
Citation: Tabatabaei, J.; Banihashemi,

A.; Baghram, S.; Mashhoon, B.

Anisotropic Cosmology in the Local

Limit of Nonlocal Gravity. Universe

2023, 9, 377. https://doi.org/

10.3390/universe9090377

Academic Editor: Kazuharu Bamba

Received: 11 July 2023

Revised: 17 August 2023

Accepted: 21 August 2023

Published: 23 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

universe

Article

Anisotropic Cosmology in the Local Limit of Nonlocal Gravity
Javad Tabatabaei 1 , Abdolali Banihashemi 1 , Shant Baghram 1 and Bahram Mashhoon 2,3,*

1 Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran;
smj_tabatabaei@physics.sharif.edu (J.T.); abdolali.banihashemi@sharif.edu (A.B.); baghram@sharif.edu (S.B.)

2 School of Astronomy, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
3 Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
* Correspondence: mashhoonb@missouri.edu

Abstract: Within the framework of the local limit of nonlocal gravity (NLG), we investigate a class
of Bianchi type I spatially homogeneous but anisotropic cosmological models. The modified field
equations are presented in this case, and some special solutions are discussed in detail. This modified
gravity theory contains a susceptibility function S(x) such that general relativity (GR) is recovered for
S = 0. In the modified anisotropic cosmological models, we explore the contribution of S(t) and its
temporal derivative to the local anisotropic cosmic acceleration. The implications of our results for
observational cosmology are briefly discussed.
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1. Introduction

In the current ΛCDM model of cosmology, the energy content of the universe consists
of about 70% dark energy, about 25% dark matter, and about 5% visible matter. The
model is based on the standard spatially homogeneous and isotropic Friedmann–Lemaître–
Robertson–Walker (FLRW) cosmological solutions of Einstein’s general relativity theory [1].
The dark features, whose nature and origin are unknown, provide the motivation to modify
and extend general relativity (GR) on galactic scales and beyond in order to account for
observational data purely on the basis of the gravitational physics of the extended GR
without recourse to dark ingredients.

To modify the current benchmark model of cosmology, we consider nonlocal gravity
theory [2–4], a classical history-dependent generalization of GR that bears a formal resem-
blance to the nonlocal electrodynamics of media [5–10]. It is important to digress here
and mention that there are indeed various other approaches to nonlocal gravitation. For
the sake of brevity, we only refer to some examples and their cosmological implications.
Nonlocally modified extensions of GR can be generated by the addition of functions of
� , as in infinite derivative theories, or functions of �−1 to the Einstein–Hilbert action.
Here, � is the d’Alembert-Beltrami operator. Cosmological implications of such theories
have been investigated by a number of authors in connection with dynamic dark energy
and accelerated expansion of the universe, for instance, see [11,12] and the references cited
therein. Moreover, cosmological solutions of nonlocal infinite derivative theories have
been studied that involve anisotropic bouncing models [13] or an interplay between dark
matter and dark energy [14]. Quantum field theory provides the motivation for a different
class of nonlocal theories of gravitation. Higher curvature nonlocal gravity theories have
recently been reviewed in [15], and a generalized nonlocal quantum gravity theory has
been formulated within the framework of inflationary cosmology. On the other hand, the
phenomenological approach of Deser and Woodard has been based on an effective quantum
gravitational action and has been designed to explain cosmic acceleration without dark
energy; see [16] and the references cited therein. Furthermore, primordial bouncing cosmol-
ogy and anisotropy have been investigated within the framework of the Deser–Woodard
nonlocal gravity model in [17].
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We now return to our classical model of nonlocal gravity that is patterned after the
nonlocal electrodynamics of media. Nonlocal gravity (NLG) is a tetrad theory, where
the gravitational potentials are given by the 16 components of a preferred orthonormal
tetrad frame field. The extended geometric framework of NLG is based on the Weitzen-
böck connection [18], which renders the spacetime a parallelizable manifold. Within the
framework of teleparallelism [19–22], it is possible to express GR using the Weitzenböck
torsion tensor. This teleparallel equivalent of general relativity (TEGR) is a gauge theory
of the Abelian group of spacetime translations [23]. The formal similarity between TEGR
and electrodynamics can be employed to introduce nonlocality into GR via constitutive
kernels [2,3]. In NLG, the gravitational field is local, but the theory involves an average of
the field over past events resulting in 16 partial integro-differential field equations [24,25].
No exact nontrivial solution of NLG is known at present [26]; however, the linear regime
of the theory has been extensively studied. Nonlocal gravity, in its Newtonian regime,
simulates dark matter. It is therefore possible to account for the gravitational effects in the
solar system as well as in nearby galaxies and clusters of galaxies [27–31]. A comprehensive
account of these studies is contained in [4].

