective coupling, which we label as ξcmb:

ξcmb '
gcs Mpl

f
1

2φin
. (76)

For φin = 10.5 Mpl (ξcmb = 2.5), the results of the numerical computation are shown
in Figure 10. In the left panel, we show the inflation profile as a function of e-folds until the
end of inflation, where Ḣ = −H2. We can clearly observe that in the absence of coupling
to the gauge fields (gcs = 0) (black dashed line with ξ = 0), inflation lasts for about
≈48 e-folds. Turning on the interactions with gauge fields at the beginning of inflation
(solid orange line with ξcmb = 2.5), the back-reaction induced by the vector fluctuations
become noticeable around ≈36 e-folds, which, in turn, has the overall effect of extending
the duration of inflation for about ≈12 e-folds compared to the standard slow-roll case
(ξ = 0).

These findings are also supported by the right panel of Figure 10, where we compare
the standard Hubble damping term (3Hφ̇) with the friction term (gcs〈~E · ~B〉/ f ) induced by
the gauge field production as a function of e-folds until the end of inflation. We observe
that the standard Hubble friction dominates the dynamics at early times, but as the effective
coupling (ξ) increases, the dynamics gradually evolve into a regime dominated by the
back-reaction of the produced gauge quanta. For the parameter choices we adopt, the onset
of this regime starts around Nbr ' 36 e-folds, and at around N ' O(50) the system enters
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into a strong back-reaction regime wherein the dynamics become completely controlled by
the gauge modes [281].

Therefore, in any viable model of axion inflation, back-reaction effects induced by
gauge field production become important only towards the latest stages of inflation. For ex-
ample, for a rough estimate of the orders of magnitude involved, we can adopt a linear
potential (V ∝ φ). Assuming the dynamics are initially in the slow-roll regime, we have
ξ ' gcs

√
2εV Mpl/ f ∝ 1/φ and φcmb/φbr = ξbr/ξcmb ' 2.2–1.9. For typical initial field

values that can sustain enough inflationary evolution, we have φcmb ∼ O(10)Mpl, which
implies that φbr ∼ O(5)Mpl. Hence, back-reaction becomes dominant in the latest stages
but before the end of inflation corresponding to φend ∼ O(1).
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Figure 10. Field profile (φ̄(N)) with respect to e-folding number (N) in smooth-axion inflation for the
initial choice (ξcmb = ξ(N = 0) = 2.5) (left). At early stages, the dynamics are in the standard slow-
roll regime (light blue region), but as ξ increases, they enter into a stage dominated by the friction
generated due to gauge field production (light red region), which has the effect of prolonging inflation
with respect to the background evolution with ξ = 0. For the choice of ξcmb = 2.5, the behavior of
the Hubble damping term (3H ˙̄φ) and the friction induced by the source term (∝ 〈~E · ~B〉) are shown in
the (right) panel.

Scalar fluctuations sourced by gauge fields

As inflation progresses, particle production becomes increasingly efficient. Hence,
the vector modes start to act as an additional source of inflation fluctuations (δφ) due to the
presence of trilinear coupling (δLint ∝ δφFF̃) (see Appendix D.2 and references therein).
In particular, a tachyonic amplification of the vector fields leads—at the second order in
perturbations—to an enhancement in the scalar sector. Since these contributions to the
scalar fluctuations are statistically independent of their vacuum counterpart, the resulting
curvature power spectrum acquires two separate contributions (see Appendix E) that can
be parameterized as [79,281]

PR = P (v)
R + P (s)

R ,

' H2

8π2εM2
pl

+

(
gcs

f
〈~E · ~B〉
3Hβ ˙̄φ

)2

F 2 . (77)

The first term in the second line denotes the standard vacuum contribution to the cur-
vature power spectrum. The second accounts for the vector part, with the time-dependent
quantities (β and F ) defined in Equations (A81) and (A99). In the weak back-reaction
regime, the power spectrum of the curvature perturbation is dominated by the vacuum
contribution in the first term of Equation (77). As inflation progresses, the effective coupling
between the inflation and the vector fields increases; the source contribution to the power
spectrum starts to kick in, and the power spectrum grows as PR ∝ 〈~E · ~B〉2 ∼ e4πξ (the
system is still in the weak back-reaction regime, where β ' 1). Then, the scalar fluctuations
grow; they start influencing the gauge fields sources and lead to an increase in the damping
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factor (β ∼ 〈~E · ~B〉/3H ˙̄φ). Therefore, the sourced contribution to the power spectrum
eventually saturates towards late times during inflation. In fact, the time-dependent factor
(F ) is introduced to capture the modified definition of the curvature perturbation in the
strong back-reaction regime. As discussed in detail in [81], this factor is responsible for an
order-one correction to the power spectrum amplitude towards the end of inflation.

We summarize these arguments with a plot (Figure 11) of the total power spectrum
with respect to the e-folding number. We notice that as the effective coupling (ξ) between the
scalar and the gauge fields increases along the inflationary trajectory, the power spectrum
acquires a large contribution from the vector source. As desired, it grows towards smaller
scales, eventually saturating towards a constant value. Since the source of the peak in
the power spectrum originates from a trilinear coupling between the inflation and the
gauge fields, the statistics of the curvature perturbation at those scales is non-Gaussian
(see also [290]). The values of the curvature spectrum amplitude at the peak appearing
in Figure 11 are sufficiently large to generate a sizable population of PBHs (recall the
discussion in Section 2.3).
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Figure 11. Total power spectrum (77) as a function of e-folds in smooth-axion inflation for the
potential in (74) and ξ(N = 0) ≡ ξcmb = 2.5 as discussed in the main text.

Cautionary remarks: an instability in the inflation dynamics

We warn the reader that the findings reviewed in this section have been recently
questioned. In particular, the authors of [290–294] studied the axion-gauge field dynamics
for different choices of potentials and parameters, focusing on the strong back-reaction
regime. By implementing sophisticated numerical techniques, these works go beyond the
constant-velocity approximation assumed in our discussion above. Their findings indicate
that after entering the strong back-reaction regime, the inflation velocity is characterized by
oscillations of increasing amplitude, in sharp contrast to analytical studies approximating
˙̄φ (and ξ) as constant. Finally, the recent analytic study reported in [295] fully supports the
numerical results. The physical source of this instability seems to be a delayed response of
the vector source to changes in the axion velocity ( ˙̄φ) when the system enters a strong back-
reaction regime. This phenomenon causes the aforementioned oscillations with increasing
amplitude in the inflation velocity.

It is not clear at the moment whether these secular effects can be tamed by adding
ingredients to the setup discussed in this section. A potential way out is to modify the
inflationary dynamics in such a way as to push the strong vector back-reaction regime
towards an epoch that does not affect the predictions of PBH formation in the scalar sector.
This possibility can be achieved in scenarios in which the gauge field production is localized,
leading to a pronounced peak in the scalar power spectrum before entering into a strong
back-reaction regime (see Section 4.1.2). Such a way out does not avoid the instability but at
least moves it towards epochs that do not affect our predictions for the production and
properties of curvature perturbations. In Section 4.1.3, we instead discuss the possibility of
avoiding a strong vector back-reaction regime altogether in scenarios in which the axion is



Universe 2023, 9, 203 35 of 78

a spectator field and does not drive inflation. Appropriate choices of the axion potential
nevertheless lead to an enhancement of the scalar sector at a level sufficient for producing
PBHs. All the opportunities we review next are possible in scenarios of inflation including
axion–vector couplings, which have very rich ramifications and are well studied, given
their particle physics motivations.

4.1.2. Bumpy Axion Inflation

In this section, motivated by the instability arguments discussed above, we consider
scenarios with localized production of gauge fields able to enhance the curvature spectrum
and produce PBHs before entering any strong back-reaction regime. As we will see,
the mechanism is based on the ideas discussed in the previous Section 4.1.1 but also uses
tools for the activation of the decaying mode that we introduced in Section 3.2.

For definiteness, we focus on a representative example, discussing its properties in
the main text and referring to appendices for technical details. We assume that the shift
symmetry of the axion is broken both by non-perturbative instanton corrections, as well as
by a non-periodic monomial term in the potential29 (see, e.g., [276,278,279,297–301]),

V(φ) =
1
2

m2φ2 + Λ4 φ

f
sin
(

φ

f

)
, (78)

where m, Λ, f are parameters of unit mass dimension. In fact, potentials such as those men-
tioned above characterized by modulations on top of a smooth profile are well-motivated
and studied in theoretical constructions of axion inflation models in a variety of situations.
For these reasons, we find it interesting to review their useful applications for our aim of
producing PBHs.

We are interested in obtaining noticeable modulations of the functional form of the
potential within the regime Λ4 . m2 f 2 (which we refer to as the “bumpy” regime in
what follows). In particular, we exploit the aforementioned non-perturbative corrections
to generate a roller-coaster profile to the otherwise smooth potential, where plateau-like
regions are connected to each other by steep cliffs (see Figure 12). While plateau-like
regions are suitable to sustain long enough inflation—and to generate nearly scale-invariant
fluctuations at CMB scales—when reaching the cliff-like regions, the scalar velocity speeds
up intermittently.
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Figure 12. The shape of the potential (78) in the bumpy regime (orange curve) for Mpl/ f = 3.3.
The red stars on the potential denotes the locations in field space where axion velocity and the slope
of the potential are maximal.
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During such brief stages, a localized production of gauge fields occurs. To illustrate
this phenomenon explicitly, we rely on a numerical procedure along the same lines as
that discussed with respect to single-field models of inflation. We numerically solve the
background Equation (71) in the bumpy regime of the potential (78), neglecting possi-
ble back-reaction effects induced by gauge fields30. The resulting background evolution
during inflation is represented in Figure 13 in terms of the first two slow-roll parameters
(ε(N), η(N)) for the parameter choices used in Figure 12.

0.0

0.5

1.0

(ε∗, N∗) = (0.455, 35.8)

ε

0 10 20 30 40 50 60
N

2
0
−2
−4
−6

η

Figure 13. Evolution of the Hubble slow-roll parameters (ε and η) with respect to e-fold number
for the bumpy axion inflation model described by potential (78). We numerically evaluate (71) using
the parameter choices shown in Figure 12 with φin ' 4.8, ignoring back-reaction effects, as explained
in the text.

Adopting the initial condition φin ' 4.8Mpl, the scalar field completes a total of
60 e-foldings of its evolution when traversing a single bump-like region, around which the
slow-roll parameter (ε) reaches its maximal value of ε∗ = 0.455 at N∗ = 35.8. Following
the stage of maximal velocity for the scalar field, the background dynamics enter into a
short non-attractor phase with η . −6, during which φ slows down before the dynamics
re-enter into a final inflationary slow-roll stage (η � 1). Since the inflationary background
proceeds through an epoch of slow-roll violation, in our calculations, we compute the
vacuum contribution to the scalar power spectrum using the numerical methods discussed
in Section 3.2 Appendix C. In fact, as anticipated above, in developing this example, we
make use both of ideas based on the conversion into curvature fluctuations of gauge-field
modes (as in the previous section) and on the activation of the would-be decaying mode of
the inflation scalar sector (as discussed in Section 3.2).

Since while traveling the plateau-like regions, the scalar velocity is small, the only
contributions to the scalar power spectrum arise from the cliff-like region of the potential
(see Figure 12). Around the cliff, the scalar field velocity and the effective coupling (ξ)
acquire the following profile [86]:

ξ(N) =
gcs δ

1 + δ2(N − N∗)
2 , −→ ξ∗ ≡ ξ(N∗) = gcsδ , (79)

where ξ∗ denotes the maximal value of the effective coupling. The dimensionless parameter
(δ '

√
2/3(Mpl/ f )(m/H)) determines the number of e-folds during which the parameter

ξ maintains its maximal value, i.e., ∆N ∼ δ−1. For δ ∝ m, the duration of such an epoch is
inversely proportional to the restoring force provided by the potential; hence, it inversely
depends on the mass parameter (m). A time-dependent profile for the effective coupling
gives rise to a scale-dependent amplification of the gauge fields whose growing solutions
correspond to the real part of the mode functions (see Equation (A61)), using Equation (A62)
(see Appendix D.1 for more details).
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As expected, the resulting sourced contribution to the power spectrum induced by the
δA + δA→ δφ inherits the scale dependence of the gauge fields, and the curvature power
spectrum can be parameterized as [86],

PR(k) = P (v)
R (k)

[
1 +

H2

64π2M2
pl

f2,R

(
ξ∗,

k
k∗

, δ

)]
. (80)

The vacuum contribution (P (v)
R ) can be numerically calculated following some of the

methods explained in Section 3. Due to the presence of a brief non-attractor phase, it is
amplified by the activation of the would-be scalar decaying mode (see Section 3.2). The
dimensionless function ( f2,R) characterizes the contributions from the gauge fields and has
a log-normal shape [86],

f2,R

(
ξ∗,

k
k∗

, δ

)
' f c

2,R[ξ∗, δ] exp

[
− 1

2σ2
2,R[ξ∗, δ]

ln2

(
k

k∗xc
2,R[ξ∗, δ]

)]
. (81)

As suggested by the expression (81), the information about the location, width and
height of the sourced signals in (80) depends on the motion of φ through the step-like
features of its wiggly potential, particularly through ξ∗ and δ dependence of the functions
(xc

2,R, σ2,R, f c
2,R). We learn from (81) that the sourced signal is maximal at k = k∗xc

2,R, where
it is elevated to f c

2,R, whereas σ2,R controls the width of the signal. For the background
evolution presented in Figure 13, the fitting functions describing the height, width and
location of the sourced signal is calculated in [85] using the semianalytical techniques
developed in [302].

Collecting all the results above, we present in Figure 14 the full power spectrum in
Equation (80) in terms of the e-folding number by converting the scale dependence to e-fold
dependence using the horizon crossing condition (k = a(N)H(N)). Due to non-trivial
background evolution during which the slow-roll conditions are briefly violated, the vac-
uum contribution to the power spectrum (dotted lines) acquires a non-trivial shape, which
shares the characteristic features of the single-field scenarios we discussed in Section 3.2.
Notice in the presence of the dip due to the interference between growing and decaying
modes of the curvature perturbation that immediately precedes a phase of steady growth
of the spectrum.
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Figure 14. The total curvature power spectrum of Equation (80) as a function of N (orange curve)
for the bumpy axion inflation model, the background evolution of which is shown in Figure 13.
We make the following parameter choices: δ = 1.57, ξ∗ = 10.54 corresponding to gcs ' 6.7 (see,
e.g., (79)).
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However, in the present example, the duration of the non-attractor era is not sufficient
to provide a prominent peak in the power spectrum solely given the presence of vacuum
fluctuations of the curvature perturbation. At this point, the additional source provided by
the gauge fields come to the rescue, giving rise to extra-steep growth, leading to the required
power to generate a sizable peak at wave numbers kpeak = k∗xc

2,R ' 1.5× 1013 Mpc−1

corresponding to peak PBH mass at the time of formation MPBH ' 2.2× 10−13 M� (see
Equation (6)). Hence, in the presence of couplings to the Abelian gauge fields, the roller-
coaster architecture of the potential provides an assisted amplification mechanism of the
power spectrum. The curvature perturbation sourced by the vector fields and its vacuum
counterpart help each another to generate a sufficiently pronounced peak to produce PBHs.
Interestingly, the profile of the curvature spectrum as a function of momenta, in particular
its growth rate and the details of the peak, are quite different from the corresponding
predictions of single-field inflation, as investigated in Section 3. These differences make
the two scenarios distinguishable.

In conclusion, the localized production scenario we presented in this section might
be considered a possible way to address the instability issues associated with the back-
ground of the smooth-axion inflation discussed in Section 4.1.1. In fact, for the model we
considered in this section, back-reaction effects become prominent for ξ∗ > 15.6—see [86]
for details—a much larger value than the phenomenological value (ξ∗ ' 10.5) needed for
the amplification of the power spectrum. Hence, we make predictions in a safe region of
cosmological evolution.

Although this is promising in terms of building workable models of PBH production
in axion inflation, the issue regarding the stability of the background is likely to reappear
towards the end of bumpy axion inflation—in particular towards its final stages, when
ε→ 1, where ξ ≡ gcs

√
ε/2(Mpl/ f ) ' O(10). In the next section, we discuss an extension

of the model presented here, in which a spectator axion sector generates a localized scalar
enhancement through its coupling to an Abelian gauge sector. Since in this model, the
dynamical evolution of the axion field stops long before inflation ends, we can avoid a
strong back-reaction regime that leads to instabilities of the background configuration.

4.1.3. Spectator Axion-Gauge Field Dynamics

We continue to discuss possible methods to locally enhance the spectrum of scalar
fluctuations in axion-gauge field models, with an eye to solving the dynamical instability
problems mentioned above. We focus on scenarios in which the axion is a spectator field,
i.e., does not directly drive inflation. We call σ the spectator axion field and couple it to an
Abelian gauge sector. The Lagrangian is

Lm = Linf −
1
2

∂µσ ∂µσ−U(σ)− 1
4

Fµν Fµν − gcs

4 f
σ Fµν F̃µν, (82)

where Linf = −(∂φ)2/2−V(φ) is the inflation Lagrangian, and V(φ) is its potential. We
are interested in an inflationary setup whereby the spectator sector provides a subleading
contribution to the total energy density during inflation. This implies that the energy
densities of the scalar fields in the model (82) satisfy ρ̄σ � ρ̄φ. Assuming small back-
reaction from the gauge field fluctuations (ρA � ρ̄σ) (more on this later), the Friedmann
equation simplifies to

3H2M2
pl ' ρ̄φ + ρ̄σ −→ 3H2M2

pl ' V(φ̄), (83)

so that the inflationary background is completely dictated by the inflation potential. We
assume that V(φ) is flat enough to support sufficient inflation, but otherwise, we leave it
unspecified, as the fine details of the inflation dynamics are not essential for what follows.
Since we are working in a weak back-reaction system, we can avoid instabilities in the
inflation sector such as that reviewed in Section 4.1.1.
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From now on, we consider representative examples of axion potentials and their
corresponding dynamics. The choice of our examples is motivated by their interesting
ramifications for PBH production and for their motivations from high-energy physics. If
the spectator axion (σ) is displaced from its global minimum, it can be dynamically active
during inflation. Thanks to the perturbative shift symmetry of the axion sector, we expect
the axion potential to be nearly flat; hence, the axion dynamics should occur in a slow-roll
regime ( ¨̄σ� 3H ˙̄σ). In such a case, we can neglect back-reaction effects induced by gauge
field fluctuations31, and the background evolution of the spectator axion can be studied
through the following equation,

¨̄σ + 3H ˙̄σ + U′(σ̄) = 0, −→ 3H ˙̄σ + U′(σ̄) ' 0. (84)

To realize localized gauge field production through the last term in (82), we consider
two class of transiently rolling spectator axion models characterized by the following
potentials [85,302]

U(σ) =





Λ4
[

1− cos
(

σ

f

)]
, (M1) ,

µ3σ + Λ4
[

1− cos
(

σ

f

)]
and Λ4 . µ3 f (M2),

(85)

where µ and Λ are parameters of mass dimension one.
The first model (M1) features a standard (discrete) shift symmetric potential akin

to natural inflation [275], where the size of the axion modulations is set by Λ. In this
model, the axion dynamics span an interval bounded by the maximum (σ = π f ) and the
minimum (σ = 0) of the potential. Therefore, for large and small field values (early and
late times, respectively), the axion rolls with small velocities. However, ˙̄σ obtains relatively
large values at an intermediate time when σ passes through an inflection point (σ∗ = σ(t∗))
with U′′(σ∗) = 0, where the slope of the potential (U′(σ)) becomes maximal.

In the second model (M2), the axion field range is extended via a linear term [276,278]
proportional to a soft symmetry breaking mass parameter (µ). We assume that the axion (σ)
can probe the corresponding bumpy potential32 in the Λ4 . µ3 f regime, similar to the axion
inflation model we discussed in Section 4.1.3. In the plateau-like region(s) and towards the
global minimum (σ = 0)33, the spectator axion acquires very small velocities, but obtains a
relatively large transient peak when the slope of the potential (U′(σ)) becomes maximal in
the cliff-like region(s), in particular at the inflection point(s) denoted by ∗ in Figure 15.
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Figure 15. The shape of spectator axion potentials for M1 (left) and M2 (right). For both panels,
the red stars indicate the location of the inflection point(s) at which the slope of the potential (U′(σ))
and, hence, the background velocity ( ˙̄σ) of σ become maximal (see e.g., Equation (84)).

The background evolution (σ) can be analytically derived in the slow-roll regime (84),
starting from the expressions for the scalar potentials of Equation (85). For typical field
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ranges dictated by these potentials34, the spectator axion velocity ( ˙̄σ) and the effective
coupling strength (ξ = −gcs ˙̄σ/(2H f )) obtain a peaked time-dependent profile [85,302]:

ξ(N) =





2ξ∗
eδ(N−N∗) + eδ(N∗−N)

, δ ≡ Λ4

3H2 f 2 and ξ∗ ≡
gcs δ

2
(M1)

ξ∗
1 + δ2(N − N∗)2 , δ ≡ µ3

3H2 f
and ξ∗ ≡ gcs δ (M2)

(86)

where N∗ denotes the e-fold number when the axion passes through the inflection point
(see Figure 15), and ξ∗ is the maximal value of the effective coupling parameter at N∗. As in
the bumpy axion inflation model, the width of the time-dependent peak in ξ depends on
the dimensionless ratio (δ), which characterizes the mass of the spectator axion in its global
minimum (δ ≈ m2

σ/H2). For a heavier axion (corresponding to larger δ), the restoring force
towards the global minimum becomes very relevant; the axion σ traverses the inflection
point faster, the result being a sharper peak in ξ. In other words, δ controls the acceleration
(ξ̇/(ξH) = ¨̄σ/( ˙̄σH) ∼ δ) of σ as it rolls down on its potential. Notice that given our
slow-roll approximation, we require δ� 3.

The peaked structure of the ξ profile controls a critical scale (k∗ = a∗H∗) characterizing
the equation of motion (A56) corresponding to the scale of momenta leaving the horizon at
an epoch when the axion velocity is maximal (i.e, when ξ = ξ∗). Since the mass of the U(1)
field in (A56) is as tachyonic as possible around this scale, it gives rise to a scale-dependent
growth of the gauge field fluctuations, where only modes with a size comparable to the
horizon size at N = N∗, i.e k ∼ O(1)a∗H∗, are efficiently amplified. In Appendix D.1,
we briefly review the parametric amplification of the gauge field modes corresponding to
both models (M1,2) we are presenting in this section; for more details, we refer the reader
to [85,285,302].

In the spectator axion models we are focusing on, the impact of the vector field pro-
duction on the visible scalar fluctuations is encoded only indirectly by the presence of grav-
itational interactions [303]. In fact, although we consider a matter Lagrangian (82) where
the spectator axion-gauge field sector is decoupled from the visible inflation sector, when
integrating the non-dynamical lapse and shift metric fluctuations, we find a mass mixing
between inflation (δφ) and spectator axion (δσ) fluctuations. This phenomenon introduces
the possibility that the gauge fields influence the curvature perturbation (R ' H δφ/ ˙̄φ)
through a succession of inverse decays: δA + δA→ δσ→ δφ ∝ R (see Appendix E).

Therefore, the dynamics of this sourced contribution can be understood by first study-
ing the influence of particle production on the spectator axion fluctuations (δσ) and then
by computing their conversion to curvature perturbation (δφ ∝ R). We sketch some of the
steps in Appendix D.3; more detailed computations can be found in [85,302].

Taking into account the vacuum fluctuations within the inflation sector, the total
power spectrum of curvature perturbation in the spectator axion-gauge field model can be
expressed as [85,302],

PR(k) = P (v)
R (k) +

[
εφP (v)

R (k)
]2

∑
i

f (i)2,R

(
ξ∗,

k
k∗

, δ

)
, (87)

where PR = H2/(8π2εφ M2
pl) with εφ ≡ ˙̄φ2/(2H2M2

pl) and the sum over i denotes contri-
butions from each particle production location, e.g., for model M1, the sum is over only
one of such regions, while for M2, there are two of them (due to our assumptions about
the initial conditions of σ in the bumpy regime of the potential in (85)), as the spectator
rolls along the potential towards its global minimum. Equation (87) teaches us that the
part of the spectrum sourced by the gauge fields has an extra slow-roll suppression (εφ),
in particular with respect to the direct coupling model we discussed in the previous section
(see Equation (80)). However, the part that parameterizes the scale dependence of the
sourced contribution, i.e., f2,R in (87), exhibits the same log-normal scale dependence of the
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bumpy axion model in (81), the peak height, width and location ( f c
2,R, σ2,R, xc

2,R) of which
are calculated in [85,302] in terms of ξ∗ for phenomenologically interesting values of δ that
characterize the background evolution of the spectator axion.

To understand the full-scale dependence of the power spectrum (and, in particular,
its vacuum contribution (P (v)

R )), we need to specify the scalar potential (V(φ)) in the
inflationary sector. Instead of specifying V(φ), we take a phenomenological approach
to determine the important set of parameters summarizing the inflationary dynamics.
For this purpose, first notice that assuming the effects introduced by the rolling of σ is
negligible at CMB scales (early times during inflation), we have ns − 1 ' 2ηφ − 6εφ and
r ' 16εφ. Considering the latest Planck results, we adopt r . 10−2 at CMB scales [4]
to obtain εφ ' 6.25× 10−4. However, the observed value of the spectral tilt gives ns − 1 '
−0.035 [4]. Furthermore, neglecting higher-order slow-roll parameters, we assume that
εφ remains constant throughout the inflation. These simplifying approximations enable
us the describe the total power spectrum in the multifield scenarios we described above.
Denoting the e-fold dependence of the Hubble parameter during slow-roll inflation as
H(N) = Hcmb e−εφ N (where the subscript cmb denotes the time at which the CMB pivot
scale (kcmb = 0.05 Mpc−1) exits the horizon), we can turn the the scale dependence of the
vacuum scalar power spectrum into e-fold dependence as

P (v)
R (k) ' As e−(1−εφ)(1−ns)N , (88)

where As ≡ P (v)
R (kcmb) = 2.1× 10−9, where εφ ' 6.25× 10−4 and 1− ns ' 0.035, as

discussed above. Collecting all the information we presented above, we plot in Figure 16
the total scalar power spectrum (Equation (87)) for a representative set of parameter choices
describing both of the spectator axion-gauge field models (M1 and M2).
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Figure 16. Total scalar power spectrum (black curves) as a function of e-folds during inflation for
the spectator axion-gauge field models M1 (Left) and M2 (Right). In the left panel, we assume that
˙̄σ is maximal at N∗ = 32.5, where the effective coupling reaches ξ(N∗) = 4.96 corresponding to
gcs = 49.6 using Equation (85). In the right panel, the spectator traverses two bumps before it settles

to its minimum, and we set the inflection points at N(1)
∗ = 16 and N(1)

∗ = 32.5, where ξ∗ = 6.23
(gcs ' 20.7).

We learn from Figure 16 that since the spectator dynamics do not significantly influence
the inflationary background, the vacuum contribution (dotted lines) has a smooth red tilted
power law form, which should be contrasted with the bumpy axion inflation model we
discussed in the previous section. However, the transient roll of the spectator axion
(σ) before settling to its global minimum triggers gauge field production as it probes the
inflection point(s) on its potential (see Figure 15). This phenomenon generates an additional
Gaussian bump in the scalar power spectrum. Notice that for larger δ values, the width of
the corresponding bump decreases because ˙̄σ ∝ ξ is maximal for a shorter time interval,
during which it can affect fewer gauge field modes. This explains why the sourced signals
in the second model (M2) has a narrower width. As in the direct coupling cases with the
gauge fields we considered earlier, the peak in the power spectrum originates from a cubic
term, i.e., the last term in (82); therefore, the statistics of the curvature perturbation are
expected to be non-Gaussian. This explains why the exemplifying scenarios we present in
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Figure 16 with a peak power of PR ∼ 10−3 are sufficient to generate large populations of
PBHs at masses corresponding to the peak scales in Equation (7).

To close this section on axion-vector inflationary systems with the aim of producing
PBHs, we can conclude that this possibility requires a fair amount of complex model
building. Nevertheless, the physics of axion reached so far have a high degree of theoretical
sophistication, thanks to the input and motivations from particle physics, quantum gravity
and cosmology. The distinctive predictions we explored with respect to the properties of
the curvature power spectrum, in particular its profile as a function of momenta and its
shape around the peak, make these scenarios distinguishable from single-field inflation,
with relevant ramifications for PBH phenomenology. It is certainly worthwhile to explore
and apply existing efforts to explore their consequences with respect to the physics of
PBH formation.

4.2. Strong Turns in the Multiscalar Field Space

An alternative approach to enhance scalar fluctuations at small scales is to exploit the
dynamics of multifield inflation. Multifield inflation is a topic that has been thoroughly
studied in the inflationary literature with a variety of motivations (see e.g., [304] for a
review). In reviewing the applications to PBH production, we focus on a general class of
non-linear sigma models that are well-motivated when embedding inflation high-energy
physics. Although we go through representative concrete examples, the essence of the
mechanism is again associated with a transient tachyonic instability in the scalar sector—
along a direction orthogonal to the inflationary one—which is converted through suitable
couplings into an amplification of curvature perturbations.