NLG is rather intricate, and to study its cosmological implications, we resort to its local
limit, which is easier to analyze. In Section 2, we present a brief account of the modified
GR field equations in the local limit of NLG. For a more detailed treatment of this limiting
situation, see [32,33], where spatially homogeneous and isotropic (FLRW) cosmological
models were investigated in this modified TEGR scheme. To explore anisotropy in the
Hubble flow, we present, in Section 3, modified gravitational field equations for a Bianchi
type I class of time-dependent spatially homogeneous but anisotropic spacetimes within
the framework of the local limit of NLG. The field equations contain a susceptibility
function S(t) with 1 + S > 0 and dS/dt 6= 0 that is characteristic of the dynamic spacetime
background. For S = 0, we recover the GR field equations. We show that de Sitter
and Kasner spacetimes are not solutions of the modified field equations unless S(t) is
independent of time, which is not physically reasonable. Explicit solutions of the modified
field equations are studied in the next two sections. A well-known class of dynamic
solutions of GR for dust with vanishing cosmological constant is extended to the local
limit of NLG in Section 4. The new solutions contain the time-dependent function S(t)
and allow for the possibility of exploring the dependence of anisotropic acceleration on
S(t). These modified cosmological models are locally anisotropic but tend to the isotropic
modified Einstein–de Sitter model at late times (t→ ∞). Similarly, we study the solution
of the modified field equations for a spacetime dominated by dark energy in Section 5
and explore anisotropic cosmic acceleration in this cosmological model, which eventually
becomes isotropic as well. The presence of S(t) could be responsible for certain new “dark”
features of accelerating bulk flows in the local universe.

Anisotropy of the Hubble flow would indicate a significant departure from the pre-
sumed large-scale spatial homogeneity and isotropy of the standard FLRW cosmology. On
the other hand, there is recent observational evidence in support of local anisotropic cosmic
acceleration [34–38]. The purpose of the present paper is to study the possible contribution
of the susceptibility function S(t) to anisotropic features of the Hubble flow.

2. Local Limit of NLG

We consider a spacetime manifold as in general relativity (GR). In an admissible
system of coordinates xµ, the spacetime metric can be written as

ds2 = gµν(x) dxµ dxν . (1)

Here, Greek indices run from 0 to 3, Latin indices run from 1 to 3, and the signature of
the metric is +2; moreover, we employ units such that c = 1. As in GR, the world lines
of free test particles and null rays are geodesics of the spacetime manifold. We assume
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the existence of a preferred set of observers in this gravitational field. The observers have
adapted orthonormal tetrads eµ

α̂(x),

gµν(x) eµ
α̂(x) eν

β̂(x) = ηα̂β̂ , (2)

where ηαβ = diag(−1, 1, 1, 1) is the Minkowski metric tensor. In our convention, indices
without hats are normal spacetime indices, while hatted indices indicate the tetrad axes in
the local tangent space.

We employ the tetrad frame field to define the curvature-free Weitzenböck connection,

Γµ
αβ = eµ

ρ̂ ∂α eβ
ρ̂ . (3)

Let ∇ denote covariant differentiation with respect to the Weitzenböck connection;
then, ∇ν eµ

α̂ = 0, so the preferred tetrad frames are parallel throughout the gravitational
field and provide a natural scaffolding for the spacetime manifold. The spacetime is thus a
parallelizable manifold by the Weitzenböck connection. In this framework of teleparallelism,
two distant vectors are considered parallel if they have the same local components relative
to their preferred tetrad frames. Moreover, it follows from the tetrad orthonormality relation
that the Weitzenböck connection is metric compatible, namely, ∇µ gαβ = 0.