The generic two-derivative Lagrangian describing the dynamics of such a system of
scalar fields (φI) minimally coupled to gravity is given by (S ≡

∫
d4x
√−gLm),

Lm = −1
2

GI J(φ)∂µφI∂µφJ −V(φ), (89)

where the fields may interact through the potential (V(φ)) and the field field space metric
(GI J(φ)). For an FLRW background characterized by the scale factor (a(t)) and Hubble
parameter (H(t)), the equation of motion of the homogeneous fields is described by

Dt ˙̄φI + 3H ˙̄φI + GI JV,J = 0, (90)

where the time field space covariant derivative of any field space vector (AI) is defined
as Dt AI = ȦI + ΓI

JK
˙̄φJ AK. Considering a two-field case for simplicity, the background

trajectory can be split into adiabatic (eI
σ = ˙̄φI/σ̇) and entropic (eI

s) field bases that are
orthogonal to each other. Here, σ ≡ (GI J

˙̄φI ˙̄φJ)1/2, which is related to the Hubble slow-roll
parameter as ε ≡ −Ḣ/H2 = σ̇2/(2H2M2

pl).
We find it worth mentioning that the vanilla multifield slow-roll trajectory corresponds

to fields following standard gradient flow of the potential (3H ˙̄φI ' −V,I) corresponding
to a field space trajectory that is approximately geodesic with Dt ˙̄φI ' 0 (see, e.g., (90)).
However, a sufficiently long phase of inflation only requires a small acceleration along the
unit vector tangent to the inflationary trajectory (eσ IDt ˙̄φI ' 0), and the acceleration point-
ing in the perpendicular direction—which parameterizes the “bending” of the inflationary
trajectory—is generically not constrained and can therefore be large. The level of “bending”
can be described by the dimensionless parameter (η⊥) so that the orthogonal field bases
evolve as

Dt eI
σ = Hη⊥eI

s , Dt eI
s = −Hη⊥eI

σ, (91)

where η⊥ = −eI
s V,I/(Hσ̇) measures the acceleration of the trajectory perpendicular to its

velocity [305,306]. In combination with the Hubble rate, a “turning rate” associated with
the trajectory can be defined as Ω ≡ η⊥H. Therefore, an inflationary background with a
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strong turn (η⊥ � 1) satisfies Ω� H. As we will show below, this is the regime of interest
for the amplification of the scalar fluctuations in this multifield setup.

For this purpose, we consider the linear fluctuations around the background we
described above, which is given by the following action [306–308]

S(2) =
∫

d4x a3
[

M2
plε

(
Ṙ2 − (∂R)2

a2

)
+ 2σ̇η⊥ṘQs +

1
2

(
Q̇2

s −
(∂Qs)2

a2 + m2
s Q2

s

)]
, (92)

where R is the comoving curvature perturbation35, and Qs is the instantaneous entropy
perturbation, the mass of which is given by

m2
s = V; ss − H2η2

⊥ + εH2M2
plRfs (93)

were V; ss = eI
seJ

sV;I J is the projection of the covariant Hessian of the potential along the
entropic direction, and Rfs is the field space curvature. As should be clear from the
action (92), the dynamics of the fluctuations in this two-field model are completely dictated
by three functions of time (N = ln(a)), namely the Hubble rate (H(N)), the turning rate
(η⊥(N)) and the mass (m2

s (N)) of the entropy mode. To demonstrate the amplification in
the power spectrum via strong turns in curved multifield space, we follow the effective
approach presented in [73] to consider a field space that undergoes a strong turn (η⊥ � 1)
around an e-folding number (N f ) during inflation corresponding to a time well after CMB
scales exited the horizon and assume a featureless Hubble rate (H(N)). We also assume
that the time dependence of entropic mass is mainly controlled by the bending parameter,
taking m2

s = (b− η2
⊥)H2, where b is chosen as a constant for simplicity.

The behavior of the bending parameter (and that of the entropic mass (m2
s )) for typical

strong turn cases is shown in Figure 17. An important quantity that determines the behavior
of the fluctuations is the duration of the turn, which leads to either broad (left panel) or
rapid turn (right panel) cases, as shown in the figure. Although the dynamics of the scalar
perturbations are qualitatively different for broad and sudden (strong) turn cases, their
behaviors share some common characteristics that can be attributed to the transient nature
of the strong turn in field space. First of all, the modes that are still deep in the horizon
at the end of the turn do not feel the presence of the feature; hence, their dynamics are of
standard single-field type, where the power spectrum is given by

P (0)
R (k) =

H2

8π2εM2
pl

∣∣∣∣
k=aH

, (94)

with a slight red-tilted scale dependence. For this purpose, we utilize the phenomenological
model we discussed in the previous section to parameterize the scale dependence (time
dependence) of the power spectrum as in Equation (88), with a constant ε ' 6.25× 10−4

and 1− ns ' 0.035, along with Hcmb ' 10−5. On the other hand, large scales that leave
the horizon well before the turn experience typical multifield dynamics, resulting in a
transfer of power from entropic to curvature perturbations and enhancement in the power
spectrum [304]. The corresponding amplification is sensitive to the value of the entropic
mass (ms) from the time of horizon exit until the turn. In the following, we assume a
sizable ms (i.e., b) before the turn so that the entropic fluctuations have decayed sufficiently
before the onset of the turn so that the power spectrum is given by the standard result (94)
for these scales. For scales that exit the horizon around the time of the turn, the entropic
fluctuations exhibit transient (exponential) growth due to their tachyonic mass (m2

s < 0)
around the turn, which is eventually transferred to the curvature perturbation through
the kinetic coupling in (92) proportional to the bending (η⊥) parameter. The exponential
amplification of PR associated with these scales is a typical observational feature of strong
turns, which we discuss briefly, focusing on broad and sharp turn cases separately.



Universe 2023, 9, 203 44 of 78

−15 −10 −5 0 5 10 15
N −Nf

−100

−50

0

50

100
— η2

⊥

– – m2
s/H

2

−2 −1 0 1 2
N −Nf

0

5

10

15

20

IN - Region OUT - Region

Bunch - Davies −−−−−−−−−→ Excited State

η⊥(N)

Figure 17. (Left): schematic time evolution of the bending parameter (η2
⊥) and entropic mass

(m2
s = b− η2

⊥) for a broad turn using a Gaussian (η⊥ = ηmax
⊥ e−y2/(2∆2), (ηmax

⊥ , ∆2) = (10, 10)) and
smoothed top-hat profile (η⊥ = ηmax

⊥ (erf(y − δ/2) − erf(y + δ/2))/2, (ηmax
⊥ , δ) = (10, 5)) with

y = N − N f . (Right): time dependence of the bending parameter (η⊥) for representative sharp
(rapid) turn examples with Gaussian and top-hat profiles.

Broad turns

For a strong turn in field space that lasts a sufficiently long time so that modes of
interest (i.e., modes that are enhanced) have already exited the Hubble radius at the
end of the turn, the dynamics of the curvature perturbation can be described by the
single-field effective theory with an imaginary sound speed parameterizing the growth
of the fluctuations [309,310]. From the perspective of two-field description, imaginary
sound speed is just a manifestation of the transient instability induced by the strong
non-geodesic motion in field space and the associated transient negative entropic mass
(m2

s ) [311]. Therefore, the dynamics of mode functions are mainly characterized by two
time scales: (i) Ñ, corresponding to entropic mass crossing and the onset of instability;
and (ii) N̄, denoting the sound horizon crossing of fluctuations after which the curvature
perturbation (R) becomes frozen:

k
a(Ñ)

=
∣∣ms(Ñ)

∣∣, &
k|cs|
a(N̄)

= H(N̄), (95)

where |cs| denotes the absolute value of the imaginary speed of sound describing the
instability/growth in the fluctuations (R) in the single EFT language. Since the background
dynamics change mildly between the time of entropic mass crossing (Ñ) and freeze-out
(N̄) in the broad turn case, the exponential enhancement in the power spectrum can be
parameterized as [73,311]

PR(k) = P (0)
R (k) exp

[
πη⊥(2−

√
3 + b/η2

⊥)
] ∣∣∣∣

Ñk

, (96)

for all k modes that satisfies k = a(Ñ)|ms|, while m2
s < 0. Notice that exponential en-

hancement in the power spectrum with respect to the base spectrum is proportional to the
bending parameter (η⊥ � 1).

In Figure 18, we show the power spectrum profile as a function of e-folds (left panel)
using the analytic Formula (96) for Gaussian bending profiles (η⊥ = ηmax

⊥ e(N−N f )
2/(2∆2))

with (ηmax
⊥ , ∆2) = (20, 10) (orange curve, Model 1) and (ηmax

⊥ , ∆2) = (20, 2) (black curve,
Model 2) and N f = 30. For both models, the range of scales and times affected by the turn
where m2

s < 0 are highlighted by red and correspond to 2.4× 108 < k [Mpc−1] < 1.2×15

(Model 1) 1.7× 1010 < k [Mpc−1] < 1.6× 1013 (Model 2). As should be clear from the
expression (96), the power spectrum reaches its maximal value for the scale for which
entropic mass crossing overlaps with the peak of the bending parameter, i.e., when N f =

Ñkp corresponding to

kp ' k f |(ηmax
⊥ )2 − b|1/2, (97)
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where k f = a(N f )H(N f ) ' 5.24× 1011 Mpc−1 is the scale that exits the horizon at N f .
To determine the slope of the power spectrum on the rise, one can compute the spectral
index with respect to the base power spectrum to obtain

(ns − 1)− (ns − 1)0 ' π(2−
√

3)
Nf − Ñ

∆2 + Nf − Ñ
η⊥ (98)

which shows that stronger and/or less broad turns in field space lead to a steeper power
spectrum. In particular, the expression (98) tells us that for broad and strong turn in field
space, the slope of the power spectrum towards its peak can be much larger than the
single-field models, where ns − 1 . 4 [95,212,217,224].
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Figure 18. (Left): curvature power spectrum (normalized to PR(N = 0) = 2.1× 10−9) for broad
strong turns and for two representative parameter choices using a Gaussian bending profile (see
main text). (Right): migration of modes k2/(aH)2 for equally spaced ln(k) values around the turn to
confirm the expectation that the power spectrum should fall more quickly after the peak (as compared
to the left panel) because more modes experience entropic mass crossing for N < N f than for N > N f
in the m2

s < 0 region highlighted in red.

We would like to note that for scales affected by the turn, the analytic profile presented
in (96) is symmetric around the peak; however, numerical computations carried out in [73]
show that the power spectrum typically exhibits a much quicker fall of behavior for scales
following the peak compared to those preceding it. This can be understood by first recalling
that the modes that are enhanced are those that go through entropic mass crossing (95)
while the entropic mass is negative (m2

s < 0). The right panel of Figure 18 can then guide
us for an intuitive understanding for the expected asymmetry in the power spectrum
following its peak because a larger range of modes enjoys entropic mass crossing before the
peak of |ms|36 than afterwards. We therefore conclude that the expression (96), along with
the power spectrum shown in the left panel of Figure 18, only characterizes the behavior
of the fluctuations qualitatively, and for more accurate results, numerical methods are
required, as shown in [73].

Sudden turns

When the duration of the turn is shorter (a statement that we will make more precise
below), the scales that are maximally enhanced are still those that experience entropic mass
crossing during the turn; therefore, they are of order k ∼ k f ηmax

⊥ (see, e.g., Equation (97)).
However, in contrast to the broad turn case, these modes get caught in the (rapid turn)
feature while they are still deep inside the horizon, i.e., they satisfy k > aH at the end of
the turn. This situation effectively generates an initial excited state for these modes that can
be studied analytically in the regime of sudden and strong (constant) turns (η⊥) [72,312].
Along with a localized exponential amplification, the resulting power spectrum of curvature
perturbation exhibits order-one oscillations in k, which is a common characteristic of sharp
features [313,314], with a frequency set by the time of the turn. We will review these
features below by focusing on the analytic model presented in [312]37. For this purpose, we
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consider an inflationary trajectory with a top-hat38sudden turn profile (see, e.g., the right
panel in Figure 17) characterized by three parameters: N f , the central time of its location
(measured with respect to the horizon exit time of the CMB pivot scale); its duration (δ)
and typical (constant) value (ηmax

⊥ ) around N f :

η⊥(N) = ηmax
⊥

[
θ

(
N −

(
N f −

δ

2

))
− θ

(
N −

(
N f +

δ

2

))]
, (99)

along with an entropic mass profile during the turn that is given by

m2
s

H2 = (ξ − 1)η2
⊥(N) (100)

where ξ < 1 is a constant parameter. Note from the parameterization of the bending
parameter (99) that the sudden turn case we consider corresponds to δ > ln(ηmax

⊥ ).
In this setup, one can determine the power spectrum generated by sharp turns

by studying the scattering problem of the two-field system using WKB methods [72].
In particular, this procedure includes matching operators (and their derivatives) describing
the perturbations from the IN region, where the Bunch–Davies vacuum is assumed, passing
through the turn and to the OUT region, resulting in an excited “initial” state as sketched
in the right panel of Figure 17. The behavior of the entropic and curvature perturbations
in both regions (IN and OUT) are standard, where the fields are dynamically decoupled
from each other, while the turn sandwiched between the IN and OUT regions results in
their exponential growth. Following this procedure, an analytic expression for the power
spectrum was derived in [312] for scales satisfying k/k f <

√
1− ξη⊥ as:

PR(k)
P (0)
R

=
e2η⊥δ S

2S2(1 + X +
√

X(1 + X))︸ ︷︷ ︸
envelope

× sin2
(

e−δ/2κη⊥ + arctan(κ/S)
)

(101)

where

S(k) =

√√
4κ2 +

(3 + ξ)2

4
−
(

κ2 +
(3 + ξ)

2

)
, and X(k) =

(3 + ξ)2

16κ2 (102)

where κ ≡ k/(k f η⊥) and η⊥ denote the typical constant value of the bending parameter
corresponding to ηmax

⊥ in the top-hat profile (99).
For the choice of ξ = −3—which corresponds to an effectively massless entropy mode

on superhorizon scales (see Section 2 of [312] for a detailed discussion on this)—the profile
of the curvature power spectrum39 for two representative parameter choices characterizing
the turn is shown in Figure 19. As described by the analytic expression (101), the power
spectrum features characteristic oscillations (sin2 term) modulated by an envelope that is
described as highlighted in the equation. The peak value of the envelope (see, e.g., the
blue dashed lines in Figure 19) controls the maximal enhancement of the power spectrum
with respect to the baseline power spectrum (94) (we assume it to be scale invariant for
simplicity) which will occur roughly at the maximum of the function S(k) defined in (102).
Arguably, the oscillatory pattern of the power spectrum around the peak is much more
interesting. In particular, the η⊥δ � e−δ/2η⊥ sin2 term changes much faster than the
envelope. On the other hand, in a sharp turn regime e−δ/2η⊥ � 1 so that the first term
in the argument of the sin2 term also changes much faster than the second. These two
observations imply that oscillations in the power spectrum are periodic to a considerable
degree. The period of the maxima in the oscillations occurs roughly in ∆κ ≈ πeδ/2/η⊥,
corresponding to a linear frequency of

∆k ≈ πeδ/2k f −→ ω ≡ 2π

∆k
≈ 2e−δ/2

k f
. (103)
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Therefore, the scale (k f ) that exits the horizon at the center of the feature roughly set
the frequency of oscillations in the power spectrum.
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R

Figure 19. Shape of the curvature power spectrum using the analytic formula in Equation (101)
for two representative sharp turn cases, where the turn in parameterized with a top-hat bending
parameter of Equation (99). The dashed blue line represents the envelope characterized by the terms
highlighted in Equation (101).

In summary, strong sudden turns in field space lead to a power spectrum that ex-
hibits order-one oscillations, the amplitude of which is modulated by an exponentially
enhanced envelope (101). The oscillations are fast, making their peaks almost periodic
with a frequency given by (103). We note that these oscillations do not have an impact
on the PBH mass spectrum (β(M)) (see, e.g., (15)) because the calculation of the variance
(σ2(M)) (of the density contrast) involves a smoothing procedure over scales compara-
ble to the width of peaks in the power spectrum (PR) [73]. Another issue of interest
from the perspective of model building is the influence of non-Gaussianity. The periods
of strong turns during inflation are known to generate non-Gaussianity of the flattened
type [310,316,317]. The implications of this on the PBH distribution and model building
(i.e., the required peak amplitude of PR) is not known and subject to future research. We
therefore would like to emphasize that in the strong turn examples we discussed in this
section (see Figures 18 and 19), the peak amplitudes we provided are not chosen based on
a particular bias on the basis of non-Gaussianity present in these models.

5. Outlook

Primordial black holes (PBHs), if they exist, can shed light on long-standing questions
with respect to the nature of dark matter and on the mechanisms driving cosmic inflation.
They can provide distinctive sources of gravitational waves that are potentially detectable
with current or forthcoming gravitational wave experiments. For these reasons, the physics
of PBHs offer promising opportunities for collaboration between cosmologists, astronomers
and gravitational wave scientists.

In this review, we focused on theoretical aspects of PBH inflationary model building.
We learned that generating PBHs from inflation is difficult but possible. We reviewed
conceptual ideas for amplifying the primordial curvature spectrum at a level sufficient
to trigger black hole formation. These mechanisms find realizations within single-field
inflation through a conversion of pronounced gradients of homogeneous quantities into cur-
vature perturbations or within multifield inflation, where curvature fluctuations are instead
amplified through appropriate couplings with additional sectors, which are characterized
by tachyonic instabilities. The required tuning of model parameters, or the degree of model
sophistication required to realize these ideas can be demanding. However, it is certainly a
worthwhile effort, given that experimental probes of PBHs are sensitive to the details of
the curvature power spectrum, for example, through the properties of the resulting PBH
population or through an induced stochastic gravitational wave background sourced by
curvature fluctuations. In fact, different categories of models lead to distinct, potentially
distinguishable predictions for the statistics of primordial fluctuations. Hence, a detailed
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analysis relating theoretical scenarios to cosmological and gravitational wave probes offers
new precise tests of inflationary mechanisms complementary to traditional ones associated
with the physics of the cosmic microwave background and of the large-scale structures of
our universe.

Although much theoretical work has been done so far by the community, much more
is needed to further investigate and clarify different aspects of the physics of inflation
leading to PBH. At the level of model building, it will be important to clarify and address
challenges associated with a severe tuning of model parameters or with the dynamical
stability of PBH models requiring non-attractor, non-slow-roll phases of inflationary evo-
lution. It will also be crucial to continue to characterize the rich and subtle properties
of primordial fluctuations in PBH models of inflation with large enhancements of the
primordial power spectrum at small scales. The to-do list includes a deeper analytic un-
derstanding of the properties of the curvature spectrum profile, as well as non-linearities
and non-Gaussianities and their consequences for observable quantities. Such theoretical
analysis will have relevant ramifications for designing appropriate cosmological probes of
the physics of PBHs. Hopefully, a concerted effort of theory and experiments motivated
by a deeper understanding of PBH physics will allow us to set new bounds or possibly
make new discoveries with respect to the mechanisms driving inflation and the nature of
dark matter.
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Appendix A. Background Cosmology: A Mini Review

Space-time metric. The central premise in modern cosmology is that as we look at the
universe on large enough scales, it appears to be simpler and more uniform compared to
the small scales. In other words, if we focus on sufficiently large scales, clumpy regions
such as the distribution of galaxies appear to be isotropic and homogeneous. The large-
scale spatial homogeneity and isotropy of the universe have been tested by a variety of
observations such as large-scale structure (LSS) surveys [318,319]. However, perhaps the
most important evidence supporting this claim comes from the almost uniform temperature
of the CMB originating from different parts of the sky. For a first approximation, we can
therefore assume the universe to be isotropic and homogeneous. The high degree of spatial
symmetry uniquely determines the structure of space–time geometry, where physical
distances are measured by the so-called Friedmann [320], Lemaître [321], Robertson [322]
and Walker [323] (FLRW) line element40,

ds2 = −dt2 + a2(t)
(

dr2

1− Kr2 + r2 dΩ2

)
, (A1)
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where dΩ2 =
(
dθ2 + sin2 θ dφ2) is the line element on the two-dimensional sphere (S2),

and K = {−1, 0, 1} represent negative, zero and positive curvature of constant-time hyper-
surfaces respectively. Note that the symmetries of the universe allow us to describe the
metric using just a single function of time (a(t)) and a constant parameter (K). The function
a(t) is called the scale factor, which parameterizes the size of the spatial slices at a given
moment in time, and the Hubble rate (H(t) ≡ ȧ(t)/a(t)) describes the speed of expansion
at a given moment in time. Here, an expanding universe (H(t) > 0) corresponds to a
monotonically increasing scale factor (a(t)).

Dynamics of the universe. Dynamics of space–time are governed by the Einstein
field equation,

Rµν −
1
2

gµνR =
1

M2
pl

Tµν, (A2)

where Rµν ≡ ∂λΓλ
µν − ∂νΓλ

µλ + Γλ
λρΓρ

µν − Γρ
µλΓλ

νρ is the Ricci tensor build-out of Christoffel

symbols, R ≡ Rµ
µ = gµνRµν is the Ricci scalar and in terms of the metric and Christoffel

symbols are given by

Γσ
µν ≡

1
2

gσρ
(
∂µgρν + ∂νgµρ − ∂ρgµν

)
. (A3)

The Einstein equation in (A2) relates the geometry of space–time on the l.h.s to the
matter content in the universe through the appearance of an energy momentum tensor
(Tµν) on the r.h.s. As in the case of the space–time metric, homogeneity and isotropy restrict
the possible choices of matter content and enforce the energy–momentum tensor to take
the perfect fluid form,

T̄µν = (ρ̄ + P̄)Uµ Uν + P̄ gµν, (A4)

where ρ̄ and P̄ are the background energy density and the pressure in the rest frame of the
fluid, respectively, and Uµ = (−1, 0, 0, 0) is its time-like 4-velocity of the fluid relative to
the observer. The evolution equation for the energy density deriving the expansion of the
universe can be derived from the ν = 0 component of covariant conservation law of the
energy momentum tensor:

∇µT̄µ
0 = 0 ⇒ ˙̄ρ + 3

ȧ
a
(ρ̄ + P̄) = 0. (A5)

On the other hand, using the FLRW metric (A1), Einstein field equations give us
information about how space–time reacts to the matter content in the universe through
the Friedmann,

H2 =
ρ̄

3M2
pl
− K

a2 , (A6)

and acceleration equation,
ä
a
= − 1

6M2
pl
(ρ̄ + 3P̄). (A7)

The Equations (A5)–(A7) are the key in determining the evolution of the universe and
its constituents at large scales, namely a(t) and ρ̄(t), P̄(t) (assuming knowledge of spatial
curvature (K)). An important aspect of these equations is that they are not independent;
for example, it is possible to combine the last two to obtain the first one. In practice, this
implies that we need another ingredient to solve for three variables, i.e., ρ̄(t), P̄(t) and
a(t)—or, equivalently, H(t). A quantity that comes to the rescue in this context is the
equation of state (EoS) parameter, which provides a linear relation between the pressure
and energy density of the fluid(s) constituting the universe:

P̄(t) = w ρ̄(t), (A8)

where w = constant for each fluid contributing to the total pressure. Although this relation
is not the most general form of P(ρ) that is available to us, this parameterization is perfectly
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adequate in providing an accurate coarse-grained description of our universe through
most of its history. In particular, it provides a simple analytic control for determining the
dynamics of the different components of the universe and the evolution of the Hubble
parameter (scale factor). In order to describe the history of the universe in a continuous
manner, we typically consider multiple fluids that contribute to the energy density of the
universe while satisfying the relation (A8). For example, labeling each EoS with wi and
assuming that a single component dominates the energy density for a given moment of
time in the universe, one can easily integrate (A5) to obtain

ρ̄i(t) ∝ a(t)−3(1+wi). (A9)

Cosmological inventory. We can classify different sources of cosmological evolution
by their contribution to the pressure: (i) For relativistic gas of particles (radiation), pressure
is about one-third of the energy density, with wr = 1/3. Popular constituents of such a
fluid are photons, neutrinos and gravitons. (ii) Non-relativistic pressureless dust (matter)
(wm = 0) such as dark matter (e.g., PBHs) and baryons. (iii) Cosmological constants
(wΛ = −1) such as vacuum energy. According to Equation (A9), the energy density of each
of these fluids therefore evolves as ρ̄r ∝ a−4, ρ̄m ∝ a−3, ρ̄Λ ∝ a0. Therefore, in the future,
the cosmological constant will dominate, while in the far past (a → 0), the universe was
radiation-dominated, and in between these two stages, there is a matter-dominated stage.
Due to the inadequacy of explaining initial conditions of the observed CMB anisotropies,
cosmologists tend to complete the picture we described above with a very early phase of
accelerated expansion (ä > 0) called inflation (see, e.g., [324] for a comprehensive review).
During this phase, the EoS parameter also closely mimics the behavior of a cosmological
constant (winf ' −1). More precisely, the departure of the EoS from its value (−1) during
inflation is characterized by a time-dependent slow-roll parameter (ε(t) = −Ḣ/H2 � 1,
where winf = −1 + 2ε(t)/3). In this framework, during inflation, ε � 1, while inflation
terminates when ε = 1. After this stage, it is generically assumed that the constituent(s)
(i.e., a scalar field or fields) that drive inflation decay to relativistic particles in a process called
(p)reheating [121,122]. In this review, we assume that this process proceeds very efficiently so
that soon after inflation ends, the universe is filled with relativistic particles and, consequently,
evolves through the radiation-dominated (RD), matter-dominated (MD) and, finally, dark-
energy-dominated (DED) phases. On the other hand, we refer to the full picture that arises by
the inclusion of an early accelerated expansion as the inflationary universe, which is composed
of the following consequent phases: inflation→ RD→MD→ DED.

Evolution of the comoving Hubble horizon. As we described in the main text,
the evolution of the comoving horizon is crucial to understanding the causal evolution
of fluctuation modes in the inflationary universe. To understand its time evolution in the
picture we described above, we focus on its time derivative

d
dt

(aH)−1 = − 1
aH2 (H2 + Ḣ) = − ä

a2H2 =
1
a
(1 + 3w)

2
(A10)

where we used the acceleration Equation (A7), together with the Friedmann Equation (A6),
focusing on flat FLRW slicing (K = 0)41. The expression mentioned above can be shaped
into a form suitable for integration as d ln((aH)−1) = [(1 + 3w)/2]d(ln a), which immedi-
ately gives

(aH)−1 = H−1
0 a(1+3w)/2, (A11)

where we normalized the scale factor today as a0 = 1. Notice that during inflation, winf '
−1, and the comoving horizon decreases, while during the subsequent RD (wr = 1/3) and
MD (wm = 0) phases, it grows with a scale factor.

Density parameters (Ω). To describe different energy components in the universe,
cosmologists often parameterize radiation, matter and dark energy density relative to the
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critical energy density of spatially flat hypersurfaces using the following definitions (and
dropping the over-bar notation to describe background quantities)

ρc,0 ≡ 3H2
0 M2

pl → Ωi ≡
ρi,0

ρc,0

(A12)

where subscript “0” denotes quantities evaluated today, and “i” indicates different kinds of
fluids. Focusing on the post-inflationary era, we can then rewrite the Friedmann equation
in terms of dimensionless density parameters as

3H(a)2M2
pl = ρr,0 a−4 + ρm,0 a−3 + ρΛ,0 →

H2(a)
H2

0
= Ωr a−4 + Ωm a−3 + ΩΛ. (A13)

According to the latest observations of the CMB anisotropies by the Planck collabora-
tion, matter and dark energy density are determined to be [7],

ΩΛ = 0.6847± 0.0073, Ωm = 0.3153± 0.0073. (A14)

On the other hand, we can infer radiation density today by utilizing the transition
time of the universe from RD to MD. This moment in our universe is commonly referred to
as matter–radiation equality, which is defined by

ρr(aeq) = ρm(aeq) ⇒ aeq =
Ωr

Ωm
. (A15)

Noting the relation between the red-shift parameter42 (z(t)) and scale factor (a(t) =
(1 + z(t))−1) and Planck’s prediction (zeq = 3402± 26) [7], together with Equation (A14),
therefore gives

Ωr ' 9.26535× 10−5, (A16)

where we used the central values of the quantities (Ωm, zeq) determined by Planck.
Making a two-component fluid approximation around the time of matter radiation

equality (a ≈ aeq), the total energy density of the universe at a = aeq can be related to
matter density today via

ρ(aeq) '
ρr,0

a4
eq

+
ρm,0

a3
eq
' 2

ρm,0

a3
eq

. (A17)

Cosmological parameters. Other cosmological parameters determined by the latest
Planck data (2018) (TT,TE,EE + low E + lensing, % 68 CL) are as follows [7]:

ΩK = 0.001± 0.002, H0 = 67.36± 0.54 [km s−1Mpc−1],

Ωmh2 = 0.1430± 0.0011, keq = 0.010384± 0.000081 [Mpc−1]. (A18)

So far, have not mentioned thermodynamical properties such as temperature and
entropy in the universe following inflation. In what follows, we will note some of the key
formulas we will use in Section 2 without getting into the details of the derivation of these
formulas. For an in-depth discussion on the contents we will introduce below, we refer the
reader to Chapter 3 of the seminal books by Kolb and Turner [325] and Mukhanov [326] or
to Baumann’s recent book [128].