The difference between two connections on the same manifold is a tensor. We define
the torsion tensor that corresponds to the Weitzenböck connection by

Cµν
α = Γα

µν − Γα
νµ = eα

β̂

(
∂µeν

β̂ − ∂νeµ
β̂
)

. (4)

In the extended GR framework, we have the Weitzenböck connection as well as the
symmetric Levi–Civita connection,

0Γµ
αβ =

1
2

gµν (gνα,β + gνβ,α − gαβ,ν) . (5)

We use a left superscript “0” to refer to geometric quantities directly derived from the
Levi–Civita connection. The contorsion tensor is then defined by

Kµν
α = 0Γα

µν − Γα
µν , (6)

which is related to the torsion tensor through the metric compatibility of the Weitzenböck
connection. In fact,

Kµνρ =
1
2
(Cµρν + Cνρµ − Cµνρ) . (7)

The Levi–Civita connection given by the Christoffel symbol is the sum of the Weitzen-
böck connection and the contorsion tensor. One can therefore express the Einstein tensor
0Gµν and the gravitational field equations of GR in terms of the teleparallelism framework,
resulting in the teleparallel equivalent of GR, namely, TEGR [4]. Indeed, we find

0Gµν =
κ√−g

[
eµ

γ̂ gνα
∂

∂xβ
Hαβ

γ̂ −
(

Cµ
ρσ Hνρσ −

1
4

gµν Cαβγ Hαβγ

)]
(8)

and Einstein’s field equations expressed in terms of torsion thus become the TEGR field
equations

∂

∂xν
Hµν

α̂ +

√−g
κ

Λ eµ
α̂ =

√
−g (Tα̂

µ +Tα̂
µ) , (9)

where Λ is the cosmological constant and κ := 8πG. Here, we define the auxiliary torsion
field Hµνρ by means of the auxiliary torsion tensor Cαβγ, namely,

Hµνρ :=
√−g

κ
Cµνρ , Cαβγ := Cα gβγ − Cβ gαγ + Kγαβ . (10)
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Moreover, Cµ := Cα
µα = −Cµ

α
α is the torsion vector. As in GR, Tµν is the symmetric

energy-momentum tensor of matter. In Equation (9), we interpret Tµν to be the traceless
energy-momentum tensor of the gravitational field

Tµν := (
√
−g)−1 (Cµρσ Hν

ρσ − 1
4 gµν Cρσδ H

ρσδ) . (11)

This version of GR, namely, TEGR, is the gauge theory of the 4-parameter Abelian
group of spacetime translations [23]; therefore, though nonlinear, it bears a certain resem-
blance to Maxwell’s electrodynamics.

In analogy with the electrodynamics of media, we can consider the torsion tensor in
the form Cµν

α̂ = ∂µeν
α̂ − ∂νeµ

α̂ to be similar to the Faraday tensor, while the relationship
between Hµνρ and the torsion tensor in Equation (10) can be viewed as the local constitutive
relation of TEGR. Let us recall that in Maxwell’s electrodynamics, the constitutive relation
may change, but the field equations remain the same. We adopt the same approach for the
purpose of modifying Einstein’s theory. That is, we modify TEGR by introducing a tensor
Nµνρ = −Nνµρ that changes the constitutive relation of TEGR as follows:

Hµνρ =

√−g
κ

(Cµνρ + Nµνρ) . (12)

To obtain the field equations of modified TEGR, we simply replace H in Equations (9)
and (11) byH. The gravitational field equations of extended GR based on the new tensor
field Nµνρ now take the form

∂

∂xν
Hµν

α̂ +

√−g
κ

Λ eµ
α̂ =

√
−g (Tα̂

µ + Tα̂
µ) , (13)

where Tµν is the traceless energy-momentum tensor of the gravitational field. The gravita-
tional energy-momentum tensor is modified by the presence of Nµνρ; hence, we introduce
a traceless tensor Qµν that indicates this difference, namely,

κ Tµν = κ Tµν + Qµν , (14)

where
Qµν := Cµρσ Nν

ρσ − 1
4

gµν Cδρσ Nδρσ . (15)

The total energy-momentum conservation law takes the form

∂

∂xµ

[√
−g (Tα̂

µ + Tα̂
µ − Λ

κ
eµ

α̂)
]
= 0 . (16)