The total energy density of relativistic degrees of freedom that are in thermal equilib-
rium with the plasma can be related to the temperature of the plasma (T) (i.e., temperature
of the photon gas) as

ρr =
π2

30
g∗(T) T4, (A19)
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where g∗(T) is the effective number of relativistic degrees of freedom at the temperature
(T) which is defined as

g∗(T) = ∑
bos.

gb +
7
8 ∑

fermi.
g f , (A20)

where gb and g f denote the intrinsic degree of freedom (i.e., spin) for bosonic and fermionic
species, respectively. The total entropy density of relativistic species is defined as

s(T) ≡ 2π2

45
gs(T) T3, (A21)

where gs is the effective number of degrees of freedom in entropy. For species in thermal
equilibrium (i.e., species that have the same temperature (Tb = Tf = T), gs(T) = g∗(T))
because for each bosonic/fermionic degree of freedom, the entropy density is defined as
s ≡ (ρ + P)/T with a common denominator.

A very useful formula can be derived by using the conservation of total entropy in the
universe (S = sV ∝ sa3 ' constant.), which can be utilized to relate the scale factor and the
temperature of the plasma as

gs(T) T3 a3 ' constant. =⇒ a(t1)

a(t2)
=

T2

T1

(
gs(T2)

gs(T1)

)1/3

. (A22)

Appendix B. A Simple Estimate for the Threshold of Collapse

In this short appendix, we present a simple analytic estimate of the characteristic value
of the collapse threshold for PBH formation during the RDU based on the Jeans length
argument in Newtonian gravity as first discussed in [13], closely following [30,127]. For this
purpose, we take the background space–time after inflation to have the spatially flat (K = 0)
FLRW form (A1) and therefore the evolution of the scale factor described by the Friedmann
equation: 3H2M2

pl = ρ̄(t). Now consider a locally perturbed, spherically symmetric region
in the universe that is initially outside the horizon and could eventually collapse to form a
PBH upon horizon re-entry. The metric describing such a region can be written as

ds2 = −dt2 + a2(t) e−2R(r̂)
[
dr̂2 + r̂2 dΩ2

]
(A23)

where a(t) is the scale factor, andR < 0 is the non-linear generalization of the conserved
comoving curvature perturbation defined on a super-Hubble scale [327]. At large distances
(r̂ → ∞), curvature perturbation is assumed to vanish (R → 0) so that the universe is de-
scribed by the spatially flat FLRW metric. By making a coordinate redefinition (r = r̂e−R(r̂)),
the metric describing the spherical perturbed region (A23) can be transformed into the one
describing a closed universe with positive spatial curvature (as in (A1)),

ds2 = −dt2 + a2(t)
(

dr2

1− K(r) r2 + r2 dΩ2

)
, (A24)

where the relation between perturbations of the two metrics is given by K(r) r2 = r̂R′(r̂)(2−
r̂R′(r̂)), showing that the local spatial curvature is given in terms of the first-order spatial
(leading-order) derivatives of the curvature perturbation (R(r̂)). Ignoring higher-order
spatial derivatives of K (i.e., K′ ∼ R′′) on sufficiently large scales, the evolution of the
spherical region is given by the 00 component of the Einstein Equation (A2)

H2 =
ρtot

3M2
pl
− K(r)

a2 (A25)
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which is equivalent to the evolution of a closed universe (see e.g., (A6)) with a perturbation
(δρ) induced by spatial curvature (K(r)):

δρ

ρ
≡ ρtot − ρ

ρ
=

3M2
plK

ρ̄a2 =
K

H2a2 , (A26)

where we make use of ρ̄(t) = 3H2M2
pl. According to (A26), since ρ̄ ∝ a−4 during the RDU,

perturbations are initially (a → 0) small, i.e., δρ/ρ � 1. As the universe evolves, a local
spherical region with K > 0 will eventually stop expanding and collapse to form a PBH.
This happens precisely when the right-hand side of (A25) becomes negative, i.e., at t = tc,
where 3M2

plK = a2ρtot, corresponding to δρ/ρ = 1 in (A26), assuming a homogeneous and
isotropic universe. In the RDU, since perturbation modes that have a length scale smaller
than the Jeans length (k−1

J ≡ cs/aH) cannot collapse, the smallest comoving scale that can
undergo collapse at t = tc is given by k2 = (aH)2/c2

s , where cs is the speed propagation of
perturbation. Therefore, we have

δρ

ρ
(tc) =

K
k2

k2

a2H2 =
K

c2
s k2 = 1, (A27)

which suggests the identification of K = c2
s k2. Therefore, at the time of horizon re-entry

(k = afHf), the perturbations relevant for PBH formation should have a density contrast
larger than (

δρ

ρ
(tf)

)

c
=

K

(afHf)
2 = c2

s

(
k

afHf

)2
= c2

s = w. (A28)

Appendix C. Solving the Mukhanov–Sasaki Equation: Numerical Procedure

In this appendix, we discuss important steps for the numerical evaluation of the
Mukhanov–Sasaki (MS) equation. The aim is to obtain the power spectrum of curvature
perturbation in the inflationary scenarios we discussed in Sections 3.2 and 3.3. Note that
scenarios discussed in those sections can be captured by the generalized MS Equation (43)
utilizing (44) and (59), as we describe below.

We start by scaling away the highly oscillatory contributions from the Bunch–Davies
(BD) initial conditions (59). For this purpose, we define a dimensionless variable (v̄k) through

vk(τ̄) =
v̄k(τ̄)√

2k
e−ikτ̄ , (A29)

to rewrite the MS Equation (43) as

v̄′′k (τ̄)− 2ik v̄′k(τ̄)−
z′′

z
v̄k(τ̄) = 0. (A30)

For mode-by-mode evaluation, the e-folds (N) are more suitable variable for numerical
integration, so we turn the derivatives with respect to τ̄ in (A30) into e-folds using dN =
(aH/cs)dτ̄ and obtain

d2 v̄k
dN2 +

([
1− ε− s

]
− 2i

csk
aH

)
d v̄k
dN
− c2

s
(aH)2

z′′

z
v̄k = 0 . (A31)

We parameterize the scale factor and Hubble rate as

a(N) = aend eN−60, H(N) = Hend e−
∫ N

60 ε(N′)dN′ , (A32)
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and note that

z′′

z
=

(
aH
cs

)2[
(1− ε− s)

(
1 +

η − s + µ

2

)
+

(
1 +

η − s + µ

2

)2

+
1
2

(
dη

dN
− ds

dN
+

dµ

dN

)]
. (A33)

In terms of the new variable, the Bunch–Davies initial conditions simplify considerably
and can described as

v̄k(N)
∣∣
in = 1, v̄′k(N)

∣∣
in = 0. (A34)

Provided that the background evolution (i.e., ε, η, µ, etc.) is known in terms of e-
fold number, the MS equation can be solved numerically for each k mode in terms of the
rescaled variable (A31) using the initial conditions (A34). In this respect, some care must
be taken for the initialization time of individual modes because deep inside the horizon
(k2 � z′′/z), the solution to (A31) is highly oscillatory, which would be costly for the
numerical computation. Typically, it is enough to initialize the modes at some time such
that they are sufficiently inside the horizon. For this purpose, we choose to evolve each
mode by setting the initial time as

N(k)
in = N(k)

0 − 4, (A35)

where the “k” superscript indicates the intrinsic mode dependence for the choice of Nin,
and N(k)

0 denotes the horizon crossing time43. As argued in the main text (see the discussion
around (62)), the latter can be obtained via

k2 =
z′′

2z

∣∣∣∣
N(k)

0

(A36)

using (A33) (or, equivalently, (44)), provided the background solution is known. Having
obtained the individual mode evaluation from N(k)

in to Nend = 60, the power spectrum (55)
can be described as

PR(k, Nend) =
H2

end
8π2εendcs,endM2

pl

(
cs,end

M̃end

)2( k
kend

)2∣∣v̄k(Nend)
∣∣2, (A37)

where we defined M̃ ≡ M(N)/Mpl, while kend = aendHend is the mode that exits the
horizon at the end of inflation.

In order to set the overall normalization of the power spectrum, we need to determine
Hend with respect to Mpl. We do so by requiring the normalization of the power spectrum in-
dicated by Planck at the pivot scale (kcmb = 0.05 Mpc−1) usingPR(kcmb, Nend) ' 2.1× 10−9.
Notice that, from the general formulas we presented above, canonical single-field scenarios
(see Section 3.2) can be recovered by making the following replacements: cs → 1, s → 0,
M→ Mpl, µ→ 0 and dτ̄ → dτ and dN = (aH)dτ. A pedagogical Python notebook file
that calculates the power spectrum using the prescription described above can be found
through the github link.

The role of decaying modes in the canonical single-field scenarios. We can now
verify whether the general expression (39) provides an accurate description for the enhance-
ment of the power spectrum in the canonical single-field model discussed in Section 3.2.
For this purpose, we assume that the leading solution to the curvature perturbation at
superhorizon scales is given by the constant solution at horizon crossing (Rk(τ) = R(0)

k )

https://github.com/oozsoy/SingleFieldINF_Powerspec_PBH
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and plugging it into the last term in (39). We can then generate an iterative solution for the
curvature perturbation as

Rk(Nend) = R(0)
k


1 + vR(k)

∫ Nend

N0

dN′

z̃2 (ãH̃)
− k2

∫ Nend

N0

dN′

z̃2 (ãH̃)

∫ N′

N0

dN′′ z̃2

(ãH̃)


, (A38)

where we switched to e-folds as a time variable, vR ≡ R′k(N0)/Rk(N0) is the fractional
velocity of curvature perturbation at the horizon crossing epoch (N0) and a tilde over
quantities denotes a normalization with respect to their values at N0, i.e., X̃ ≡ X(N)/X̃(N0).
Using the standard solution to the curvature perturbation during the initial slow-roll era,
an analytic formula for the fractional velocity of curvature perturbation is obtained [95],
which is valid for modes that leave the horizon during the initial slow-roll era:

vR(k) = −
x2

0
1 + x2

0
− i

x3
0

1 + x2
0

, with x0 ≡
k

a0H0
. (A39)

Similarly, for modes that cross the horizon during the initial slow-roll era, the ampli-
tude of the curvature perturbation at horizon crossing results in

∣∣R(0)
k

∣∣2 =
H2

0
8π2ε0M2

pl

(
1 +

k2

(a0H0)2

)
. (A40)

Combining these results with a given background evolution (i.e., z̃, ãH̃), the power
spectrum of curvature perturbation for modes that leave the horizon can be described via
the following definition

PR(k, Nend) =
k3

2π2

∣∣Rk(Nend)
∣∣2 , (A41)

using (A38)–(A40). For a set of modes that exit the horizon during Phase 1 (the initial
slow-roll era), the amplitude of the power spectrum obtained using the procedure we
outlined is shown by blue dots in Figure 6.

Appendix D. Details of the Axion-Gauge Field Dynamics

In this appendix, we focus on the dynamics of the gauge fields according to the pres-
ence of a rolling scalar (χ(t)) and the influence of these dynamics on the scalar perturbations
for the models we discussed in Sections 4.1.1–4.1.3. The part of the action (65) relevant for
this purpose is given by

SGF =
∫

d4x
√
−g
[
−1

4
FµνFµν − gcs χ

8 f
ηµνρσ

√−g
FµνFρσ

]
, (A42)

where, using the definition of the field strength tensor (Fµν = ∂µ Aν − ∂ν Aµ) and the totally
antisymmetric nature of the symbol (ηµνρσ), we note the following identities

FµνFµν = 2 (gµρgνσ − gνρgµσ) ∂µ Aν ∂ρ Aσ, (A43)

ηµνρσFµνFρσ = 4 ηµνρσ ∂µ Aν ∂ρ Aσ. (A44)

Notice that apart from the gauge fields, these expressions involve the metric. Therefore,
it is convenient to characterize the metric fluctuations in their most general form using
ADM decomposition as

ds2 = −N2 dt2 + ĝij

(
dxi + Ni dt

)(
dxj + N j dt

)
, (A45)
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where ĝij is the three spatial metrics on constant-time hypersurfaces, N is the lapse function
and Ni is the shift vector. In terms of these variables, the component of the metric with the
upper indices can be expressed as

g00 = − 1
N2 , g0i = gi0 =

Ni

N2 , gij = ĝij − Ni N j

N2 , (A46)

where ĝij is the inverse of the spatial metric. Including the Einstein–Hilbert term (LEH = M2
plR/2)

with the action (A42) and the matter action associated with the scalar field(s) (χ), one can
show that the second-order terms that include N, Ni do not contain more than one time
derivative, implying that they can be identified as Lagrange multipliers to be solved in
terms of the physical fluctuations of χ and Aµ [286,330].

To characterize the dynamics of gauge fields, we assume that vector fields start the
linear order in perturbations (so that they do not exhibit a time-dependent background vev
(〈Āµ(t)〉 = 0)) and adopt the Coulomb gauge44 ∂i Ai = 0 in the gauge sector along with the
flat gauge choice in the scalar—gravitational sector

χ(t,~x) = χ̄(t) + δχ(t,~x),

ĝij = a2(t)
[

δij + hij
]
,

∂i Ai = 0, (A47)

where hij is the transverse, traceless tensor fluctuation of the metric, ∂ihij = hii = 0. In this
appendix, we will present the dynamics of the gauge fields by expanding the action (A42)
up to the third order in fluctuations. Noting that the shift vector is order-one Ni in pertur-
bations and expanding the lapse (N = 1 + δN), we compile all the information mentioned
above to obtain the second- and third-order action involving gauge field fluctuations as

S(2)
GF =

∫
d4x a3

{
1

2a2 Ȧi Ȧi −
1

2a4 ∂j Ai ∂j Ai +
gcs ˙̄χ
a3 f

εijk Ai ∂j Ak

}
, (A48)

S(3,1)
GF =

∫
d4x a3

{
gcs

δχ

f

[
~E.~B− 〈~E.~B〉

]}
(A49)

S(3,2)
GF =

∫
d4x a3

{
− δN

2

[
~E2 + ~B2 − 〈~E2 + ~B2〉

]
− Ni

a2 ȦjFij

}
(A50)

S(3,3)
GF =

∫
d4x a3

{
−hij

2

[
EiEj + BiBj

]}
, (A51)

where we introduced electric and magnetic field notation using Ei = −Ȧi/a, Bi = εijk∂j Ak/a2.
Note that we artificially introduced tadpole terms proportional to the expectation values
involving ~E and ~B fields in the expressions (A49) and (A50). Later, we will subtract these
terms in the action describing inflation (gravity plus inflation sector) in (A72) to consistently
take into account the modifications that might arise in the background equations of the
scalar field(s) (χ = {φ, σ}) and the Friedmann equation (see, e.g., Equation (71)).

The action labeled by S(3,2)
GF parameterizes the cubic interactions (see, e.g., the first

and the third term in (A50)) induced by the gravitational fluctuations. The influence
of these terms on the observable scalar sector was studied in [283,332] with the conclu-
sion that they can be neglected compared to the direct interaction term in (A49). This is
because the vertices associated with the gravitationally induced cubic terms in (A50) is
suppressed (L(3,2)

GF ∝ (
√

ε/Mpl) δχO(A2)) with respect to that in (A49) unless f ' Mpl

and gcs � 145 and therefore can be safely ignored compared to the latter. Finally, the cubic
action in (A51) parameterizes the influence of the gauge fields on the tensor part of the
metric. In this review, we will not study these effects. For the impact of gauge field produc-
tion on the tensor fluctuations during inflation and its interesting parity violating effects,
see [85,86,302,333–336] and the references therein.
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To summarize, in the presence of rolling axion-like fields during inflation and the
interaction (Lint ∝ χFF̃), the dynamics of the gauge fields can be studied by focusing on the
second-order action (S(2)

GF) (A48). On the other hand, the influence of the gauge fields on the
scalar sector depends on whether we identify χ as the inflation (Sections 4.1.1 and 4.1.2)
or as a spectator scalar rolling during inflation (Section 4.1.3). In the following, we will
first introduce the basics of the gauge field production in the presence of a rolling scalar,
discussing the different cases we cover in this review. The nature of the subsequent sourcing
of (visible sector) scalar fluctuations by the vector fields depends on whether the scalar (χ)
directly interacts with U(1) fields or not. We will cover each case following our discussion
on the vector field production.

Appendix D.1. Gauge Field Production by Rolling Scalars

To understand the gauge field production by a rolling scalar (either an inflation or a
spectator scalar), we focus on the second-order action (A48) and decompose the gauge field
into its helicity modes (λ = ±) in Fourier space using conformal time (dτ = dt/a) as

Âi(τ,~x) =
∫ d3k

(2π)3/2 ei~k·~x ∑
λ=±

ε
(λ)
i (~k) Âλ(τ,~k), (A52)

where the polarization vectors obey

ki ε±i (~k) = 0, εijk k j ε±k (~k) = ∓i |~k| ε±i (~k),

ελ
i (
~k) ελ′

i (~k)∗ = δλλ′ , ελ
i (
~k)∗ = ελ

i (−~k) = ε−λ
i (~k) (A53)

and we defined
Âλ(τ,~k) =

[
Aλ(τ, k) aλ(~k) + A∗λ(τ, k) a†

λ(−~k)
]
, (A54)

which satisfies Âλ(τ,~k)† = Âλ(τ,−~k) so that Âi(τ,~x) is a hermitian operator. Finally,
annihilation and creation operators satisfy the standard commutation relations

[
âλ(~k), â†

λ′(
~k′)
]
= δλλ′δ(~k−~k′). (A55)

Plugging the decomposition into (A48) and varying the action, the mode functions of
the gauge field can be shown to satisfy

A′′± + k2
(

1± aH
k

2ξ

)
A± = 0, ξ ≡ − gcs ˙̄χ

2H f
(A56)

It is clear from Equation (A56) that the dispersion relation of the gauge fields are modi-
fied in the presence of the last term in (A42). More importantly, the negative helicity modes
(A−) can experience a tachyonic instability for modes satisfying k/(aH) < − ˙̄χ/(H f ), while
positive helicity modes stay in their vacuum. These facts reflect the parity-violating nature
of the interaction (Lint ∝ χFF̃). The behavior of the solutions according to Equation (A56)
is sensitive to the velocity profile ( ˙̄χ) of the rolling scalar. In what follows, we discuss the
different cases and the corresponding solutions within the context of Sections 4.1.1–4.1.3.

Production by a slowly rolling scalar. For a slowly rolling scalar field, we can treat
gcsχ̇/(H f ) as constant per Hubble time. In terms of the effective coupling (ξ), this adia-
baticity condition can be parameterized as

ξ̇

ξH
=

¨̄χ
˙̄χH
− Ḣ

H2 � 1. (A57)
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In this case, the solution to the Equation (A56) that reduces to the Bunch–Davies
vacuum solutions (A± = e−ikτ/

√
2k) deep inside the horizon (k� aH) can be written in

terms of the Coulomb functions

A−(τ, k) ' 1√
2k

[G0(ξ,−kτ) + iF0(ξ,−kτ)] (A58)

where ξ = −gcs ˙̄χ/(2H f ) and −τ = (aH)−1. Another simplification can be made, focusing
on the ξ � −kτ regime (as we will see, particle production is only efficient for ξ ∼ O(1)
and takes place as −kτ → 0)

A−(τ, k) '
√
−kτ

2k

[
2eπξ π−1/2K1(

√
−8ξkτ) + ie−πξ π1/2 I1(

√
−8ξkτ)

]
, (A59)

where I1 and K1 are modified Bessel functions of the first and second kind, respectively.
According to the solution presented above, one can realize that for the interesting case of
ξ ∼ O(1), field amplification occurs shortly after horizon crossing (−kτ ∼ O(1)). Therefore,
for a final simplification we can take the large argument limit ((8ξ)−1 � −kτ < 2ξ) of the
Bessel functions in (A59) to obtain

A−(τ, k) ' 1√
2k

(−kτ

2ξ

)1/4
eπξ−2

√
−2ξkτ

[
1 +

i
2

e−2πξ+4
√
−2ξkτ

]
. (A60)

The real part of the solution (A60) is the growing solution, as −kτ → 0 and encodes
the physical amplification of the negative helicity mode by the presence of a slowly rolling
axion-like field. Within the approximations we undertake, the imaginary part of the
solution (A60) represents the UV-divergent part as −kτ grows, which should precede
the vacuum solution A− = e−ikτ/

√
2k deep inside the horizon. Therefore, ignoring the

imaginary part typically amounts to throwing away the standard divergent (also present
in flat space) peace of quantities such as 〈~E.~B〉 and 〈~E2 + ~B2〉 (see below). For a detailed
discussion of these issues, we refer the reader to [285] and the appendices of [85].

Production by a transiently rolling scalar. For the models we discuss in Section 4.1.2,
the potential of the scalar (χ) has a feature around which the background velocity ( ˙̄χ) and
the effective coupling (ξ) in the equation of motion of the gauge field modes (A56) have a
transient peak with a maximal value (ξ∗) at τ = τ∗. A peaked time-dependent profile of
ξ = ξ(τ), in turn, translates into a scale-dependent growth of the mode functions( A−),
where only modes that are in the vicinity of the scale (k∗ = a∗H∗ = (−τ∗)−1) that exits
the horizon at τ = τ∗ are maximally amplified. For the time-dependent profiles we study
in Sections 4.1.2 and 4.1.3, it is difficult to obtain a fully analytic solution describing the
amplification of the gauge modes. However, an accurate description of the mode function
at late times can be obtained by employing WKB approximation methods supplemented
with numerical analysis [302], as we mention below. In particular, at late times (τ/τ∗ < 1),
the amplification of the mode functions can be parameterized in terms of a (real and
positive) normalization factor as

A−(τ, k) ' 1√
2k

( −kτ

2ξ(τ)

)1/4
NA(ξ∗, x∗, δ) e−2E(τ)

√
−2ξ∗kτ

{
1 +

i e4E(τ)
√
−2ξ∗kτ

2NA(ξ∗, x∗, δ)2

}
(A61)

where we defined x∗ = −kτ∗ = k/k∗ and E(τ) as a time-dependent function that asymp-
totes to zero at late times (τ/τ∗ → 0), the functional form of which depends on the model
under consideration. For example, for the bumpy axion inflation discussed in Section 4.1.2
and its cousin spectator model (see Section 4.1.3), it is given by E(τ) = 1/(δ| ln(τ/τ∗)|).
On the other hand, for the transiently rolling axion model with the standard cosine potential,
one obtains E(τ) =

√
2(τ/τ∗)δ/2/(1 + δ). Notice that the solution (A61) reduces to (A60)

of constant ξ if we make the following replacements: E(τ)→ 1 and NA → eπξ . An impor-
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tant point that should be observed from the form of the solution (A61) is the dependence
of the normalization (amplification) factor on the dimensionless parameter (δ), which can
be derived in terms of the physical model parameters (see Sections 4.1.2 and 4.1.3). As we
explain in the main text, this parameter is a measure of the scalar’s mass around a global
minimum (δ ≈ m2

χ/H2) and therefore determines the rate at which the field rolls towards
its minimum. In this sense, it determines the width of gauge field modes that take part
in particle production; the faster the scalar traverses the region in its potential where the
velocity is maximal (i.e., with larger acceleration( ξ̇/(ξH) ∝ ¨̄χ/( ˙̄χH) ∼ δ)), the less time
each gauge field mode spends in the tachyonic region and the fewer of them will be excited
by the rolling scalar, leading to a sharper distribution of excited modes. These arguments
clarify the dependence of the normalization factor (NA) in (A61) on the parameter (δ), along
with ξ∗ and x∗ = k/k∗, which characterize the amplification and scale dependence of the
particle production process, respectively.

At fixed ξ∗ and δ, the scale dependence of the normalization factor can be obtained by
numerically solving (A56) for a grid of x∗ = k/k∗ values and matching these solutions to
the WKB solution given at late times. In this way, one can confirm that NA is given by a
log-normal distribution for the models we consider in Sections 4.1.2 and 4.1.3:

NA(ξ∗, x∗, δ) ' Nc
A[ξ∗, δ] exp

(
− 1

2σ2
A[ξ∗, δ]

ln2
(

x∗
qc

A[ξ∗, δ]

))
, (A62)

where the functions Nc
A, qc

A and σA parameterizes the background dependence of gauge
field production through their dependence on ξ∗ and δ. In particular, accurate fitting
formulas for these quantities can be obtained at fixed δ values in terms of ξ∗. For the
parameter choices we adopt in this review, these formulas can be found in [85,86,285].

The “Electric” and “Magnetic” fields as sources. For future reference, we also note
the electric and magnetic fields, which are related to the auxiliary potential (Ai) as

Ei(τ,~x) = − 1
a2 ∂τ Ai(τ,~x), Bi(τ,~x) =

1
a2 (

~∇× ~A(τ,~x) )i =
1
a2 εijk ∂j Ak(τ,~x). (A63)

Utilizing the decomposition (A52), together with (A53) and (A54), we take into account
only the growing part (i.e., the real part) of the solutions (corresponding to the physical
amplification of vector fields caused by a rolling scalar) we derived in (A60) and (A61) to
express the Fourier decomposition of the ~E and ~B fields as follows

Êi(τ,~x) =
∫ d3k

(2π)3/2 ei~k·~x Êi(τ,~k), B̂i(τ,~x) =
∫ d3k

(2π)3/2 ei~k·~x B̂i(τ,~k), (A64)

where

Êi(τ,~k) = −
√

k
2

ε−i (~k)
a(τ)2

(
2ξ(τ)

−kτ

)1/4

NA(ξ∗,−kτ∗, δ) exp
[
−E(τ)

√
−2ξ∗kτ

]
Ô−(~k),

B̂i(τ,~k) = −
√

k
2

ε−i (~k)
a(τ)2

( −kτ

2ξ(τ)

)1/4
NA(ξ∗,−kτ∗, δ) exp

[
−E(τ)

√
−2ξ∗kτ

]
Ô−(~k), (A65)

where we defined the short-hand notation Ôλ(~k) = [aλ(~k) + a†
λ(−~k)]. Note that the case of

particle production through a slowly rolling scalar with ξ ' cons. can be recovered from the
formulas by making the following replacements: ξ∗ → ξ, E(τ)→ 1 and NA → eπξ . Having
studied the particle production in the gauge field sector, we now study the expectation
values including electromagnetic fields before we discuss how these sources influence the
fluctuations of the scalar sector.
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Expectation values involving gauge fields. Noting again the decomposition of the
vector fields (A52) (along with (A53) and (A54)) and the definition of their electromagnetic
counterparts (A63), the energy density of the gauge fields (ρA and 〈~E.~B〉) can be expressed as

ρA ≡
1
2
〈~E2 + ~B2〉 =

∫
d ln k

dρA
d ln k

,

〈~E.~B〉 =
∫

d ln k
d〈~E.~B〉
d ln k

. (A66)

Taking into account only the amplified mode function (A−) of the gauge field, the en-
ergy density (ρA and 〈~E.~B〉) per logarithmic wave number is given by

dρA
d ln k

' H4

8π2 x4
(

2ξ

x
+ 1
) ∣∣Ã−(x)

∣∣2,

d〈~E.~B〉
d ln k

' − H4

8π2 x4 d
dx
∣∣Ã−(x)

∣∣2, (A67)

where we utilized [285],

A′− =

√
2kξ

−τ
A∗− → dÃ−

dx
= −

√
2ξ

x
Ã∗− (A68)

defining the the following dimensionless variables: x = −kτ and
√

2k A−(τ, k) ≡ Ã−(x).
Employing the solutions for A− we derived in (A60) and (A61), one can use
Formulas (A66) and (A67) to obtain ρA and 〈~E.~B〉. In particular, for the localized gauge
field production models presented in Section 4.1.2 (see [86]) and Section 4.1.3 (see [85]),
these formulas can be used to justify the negligible back-reaction of the gauge fields on
the background evolution. We will not repeat these calculations here for the localized
production case; however, below, we will derive the relevant formulas for the slowly rolling
smooth axion inflation described in Section 4.1.1. For this purpose, we focus on the real
part of the solution (A60) that corresponds to the physical amplification of the gauge field
fluctuations. Plugging the solution into (A67) and (A66), we obtain

ρA =
H4 e2πξ

8π2(2ξ)1/2

∫ 2ξ

0
dx x7/2

(
2ξ

x
+ 1
)

e−4
√

2ξx,

〈~E.~B〉 = H4 e2πξ

4π2

∫ 2ξ

0
dx x3

(
1− 1

4
√

2ξx

)
e−4
√

2ξx, (A69)

where we send the lower limits of the integrals to zero as the integrands converge in the
x → 0 limit. Similarly, since we are only focusing on the physical amplification of the
gauge fields by throwing away the imaginary part of the solution (A60), the integrands
vanish quickly deep in the UV (x → ∞), so we can also send the upper limit of the integrals
in (A69) to infinity (2ξ → ∞). Finally, by making a change of variable to 4

√
2ξx = y,

one can realize that the resulting integrals can be carried analytically; in fact, they are
proportional to Gamma functions with integer arguments. In particular, we obtain

ρA =
H4

ξ3 e2πξ Γ(7)
219π2

[
1 +

1
26ξ2

Γ(9)
Γ(7)

]
,

〈~E.~B〉 = H4

ξ4 e2πξ [ Γ(8)− Γ(7) ]
221π2 . (A70)

Inserting the numerical values of the Gamma functions, these expressions give rise to
Equation (72), which we provide in the main text.
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Appendix D.2. Scalars Sourced by Vector Fields and the Direct Coupling Case: χ = φ

To understand the sourcing of scalar fluctuations by the gauge fields, we should
consider the gravitational and inflation (that we refer to as Sinf) action, in addition to SGF :
Stot = Sinf + SGF, where

Sinf =
∫

d4x
√
−g

{
M2

pl

2
R− 1

2
∂µφ∂µφ−V(φ)

}
. (A71)

Expanding the action in terms of the scalar fluctuations (δN, Ni and δφ) around a
background solution, one obtains the following linear and second-order actions,

S(1)
inf =

∫
d4x a3

{[
3H2M2

pl −
1
2

˙̄φ2 −V(φ̄)− 1
2
〈~E2 + ~B2〉

]
δN (A72)

−
[

¨̄φ + 3H ˙̄φ + V′(φ̄)− gcs

f
〈~E.~B〉

]
δφ

}
,

S(2)
inf =

1
2

∫
d4x a3

{
δφ̇2 − (∂iδφ)2

a2 −V′′(φ̄) δφ2 − 3H2M2
plδN2 − 2HM2

pl∂i NiδN (A73)

− 2V′(φ̄) δφ δN − 2 ˙̄φ δφ̇ δN − 2 ˙̄φ Ni∂iδφ + ˙̄φ2δN2
}

.