It is interesting to see how Nµνρ modifies GR field equations; to this end, we substitute

Hµνρ = Hµνρ −
√−g

κ
Nµνρ (17)

in the Einstein tensor (8) and employ modified TEGR field Equation (13) to obtain

0Gµν + Λgµν = κTµν + Qµν −Nµν , (18)

where Nµν is a tensor defined by

Nµν := gναeµ
γ̂ 1√−g

∂

∂xβ
(
√
−gNαβ

γ̂) . (19)

Therefore, to find the field equations of modified GR, we must add Qµν − Nµν to the
right-hand side of Einstein’s field equations of GR.

Finally, we have to relate Nµνρ = −Nνµρ to the torsion tensor. In NLG, the components
of Nµνρ measured by the preferred observers of the theory with adapted tetrads eµ

α̂ are as-
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sociated with the corresponding measured components of Xµνρ that are directly connected
to the torsion tensor, and its expression has been discussed in detail in [4]. That is [24,25],

Nµ̂ν̂ρ̂(x) =
∫
K(x, x′) Xµ̂ν̂ρ̂(x′)

√
−g(x′) d4x′ , (20)

where
Xµ̂ν̂ρ̂ = Cµ̂ν̂ρ̂ + p̌ (Čµ̂ ην̂ρ̂ − Čν̂ ηµ̂ρ̂) . (21)

Here, K(x, x′) is the basic causal kernel of NLG that in essence must be determined
via observation [4], p̌ 6= 0 is a constant dimensionless parameter, and Čµ is the torsion
pseudovector,

Čµ =
1
3!

Cαβγ Eαβγµ , (22)

where Eαβγδ is the Levi–Civita tensor.
Nonlocal gravity (NLG) is thus a classical extension of GR that is highly nonlinear as

well. Linearized NLG has been investigated in detail [4]. Within the Newtonian regime
of NLG, it appears possible to account for the rotation curves of nearby spiral galaxies
as well as for the solar system data [27–31]. Beyond the linear domain, no exact solution
is known except for the trivial result that in the absence of gravity we have Minkowski
spacetime [26]. On the other hand, it is possible that certain nonlinear features of NLG
that belong to the strong-field regimes such as those involving black holes or cosmological
models may indeed survive in the local limit of the theory. It is therefore interesting to
explore this limiting case of NLG.

To come up with the local limit of NLG, let us assume that the kernel in Equation (20)
is proportional to the 4D Dirac delta function, namely,

K(x, x′) :=
S(x)√
−g(x)

δ(x− x′) ; (23)

then, Nµνρ(x) = S(x)Xµνρ, where S(x) is a dimensionless scalar function. Therefore,

Nµνρ(x) = S(x) [Cµνρ(x) + p̌ (Čµ gνρ − Čν gµρ)] (24)

and the constitutive relation takes the form

Hµνρ =

√−g
κ

[(1 + S)Cµνρ + S p̌ (Čµ gνρ − Čν gµρ)] . (25)

Here, the susceptibility function S(x) is a characteristic of the background spacetime
just as ε(x) and µ(x) are features of the medium in electrodynamics. In general, the
local electric permittivity ε(x) and magnetic permeability µ(x) functions are expected to
preserve significant features of the electrodynamics of media such as spatial symmetries
and temporal dependence. Similarly, S(x) is expected to preserve the characteristics of
the background spacetime. Ultimately, S(x) must be determined based on observational
data [32,33].

For S(x) = 0, we recover TEGR; otherwise, we have a natural generalization of GR
that contains a new function S(x). Indeed, Equation (25) implies that to have GR as a
limit, we must impose the requirement that 1 + S > 0. In this local limit of nonlocal
gravity, explicit deviations from locality have vanished; however, nontrivial aspects of NLG
may have survived through S(x), which would be interesting to study. Consequently, we
explore the cosmological implications of this local limit of NLG. Spatially homogeneous and
isotropic (FLRW) cosmological models have been treated in [32,33] in connection with H0
tension. Therefore, we concentrate here on a class of spatially homogeneous but anisotropic
spacetimes.
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3. Anisotropic Models

Let us consider a Bianchi type I model with a metric of the form

ds2 = −dt2 + X2dx2 + Y2dy2 + Z2dz2, (26)

where X, Y, and Z are functions of time t. This spacetime is spatially homogeneous, with
three spacelike commuting Killing vector fields ∂x, ∂y, and ∂z. A detailed discussion of such
spacetimes is contained in Chapter 13 of [39]; for a recent discussion within the context of
teleparallelism, see [40].

Einstein’s gravitational field equations are

0Gµν + Λ gµν = 8πG Tµν , 0Gµν = 0Rµν −
1
2

gµν
0R , (27)

where Tµν is assumed to be due to the presence of a comoving perfect fluid with density
ρ(t) and pressure P(t),

Tµν = (ρ + P)UµUν + Pgµν, (28)

and Λ is the cosmological constant. With respect to the system of coordinates xµ = (t, x, y, z),
the perfect fluid is comoving with Uµ = δµ

0; hence,

Tµν = diag(ρ, PX2, PY2, PZ2) . (29)

Moreover, the Einstein tensor 0Gµν is diagonal as well with components

0G00 =
ẊẎ
XY

+
ẎŻ
YZ

+
ŻẊ
ZX

, (30)

0G11 = −X2
(

Ÿ
Y
+

Z̈
Z
+

ẎŻ
YZ

)
, (31)

0G22 = −Y2
(

Z̈
Z
+

Ẍ
X

+
ŻẊ
ZX

)
, (32)

0G33 = −Z2
(

Ẍ
X

+
Ÿ
Y
+

ẊẎ
XY

)
. (33)

It is interesting to work out the Kretschmann scalar K,

K = 0Rµνρσ
0Rµνρσ , (34)

for metric (26). The result is

1
4
K =

(
Ẍ
X

)2

+

(
Ÿ
Y

)2

+

(
Z̈
Z

)2

+

(
ẊẎ
XY

)2

+

(
ẎŻ
YZ

)2

+

(
ŻẊ
ZX

)2

. (35)

Detailed discussions of the GR solutions of these models with Λ = 0 for dust (P = 0)
can be found, for instance, in [41,42], Section 5.4 of ref. [43], and Section 12.15 of ref. [44].
We give a brief description of these solutions in Section 4 in connection with cosmic
deceleration.

We are interested in the extended GR framework. Therefore, consider the class of
observers that are spatially at rest with adapted tetrad eµ

α̂ field given by

eµ
0̂ = (1, 0, 0, 0) , eµ

1̂ = (0,
1
X

, 0, 0) , eµ
2̂ = (0, 0,

1
Y

, 0) , eµ
3̂ = (0, 0, 0,

1
Z
) , (36)
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where the spatial axes point along the Cartesian coordinate directions. We have

eµ
0̂ = (1, 0, 0, 0) , eµ

1̂ = (0, X, 0, 0) , eµ
2̂ = (0, 0, Y, 0) , eµ

3̂ = (0, 0, 0, Z) . (37)

We compute the Weitzenböck torsion tensor (4) in this case, and we find Cµν
0 = 0,

Cij
k = 0, and the only nonzero components can be obtained from

C01
1 =

Ẋ
X

, C02
2 =

Ẏ
Y

, C03
3 =

Ż
Z

. (38)

Similarly, we have Cµν0 = 0, Cijk = 0, and the only nonzero components of Cµνρ can
be obtained from

C011 = Ẋ X , C022 = Ẏ Y , C033 = Ż Z . (39)

It follows from these results that the torsion vector is given by

C0 = −
(

Ẋ
X

+
Ẏ
Y
+

Ż
Z

)
, Ci = 0 , (40)

while the torsion pseudovector Čµ = 0 in this case.
The calculations of contorsion (7) and the auxiliary torsion (9) tensors produce similar

results. That is, K0µν = 0, Kijk = 0, and the only nonzero components of Kµνρ can be
obtained from

K101 = Ẋ X , K202 = Ẏ Y , K303 = Ż Z . (41)

Moreover, Cµν0 = 0, Cijk = 0, and the only nonzero components of Cµνρ can be obtained
from