Notice that in S(1)
inf (A72), we subtracted the tadpole terms (∝ 〈~E.~B〉, 〈~E2 + ~B2〉) that we

introduced earlier in Equations (A49) and (A50). By virtue of the background equations
presented in Equation (71), these terms precisely cancel. The terms that contain gravitational
fluctuations (δN and Ni) in the second-order action (S(1)

inf ) (A73) induce additional mass
contributions to the inflation fluctuations, which can be seen by varying this action with
respect to δN and Ni and solving them in terms of δφ as

δN = −
√

ε

2
δφ

Mpl
, ∂i Ni =

√
ε

2
1

Mpl

(
δφ̇− ηH

2
δφ

)
, (A74)

where we defined the Hubble slow-roll parameters as

ε = − Ḣ
H2 =

˙̄φ2

2H2M2
pl

, and η =
ε̇

εH
. (A75)

Similar to our discussion regarding the cubic terms induced by gravity within the
gauge field sector (see e.g., (A50)), the influence of the lapse and shift on the second-order
action of the inflation fluctuations can be typically ignored in the slow-roll regime (as
well as for the non-attractor era associated with the model in Section 4.1.2, where ε→ 0,
|η| ' O(1)), which is a situation that is generically referred as the decoupling limit of
gravity within the literature. However, for completeness, we will keep them here. Plug-
ging (A74) into the action (A73), we perform several integrations by parts, and by taking
into account the source terms induced by the gauge fields (δχ → δφ in Equation (A49)),
the equation of motion obeyed by the inflation fluctuations can be written as

δφ̈ + 3Hδφ̇−
(
~∇2 −m2

eff(t)
)

δφ =
gcs

f

[
~E.~B− 〈~E.~B〉

]
+

gcs

f
∂〈~E.~B〉

∂ ˙̄φ
δφ̇ (A76)
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where ~∇2 = ∂i∂i is the Laplacian in flat Euclidean space, and the effective time-dependent
mass is defined as m2

eff = V′′(φ̄)− (2εη + 6ε− 2ε2)H2. Noting the second derivative of the
potential in terms of the slow-roll parameters:

V′′(φ̄) = H2
[
−3η

2
+

5εη

2
− 1

4
η2 − η̇

2H
− 2ε2 + 6ε

]
, (A77)

the effective time-dependent mass can be described fully in terms of the slow-roll parame-
ters as

m2
eff = H2

[
9
4
− 1

4
(η + 3)2 +

εη

2
− η̇

2H

]
. (A78)

In (A76), the last term is introduced to parameterize the additional sources that might
arise in the strong back-reaction regime. In particular, as 〈~E.~B〉 grows during inflation
(i.e., as the effective coupling ξ increases during inflation; see Equation (72)), this will first
have the effect of sourcing the inflation perturbations through the first term on the right-
hand side of (A76). As a result, the inflation perturbations start to grow, and eventually,
the solution of the gauge field modes obtained by assuming a homogeneous inflation
will no longer be valid and are expected to go from the solution (A60) to a more general
solution (A−[φ̄ + δφ]). The additional term on the right-hand side of (A76) is precisely
introduced to capture the influence of this modified solution of the gauge fields on the
inflation perturbations. Since gauge field production (and 〈~E.~B〉) is sensitive to the velocity
of the homogeneous inflation mode, it is reasonable to expect the influence of this additional
source to be proportional to (∂〈~E.~B〉/∂ ˙̄φ)δφ̇, as shown in (A76) (see also [79,81,281] for a
detailed discussion of this point). Recalling ξ = −gcs ˙̄φ/(2H f ) and (72), we note

gcs

f
∂〈~E.~B〉

∂ ˙̄φ
' gcs

f
〈~E.~B〉

˙̄φ
2πξ, (A79)

so the influence of the source term can be parameterized as an additional damping term in
the equation of motion of the inflation fluctuations as

δφ̈ + 3Hβ δφ̇−
(
~∇2 −m2

eff(t)
)

δφ =
gcs

f

[
~E.~B− 〈~E.~B〉

]
, (A80)

where

β = 1− gcs

f
〈~E.~B〉
3H ˙̄φ

2πξ. (A81)

Assuming that β = 1 amounts to neglecting the influence back-reaction effects of the
inflation fluctuations on the gauge field solutions. This is, for example, the approach taken
in [86] for the bumpy axion inflation we discussed in Section 4.1.2 with the reasoning that
back-reaction effects are mild due to the localized nature of gauge field production (as is
the resulting increase in inflation fluctuations) in the presence of a transiently increasing
effective coupling (ξ) between scalar and gauge field sectors. However, in smooth axion
inflation (Section 4.1.1), gauge field sources and the resulting scalar fluctuations continu-
ously grow, which can eventually influence the dynamics of the fluctuations through an
additional (positive) friction term in β (A81) as soon as the homogeneous dynamics of the
inflation enter into the back-reaction regime with gcs〈~E.~B〉/(3H| ˙̄φ| f ) ∼ O(1).

Armed with the equations of motion in real space, one can study vacuum and
sourced solutions of the inflation perturbations in Fourier space by using the splitting
(δφ = δφv + δφs) and utilizing the standard Green function methods. We will not repeat
these computations here; for the calculation of the scalar power spectrum relevant to PBH
formation, interested readers can consult [79,81,281,283] in the context of smooth axion infla-
tion and [86] in the context of bumpy axion inflation as discussed in Sections 4.1.1 and 4.1.2.
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Appendix D.3. Scalars Sourced by Vector Fields and the Indirect Coupling Case: χ = σ.

To capture the dynamics of scalar fluctuations in the models studied in Section 4.1.3,
we extend the inflationary action with a spectator sector (σ) that interacts with the gauge
fields as in (A42). The action that describes inflation is therefore given by

Sinf =
∫

d4x
√
−g

{
M2

pl

2
R− 1

2
∂µφ∂µφ−V(φ)− 1

2
∂µσ∂µσ−U(σ)

}
, (A82)

where we assume that the spectator axion-like field does not contribute significantly to
the background evolution during inflation, which is mainly driven by a sufficiently flat
inflation potential (V) that we will leave unspecified.

Expanding the action in terms of the scalar fluctuations (δN, Ni and δφ, δσ) around a
background solution, we obtain the following linear and second-order actions,

S(1)
inf =

∫
d4x a3

{[
3H2M2

pl −∑
a

(
1
2

˙̄φ2
a −Va(φ̄)

)
− 1

2
〈~E2 + ~B2〉

]
δN (A83)

−
[

¨̄φ + 3H ˙̄φ + V′(φ̄)
]
δφ−

[
¨̄σ + 3H ˙̄σ + U′(σ̄)− gcs

f
〈~E.~B〉

]
δσ

}
,

S(2)
inf =

1
2 ∑

a

∫
d4x a3

{
δφ̇2

a −
(∂iδφa)2

a2 −V′′a (φ̄a) δφ2
a − 3H2M2

plδN2 − 2HM2
pl∂i NiδN

− 2V′a(φ̄a) δφa δN − 2 ˙̄φa δφ̇a δN − 2 ˙̄φa Ni∂iδφa + ˙̄φ2
aδN2

}
, (A84)

where the summation over a runs over fluctuations and background values of the following
two fields: φa = {φ, σ} and Va = {V(φ̄), U(σ̄)}. Varying (A84) with respect to Lagrange
multipliers δN and Ni, we obtain

2HM2
pl δN = ∑

a

˙̄φaδφa, (A85)

−2HM2
pl ∂i Ni = ∑

a

(
˙̄φaδφ̇a + V′a(φ̄a)δφa

)
+

(
6H2M2

pl −∑
a

˙̄φ2
a

)
δN. (A86)

Plugging these solutions back into the actions, we obtain the following second-order
action for scalar fluctuations [286,303],

S(2)
inf =

1
2

∫
d4x a3

{[
δφ̇2

a −
(∂iδφa)

2

a2

]
−m2

abδφaδφb

}
, (A87)

m2
ab = V(tot)

,ab − 1
a3

d
dt

(
a3

H

˙̄φa ˙̄φb

M2
pl

)
. (A88)

where summation over repeated indices (a, b) is implied and V(tot)
,ab ≡ ∂2V(tot)/(∂φ̄a∂φ̄b)

with V(tot) = ∑a Va(φ̄a) = V(φ̄)+U(σ̄). We note that in deriving the expressions presented
above, we used background equations of motion, ignoring the artificially introduced mean
field expectation values involving gauge fields (noticing that these terms that appear
in (A49), (A50) and (A83) sum up to zero):

¨̄φa + 3H ˙̄φa + V′a(φ̄a) = 0, (A89)

−2ḢM2
pl = ∑

a

˙̄φ2
a . (A90)

Indeed, for the spectator models discussed in Section 4.1.3, due to the localized nature
of the gauge field production, the back-reaction effect is small and can be ignored [81,85,285];
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therefore, the background evolution can be studied in a consistent way by focusing on
the equations in (A89), along with the Friedmann equation (3H2M2

pl = ∑a
˙̄φ2
a + Va(φ̄a)).

Taking into account the effects of gauge field sources (δχ→ δσ in Equation (A49)) on the
spectator scalar fluctuations, the equations of motion for the scalar perturbations read as

δφ̈a + 3Hδφ̇a −
(
~∇2 −V′′a

)
δφa −∑

b

1
a3

d
dt

(
a3

H

˙̄φa ˙̄φb

M2
pl

)
δφb = Ja(~E,~B), (A91)

where δφa = (δφ, δσ)T and Ja = (0, gcs
f
~E.~B)T . Notice that since we consider sum separable

potentials (V(tot) = V + U), the first term in the mass matrix (A88) makes a diagonal
contribution to the mass of each field in the equations of motion (A91). However, the pres-
ence of the second term in the mass matrix (A88), which is induced by the presence of
gravitational fluctuations (δN and Ni) introduces mass mixing between scalar fluctuations
(δφa − δφb (a 6= b)) (i.e., through the last term in (A91)). In other words, although we
consider a Lagrangian (A82) where the two scalar fields appear to be decoupled from each
other, gravitational interaction will inevitably introduce a minimal communication channel
between the physical fluctuations of the two scalar sectors. At leading order in the slow-roll
expansion, the mass mixing (a 6= b) originates from the following terms in the Lagrangian

Lmix =
1

2a3
d
dt

(
a3

H

˙̄φa ˙̄φb

M2
pl

)
δφaδφb −→ Lmix ' 6

√
εφεσ H2δφδσ, (A92)

where εa = ˙̄φ2
a/(2H2M2

pl) is the slow-roll parameter of each field. Therefore, as long as

both fields roll with a non-vanishing velocity ( ˙̄σ, ˙̄φ 6= 0) during inflation, their fluctuations
can be converted to one another. In the presence of particle production in the gauge field
sector, the mixing between the two scalar sectors is crucial in understanding the influence
of the gauge field sources on the visible scalar sector fluctuations (δφ). In order to see this
explicitly, we focus on the leading order mixing in the slow-roll expansion to rewrite the
system of equations in (A91) as

δφ̈ + 3Hδφ̇−
(
~∇2 −m2

φ

)
δφ ' 6

√
εφεσ H2δσ,

δσ̈ + 3Hδσ̇−
(
~∇2 −m2

σ

)
δσ ' gcs

f
~E.~B, (A93)

where m2
a ' V′′a − 6εa H2 at leading order in the slow-roll expansion. We note that in the

second line of (A93), we ignored mixing terms that can source spectator fluctuations (δσ)
through δφ, which is a subleading effect compared to the sourcing of δσ by the enhanced
gauge fields. This amounts to considering the main production channel of the observable
scalar fluctuations schematically as δA + δA→ δσ→ δφ. Using the equations of motion in
real space (A93) and considering their sources in (A65), the observable power spectrum
of scalar fluctuations can be carried out using Green’s function methods in Fourier space
following the detailed calculations presented in [85,302], along with the prescription we
present in Appendix E regarding the curvature perturbation.

Appendix E. Curvature Perturbation

In this short appendix, we define the curvature perturbation (R) on comoving slices
and study its parametric dependence on the matter fluctuations for some of the scenarios
we consider in the main text. We begin by noting the definition of comoving curvature
perturbation in flat gauge, which reads as [324,337]:

R = − H
(ρ̄ + P̄)

δqflat (A94)
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where ρ̄ and P̄ are the total background energy density and pressure (see Appendix A),
respectively, and δqflat is the scalar momentum density in flat gauge. In terms of the
perturbed energy momentum tensor, δqflat is given by

δT0
i = ∂iδqflat ←− Tµν ≡ −

2√−g
δSm

δgµν , (A95)

where the definition of the unperturbed energy momentum tensor provided on the right-
hand side of (A95) can be used for a given matter action describing the system. We
note that in this definition, δSm/δgµν represents the variation of the matter action with
respect to the metric field. Anticipating that we will focus on different limits of a more
complicated/general model, we start by parameterizing perturbed δT0

i for the spectator
axion model we discussed in Section 4.1.3 with the matter action given by the sum of (A82)
and (A42). Noting that the last term in (A42) is topological and does not gravitate, we have

δT0
i = g0µ

(
∂µφ∂iδφ + ∂µσ∂iδσ + gρσFµρFiσ

)
, (A96)

where the last term characterizes the contribution from gauge fields, which is second-order
in fluctuations. Following (A94)–(A96), it is clear that for a multisector inflationary model,
curvature perturbation can, in principle, obtain contributions from all fields present in the
matter Lagrangian. In what follows, we take (A96) as the main reference point to study
different limits to derive an expression for the curvature perturbation (R) relevant to some
of the models we studied in the main text.