C101 = X2
(

Ẏ
Y
+

Ż
Z

)
, C202 = Y2

(
Ẋ
X

+
Ż
Z

)
, C303 = Z2

(
Ẋ
X

+
Ẏ
Y

)
. (42)

In the local limit of NLG, the constitutive relation of modified TEGR is given by
Nµνρ(x) = S(x)Cµνρ(x), where the gravitational susceptibility S is a property of the back-
ground spacetime. In the case of the homogeneous time-dependent background (26), we
assume that S is a function of time t. Therefore, Nµν0 = 0, Nijk = 0, and the only nonzero
components of Nµνρ can be obtained from

N101 = S(t) X2
(

Ẏ
Y
+

Ż
Z

)
, N202 = S(t)Y2

(
Ẋ
X

+
Ż
Z

)
, N303 = S(t) Z2

(
Ẋ
X

+
Ẏ
Y

)
.

(43)

We can now compute Qµν given in Equation (14) and Nµν given in Equation (18). The
results are that these quantities are diagonal with elements

Q00 = −S(t)
(

ẊẎ
XY

+
ẎŻ
YZ

+
ŻẊ
ZX

)
, (44)

Q11 = −S(t)X2 ẎŻ
YZ

, Q22 = −S(t)Y2 ŻẊ
ZX

, Q33 = −S(t)Z2 ẊẎ
XY

. (45)
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For Nµν, however, we find N00 = 0 and

N11 = − X2

YZ
d
dt
[S(YŻ + ẎZ)] , (46)

N22 = − Y2

XZ
d
dt
[S(XŻ + ẊZ)] , (47)

N33 = − Z2

XY
d
dt
[S(XẎ + ẊY)] . (48)

Collecting everything, the modified GR field Equation (18) can be expressed as

(1 + S)
(

ẊẎ
XY

+
ẎŻ
YZ

+
ŻẊ
ZX

)
= Λ + 8πGρ (49)

and

(1 + S)
(

Ÿ
Y
+

Z̈
Z
+

ẎŻ
YZ

)
= Λ− 8πGP− dS

dt

(
Ẏ
Y
+

Ż
Z

)
, (50)

(1 + S)
(

Ẍ
X

+
Z̈
Z
+

ẊŻ
XZ

)
= Λ− 8πGP− dS

dt

(
Ẋ
X

+
Ż
Z

)
, (51)

(1 + S)
(

Ẍ
X

+
Ÿ
Y
+

ẊẎ
XY

)
= Λ− 8πGP− dS

dt

(
Ẋ
X

+
Ẏ
Y

)
. (52)

3.1. Field Equations

To express the gravitational field equations for the anisotropic models under consider-
ation in a more tractable form, it is useful to consider

V(t) = XYZ , W(t) :=
ẊẎ
XY

+
ẎŻ
YZ

+
ŻẊ
ZX

, (53)

where |V(t)| = √−g and note that

V̇
V

=
Ẋ
X

+
Ẏ
Y
+

Ż
Z

,
V̈
V

=
Ẍ
X

+
Ÿ
Y
+

Z̈
Z
+ 2 W . (54)

Let us add Equations (50)–(52) to obtain

(1 + S)
(

2
V̈
V
− 3W

)
= 3(Λ− 8πGP)− 2

dS
dt

V̇
V

. (55)

Using Equation (49), we can write

(1 + S)
V̈
V

= 3[Λ + 4πG(ρ− P)]− dS
dt

V̇
V

(56)

or

d
dt
[(1 + S) V̇] = 3V [Λ + 4πG(ρ− P)] . (57)

Another interesting result is obtained by writing Equation (49) as VW = (Λ +
8πGρ)V/(1 + S) and taking the time derivative of both sides. From the relation

1
V

d(VW)

dt
=

Ẋ
X

(
Ÿ
Y
+

Z̈
Z
+

ẎŻ
YZ

)
+

Ẏ
Y

(
Ẍ
X

+
Z̈
Z
+

ẊŻ
XZ

)
+

Ż
Z

(
Ẍ
X

+
Ÿ
Y
+

ẊẎ
XY

)
, (58)
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we find

(1 + S)
d(VW)

dt
= (Λ− 8πGP)V̇ − 2

dS
dt

VW . (59)

Using Equation (49), we finally obtain

dρ

dt
= −(ρ + P)