Canonical single-field inflation. This case corresponds to neglecting terms propor-
tional to spectator and gauge field fluctuations in (A96). Noting that ρ̄ + P̄ → ˙̄φ2 for
single-field canonical inflation to linear order in inflation fluctuations, the curvature pertur-
bation (A94) is given by

R =
H
a ˙̄φ

(aδφ) ↔ R =
v
z

, (A97)

where we made the connection between the MS variable (see Section 3.1) and inflation fluctua-
tions clear (v = aδφ) using the definition of pump field in this case (z = −a ˙̄φ/H = a

√
2εMpl).

Upon canonical quantization of δφ (and henceR), their corresponding Fourier space vari-
ables satisfy the same relation in (A97), and the dimensionless power spectrum at the end
of inflation can be computed via (A41).

Smooth Axion Inflation and Bumpy Axion Inflation. For the models we studied in
Sections 4.1.1 and 4.1.2, we instead focus on the curvature perturbation (ζ) on uniform-
density gauge, which can be related to the density perturbation in flat gauge (δρflat) and
comoving curvature perturbation (R) on superhorizon scales as [337]

ζ ' −R = −H
˙̄ρ

δρflat, (A98)

where ρ̄ is the total energy density of the axion gauge field system. Using background
equations of the system, the time derivative of the total energy density is given by
˙̄ρ = −3H ˙̄φ2 − 4HρA [338] where ρA is the energy density of the gauge field as defined
in (72). Noting this relation, to linear order46 in the cosmological fluctuations, the comoving
curvature perturbation (R) can be obtained as [81]

R =
H
˙̄φ

δφ F , F ≡ − ˙̄φ V′(φ̄)
H(3 ˙̄φ2 + 4ρA)

, (A99)

where we used δρflat ' V′(φ̄)δφ, neglecting contributions to the total energy proportional
to the kinetic energy of the inflation, as they should be small both in the slow-roll and
the inflationary regime dominated by the friction provided by the gauge fields. In (A99),
the factor F parameterizes the correction to the definition of the curvature perturbation
in the strong back-reaction regime, which must be taken into account in the smooth axion
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inflation model we presented in the main text. On the other hand, the standard relation
in (A97) applies to the regime of negligible back-reaction of the gauge field on the evolution
of the inflation and expansion of the universe, i.e., when ρA is negligible and the relation
−3H ˙̄φ ' V′(φ̄) is satisfied. This situation applies both at early times during the considered
smooth axion model, as well as within the bumpy axion inflation model described in
Section 4.1.2, where back-reaction effects were shown to be small around the peak of the
scalar power spectrum. To summarize, in the strong back-reaction regime, the power
spectrum of curvature perturbation can be computed using the standard relation (A97)
times a factor of F correction.

Spectator axion-gauge field model. In the model presented in Section 4.1.3, in princi-
ple, we need to consider all the contributions to the curvature perturbation using
Formulas (A94)–(A96). However, as explicitly checked in [85], the contribution to the
curvature perturbation that is bilinear in the gauge fields can be safely ignored at late
times during which we are interested in the correlators ofR. Further simplifications of the
functional form of R arise due to the spectator nature of the axion sector (σ) and due to
the assumption that it settles back to its global minimum long before the end of inflation,
where ˙̄σ → 0. Noting ρ̄ + P̄ = ˙̄φ2 + ˙̄σ2 ' ˙̄φ2 and the fact that ˙̄σ → 0 long before inflation
ends, the late-time curvature perturbation obtains the following form

R =
H

a( ˙̄φ2 + ˙̄σ2)

(
˙̄φ (aδφ) + ˙̄σ (aδσ)

)
' H

˙̄φ
δφ. (A100)

Therefore, the standard expressionR = (H/ ˙̄φ)δφ, which is valid in single-field infla-
tion, still provides a very good approximation of the computation of late-time correlators
of the curvature perturbation in this model.

Notes
1 See, e.g., the impact of extended mass functions on the PBH abundance constraints [27].
2 Ultralight PBHs with Mpbh � 1015g—although they cannot account for the DM density—may also have interesting observational

effects if they come to dominate the energy budget of the universe before BBN (see, e.g., [36,37]).
3 Another inflationary background that exhibits similar features is called constant-roll inflation (see, e.g., [44,45]).
4 PBHs could also form in the post-inflationary universe through the collapse of cosmic strings [106–108] and domain walls [109–112],

phase transitions [113,114], bubble collisions [115,116] or scalar-field fragmentation via instabilities [117,118]. We note that PBH
formation in the post-inflationary universe can be triggered by bubble nucleation during inflation or instabilities generated in the
final stage of inflation commonly referred as (p)reheating [119–122]. We will not dwell on these possibilities here; for a partial list
of recent works in this line of research, see [123–125].

5 A detailed discussion on these topics can be found in Chapter 4 of Baumann’s book [128].
6 Throughout this work, we assume an efficient reheating process at the end of inflation such that the universe becomes radiation-

dominated shortly after inflation terminates. For a collage of interesting physics that might arise through the reheating stage and
alternative post-inflationary histories, see the recent review [131].

7 A simple analytic argument that leads to this result is presented in Appendix B.
8 Other effects such as anisotropies [137] in the radiation fluid and a time-dependent equation of state parameter (w) [138] may

also impact the estimate of the threshold for collapse.
9 Strictly speaking, g∗(T) = gs(T) is only satisfied when species are in thermal equilibrium at the same temperature. For a

comprehensive overview of the thermal history of the universe after inflation, see Chapter 3 of [128].
10 We note that another common convention is to count e-folds with respect to the end of inflation, denoting the end point as

Nend = 0.
11 In contrast to the original approach by Press and Schechter [145], we do not take into account a symmetry factor of two on the

right-hand side of (13), which accounts for all the mass in the universe, since it is not clear whether such a factor makes sense
when considering non-symmetric PDFs of δ (e.g., non-Gaussian cases). Furthermore, the error introduced by omitting this factor
is comparable to the other uncertainties in the computation of β, such as the fraction of the horizon mass that collapses to form a
PBH (see, e.g., [146–148]).

12 Non-linearities that we neglect in the expression (16) can be important to understand intrinsic non-Gaussianity present in the
PBH formation process (see, e.g., [150,151] and references therein.)
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13 The variance (19) can be equivalently written as σ2 = σ2(k) or σ2 = σ2(M) using the relation between the peak scale of PBH
formation and PBH mass (5).

14 Note that the power spectrum is the variance of curvature perturbation per logarithmic interval in k, i.e., 〈R2〉 ≡
∫

d ln kPR(k).
Therefore, the approximate signs (') in the expressions in (26) and (30) can be turned into an equality if we consider the β values
defined in those expressions as the collapse fraction per d ln k in the spectrum, namely β = β(k).

15 One can also introduce a time-dependent mass in the action (35) which may arise through broken spatial translations as in
solid [179] and supersolid [180,181] inflation. Another possibility is to include higher derivative terms in the quadratic action to
modify the dispersion relation of curvature perturbation (see, e.g., [182]) as in ghost inflation [183]. We will not consider these
possibilities here. For a discussion of PBH formation in solid and ghost inflation, see Sections 4 and 6 of [64,184].

16 In fact, if the time evolution of the pump field is known, up to second order in the gradient expansion, we can generate a solution
for the curvature perturbation by replacingRk(τ̄

′′) in the last integral of Equation (39) with the leading growing-mode solution

of the homogeneous part of Equation (38), which we can identify asR(0)
k .

17 In particular, the standard decaying mode is given by the last term in (39), as it decays slowly, i.e., ∝ (−kτ̄)2, compared to
the second term.

18 Here, we assume that field rolls down on its potential from large to small values (φ̇ < 0) with V′(φ) before it encounters the
feature required for the enhancement. Since V′ < 0 during the feature, there must be a point in the potential where the second
derivative of the field vanishes (V′′ = 0).

19 Note that for single-field inflation, we have ε ≡ φ̇2/(2H2 M2
pl), and using η (40), we obtain η = 2φ̈/(φ̇H) + 2ε. Using the

Klein–Gordon equation in the last expression yields the relation on the right-hand side of (49).
20 Note that evaluating the power spectrum at the end of inflation is necessary when modes evolve outside the horizon, as in the

example background we are focusing on in this section.
21 In fact, the general procedure outlined in Appendix C can be generalized to accurately solve the Mukhanov–Sasaki equation

using a broad class of single-field models of inflation. In the context of phenomenological models we discuss in this and the next
section, jupyter notebook files that compute the power spectrum is are available at https://github.com/oozsoy/SingleFieldINF_
Powerspec_PBH (accessed on 24 January 2023). We acknowledge the use of the following Python libraries: matplotlib [219],
numpy [220], scipy [221], pandas [222] along with jupyter notebooks [223].

22 The distinct behavior of the cosmological correlators around the dip feature may also be probed by the 21 cm signal of the
Hydrogen atom [230].

23 Notice that an exponential tail in the PDF of curvature fluctuations, similar to the tailarising in the context of a stochastic approach
to inflation, has been recently shown [256] to be a property of all single-field models with potential up to quadratic. Such a feature
is physically caused by the logarithmic relation between curvature fluctuation and the (Gaussian) inflation field fluctuations
(see [256] for details).

24 Notice that if the background dynamics have localized features, phases of slow-roll violation might occur for some time interval,
and this exact identification ceases to be valid. In particular, in this case, z′′/z might lose its monotonic nature for some time
interval, leading to multiple horizon crossings for a range of modes, resulting in oscillations of the spectrum [64]. For the time
being, we set a discussion on this possibility aside and continue identifying the quantity z′′/z as an effective horizon for the
slow-roll violating scenarios we are interested in.

25 Some other notable models we do not cover in this context utilize (i) dissipative dynamics as in warm inflation-type scenarios
discussed in [264–266], (ii) the conversion of resonantly produced spectator fluctuations to curvature perturbation during [75] or
after inflation, e.g., in curvaton-type scenarios discussed in [267,268].

26 See e.g., [276–279] for string-theory-motivated constructions in the context of inflation.
27 Be aware that despite the terminology we adopt, the gauge fields (Aµ) do not need to correspond to Standard Model photons.
28 At large CMB scales described by modes leaving the horizon in the early stages of inflation, the value of the effective coupling (ξ)

is restricted by existing information and constraints on the scalar power spectrum and non-Gaussianity [282,283,288]. Depending
on priors and on the shape of the inflation potential, these constraints give ξcmb < 2.2–2.5 [289].

29 In fact, the potential (78) is not unique for the purpose of generating a localized particle production scenario. In this context,
any potential that exhibits (a) step-like feature(s) is sufficient (see e.g., [83,296]. However, the choice of the potential in (78) does
provide some useful analytic control over the background evolution of the axion and the resulting amplification of the power
spectrum, as discussed in [86].

30 As discussed in [86], this assumption is actually self-consistent due to the localized nature of the particle production.
31 For the phenomenological examples we will present in this section, this statement can be made precise, and back-reaction can be

shown to be negligible [85,285].
32 In this work, by an appropriate choice of initial conditions and model parameters, we assume that σ traverses two step-like

features on its potential before it settles to its global minimum.

https://github.com/oozsoy/SingleFieldINF_Powerspec_PBH
https://github.com/oozsoy/SingleFieldINF_Powerspec_PBH
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33 The roll of σ towards the global minimum can be captured by modifying the monomial term as µ3sigma→ µ3 f [
√

1 + (σ/ f )2− 1]
so that the axion potential (85) interpolates between µ3σ and (µ3/ f )σ2 from large to small field (σ/ f → 0) values, respectively.

34 For M2, this translates into a single step-like region in the potential (see Figure 15).
35 In the comoving gauge with which we are operating, the field fluctuations are proportional to entropy fluctuation (δφI = QseI

s),
while the spatial part of the metric takes the form ĝij = a2e−2Rδij.

36 Recall from our discussion above that entropic mass crossing at N f corresponds to the peak of the power spectrum.
37 For a detailed analytic/numerical analysis of the behavior of the power spectrum from strong sharp turns, see [72,73].
38 More realistic models of the turn are expected to have a smooth time dependence of η⊥ such as the Gaussian profile we considered

earlier. As shown by the numerical evaluations in [312], the choice of top-hat profile does not introduce any qualitative difference
but appears to be a convenient choice for analytic manipulations. For a detailed study of sudden turn trajectories in conjunction
with PBH formation, see [315].

39 We also note that the presence of very light entropy mode (for the ξ = −3 case) leads to a non-negligible contribution to the
power spectrum for scales that cross the horizon before the turn, i.e., for k/k f → 0. In particular, the analytic expression (101)
does not perform well on these scales. For a more complete analytic formula including numerical analysis, see [312].

40 Note that for flat spatial hypersurfaces (K = 0), we can define new coordinates as x = r cos φ sin θ, y = r sin φ sin θ and z = r cos θ

to turn the metric into a form that is commonly used in the literature (ds2 = −dt2 + a2(t)δijdxidxj).
41 Indeed, CMB data inform us that the spatial geometry of our universe is flat on large cosmological scales (see (A18)). On the

other hand, since it dilutes slowly (∝ a−2) compared to radiation and matter, we would expect it to dominate the energy density
before DED, but this did not happen. This implies that the initial value of the curvature must either be tuned to be extremely
small or that it should relax to small values through a dynamical mechanism. Inflation could be also a solution to this puzzle
because during such an exponential expansion, any initially large curvature would be inflated away.

42 The red-shift parameter can be defined as the fractional shift in the physical wavelength (λ) of a photon emitted at a distant point
and time (t) in the universe until today, i.e., z(t) ≡ (λ0 − λ(t))/λ(t) = a(t0)/a(t)− 1 = 1/a(t)− 1.

43 Unless modes undergo resonance and are excited deep inside the horizon, the choice of initial conditions in Equations (A34) and (A35)
provide an accurate prescription for the initialization of the numerical evaluation. For the models we consider in Sections 3.2 and 3.3,
this is indeed the case. For a model that leads to excited states inside the horizon, see [328,329].

44 We note that at linear order in fluctuations, the Coulomb gauge condition (∂i Ai = 0) is equivalent to setting the temporal
component of the gauge field to zero, i.e., A0 = 0. This can be seen by explicitly expanding the gauge field action (A42) to second
order in A0 and Ai, then solving for the non-dynamical A0 mode (see also the discussion in Section 3 of [331]).

45 This regime is not interesting from a phenomenological point of view, as the gauge field production will be very weak in this case.
46 We note that R also takes up a contribution bilinear in gauge fields proportional to the absolute value of the Poynting vector

(R(AA) ∝ a|~E× ~B|). We expect this contribution to be negligible at the end of inflation (i.e., at the time for we are interested in the
correlators ofR) because the gauge field production saturates on superhorizon scales, and the corresponding electromagnetic
fields decay as ~E,~B ∝ a−2. See, e.g., the discussion presented in [85,339] within similar contexts.
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