V̇
V
−

dS
dt

(1 + S)

(
ρ +

Λ
8πG

)
. (60)

Equations (57) and (60) are important consequences of the modified field equations.
Furthermore, let us define a new temporal variable τ by

τ :=
∫ t

0

dt′

1 + S(t′)
, dt = (1 + S)dτ ; (61)

hence, the spacetime metric in (τ, x, y, z) coordinates is

ds2 = −(1 + S)2dτ2 + X2(τ)dx2 + Y2(τ)dy2 + Z2(τ)dz2 , (62)

where S is now considered, by an abuse of notation, a function of τ. For instance, let
us suppose S(t) = t; then, τ = ln(1 + t), and in the above metric we have in this case
S = −1 + eτ . For metric (62), the Kretschmann scalar K given by Equation (35) can be
expressed in terms of the new temporal variable τ using

Ẋ
X

= (1 + S)−1 1
X

dX
dτ

(63)

and

Ẍ
X

= (1 + S)−2

(
1
X

d2X
dτ2 −

dS
dτ

1 + S
1
X

dX
dτ

)
. (64)

The gravitational field equations can now be written in terms of the temporal variable
τ as

1
XY

dX
dτ

dY
dτ

+
1

YZ
dY
dτ

dZ
dτ

+
1

ZX
dZ
dτ

dX
dτ

= (1 + S)(Λ + 8πGρ) , (65)

1
Y

d2Y
dτ2 +

1
Z

d2Z
dτ2 +

1
YZ

dY
dτ

dZ
dτ

= (1 + S)(Λ− 8πGP) , (66)

1
X

d2X
dτ2 +

1
Z

d2Z
dτ2 +

1
XZ

dX
dτ

dZ
dτ

= (1 + S)(Λ− 8πGP) , (67)

1
X

d2X
dτ2 +

1
Y

d2Y
dτ2 +

1
XY

dX
dτ

dY
dτ

= (1 + S)(Λ− 8πGP) . (68)

To solve Equations (66)–(68), let us subtract, for instance, Equation (66) from Equation (67)
to obtain

1
X

d2X
dτ2 −

1
Y

d2Y
dτ2 +

1
Z

dZ
dτ

(
1
X

dX
dτ
− 1

Y
dY
dτ

)
= 0 , (69)
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which with V = XYZ can be written as

d
dτ

(
1
X

dX
dτ
− 1

Y
dY
dτ

)
+

1
V

dV
dτ

(
1
X

dX
dτ
− 1

Y
dY
dτ

)
= 0 . (70)

Hence,

V
(

1
X

dX
dτ
− 1

Y
dY
dτ

)
= C12 , (71)

where C12 is a constant of integration and similar results hold for the other metric functions.
Finally, in terms of temporal variable τ, Equation (57) can be written as

1
V

d2V
dτ2 = 3(1 + S)[Λ + 4πG(ρ− P)] . (72)

3.2. Special Solutions

We now explore some cases of particular interest.

3.2.1. de Sitter

Let us first consider de Sitter’s solution with

ρ = P = 0 , X = Y = Z = eλt , (73)

where λ is a nonzero constant. The field equations imply

3λ2(1 + S) = Λ , 3λ2(1 + S) = Λ− 2λ
dS
dt

. (74)

Therefore, dS/dt = 0 and S must be constant. It follows that de Sitter spacetime is not
a solution of the modified TEGR since the susceptibility function is independent of time
while the background spacetime is dynamic. This is in agreement with the fact that de
Sitter spacetime is not a solution of NLG [25].

3.2.2. Kasner

Let us next consider the standard Kasner metric [45,46]

ds2 = −dt2 + t2p1 dx2 + t2p2 dy2 + t2p3 dz2 , (75)

p1 + p2 + p3 = p2
1 + p2

2 + p2
3 = 1 . (76)

In GR, this empty universe model is a solution of the field equations with Λ = 0 and
ρ = P = 0. Note that with p1 = 1, say, and hence p2 = p3 = 0, we recover flat spacetime.
Therefore, we can assume p1 < p2 < p3; that is,

−1
3
≤ p1 ≤ 0, 0 ≤ p2 ≤

2
3

,
2
3
≤ p3 ≤ 1 . (77)

It follows from field Equations (49) and (50) that

(1 + S)
t2 (p1 p2 + p2 p3 + p1 p3) = Λ + 8πGρ , (78)

(1 + S)
t2 (p2

2 − p2 + p2
3 − p3 + p2 p3) = Λ− 8πGP− dS

dt
(p2 + p3) , (79)
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etc. Because p1 p2 + p2 p3 + p1 p3 = 0 and p2
2 − p2 + p2

3 − p3 + p2 p3 = 0 together with two
other cyclically related terms that vanish, we find that ρ, P, and S must be constants such
that

−8πGρ = Λ ≤ 0 , ρ + P = 0 , S = constant . (80)

Therefore, Kasner’s spacetime with constant S is not a solution of the modified TEGR.

3.2.3. Flat FLRW Model

We now consider X = Y = Z = a(t). Then, field Equations (49) and (50) imply

3(1 + S)
(

ȧ
a

)2
= Λ + 8πGρ , (81)

(1 + S)

[
2

ä
a
+

(
ȧ
a

)2
]
= Λ− 8πGP− 2

dS
dt

ȧ
a

. (82)

A thorough treatment of these equations is contained in a recent paper [32], where
they were employed with Λ = 0 in a detailed discussion of the implications of the modified
Cartesian flat cosmology in connection with H0 tension.

It is important to emphasize that in these time-dependent solutions considered thus far,
S must be dependent upon time as well; otherwise, we do not have a physically meaningful
solution of the theory.

4. Solution for Dust with Λ = 0
4.1. S = 0

When S = 0, we obtain the gravitational field equations in GR. A well-known class of
anisotropic solutions corresponds to Λ = 0 and P = 0 [41–44]. In this case, Equations (57)
and (60) imply

ρ V =
`0

6πG
, V = `0 t2(1 + Σ/t) , (83)

where `0 > 0 and Σ > 0 are integration constants with dimensions of length (or time, since
c = 1) and we have assumed that V = 0 at t = 0. Using∫ dt

V
= − 1

`0Σ
ln(1 + Σ/t) , (84)

Equation (71) and similar ones can be integrated with the result that ratios such as X/Y,
etc., up to constant coefficients are given by (1 + Σ/t) to some constant powers. In the
absence of anisotropy (Σ = 0), we must recover the standard Einstein–de Sitter solution;
that is, Σ is the anisotropy parameter for finite t > 0. Therefore, we look for the solutions of
the field equations such that the metric coefficients are given by

X = `0
q1 t2/3(1 + Σ/t)q1 , Y = `0

q2 t2/3(1 + Σ/t)q2 , Z = `0
q3 t2/3(1 + Σ/t)q3 , (85)

where qi, i = 1, 2, 3, are constants that must add up to unity in order to satisfy Equation (83).
A detailed examination reveals that the field equations are all satisfied in the case of dust
with Λ = 0 provided

q1 + q2 + q3 = 1 , q2
1 + q2

2 + q2
3 = 1 . (86)

It is possible to choose q1 < q2 < q3; that is, − 1
3 ≤ q1 ≤ 0, 0 ≤ q2 ≤ 2

3 , and 2
3 ≤ q3 ≤ 1.

Then, a convenient representation of these constants is given by

qi =
1
3
− 2

3
sin[θ − 2(i− 1)π/3] , i = 1, 2, 3 ,

π

6
≤ θ ≤ π

2
. (87)
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It is important to note that at late times, t→ ∞, we recover the standard Einstein–de
Sitter solution.

4.2. S 6= 0

Let us note that a constant S 6= 0 is equivalent to a constant rescaling of the time
coordinate in GR, namely, t → (1 + S)1/2t. Therefore, new results are obtained only
when S depends upon time, which is necessary for a proper physical interpretation of the
susceptibility function S.

We now consider the case dS/dt 6= 0. For P = 0 and Λ = 0, it follows from
Equations (60) and (72) that

(1 + S)ρ V =
`0

6πG
, V = `0 τ2(1 + Σ/τ) . (88)

Moreover, the metric coefficients are given by

X = `0
q1 τ2/3(1 + Σ/τ)q1 , Y = `0

q2 τ2/3(1 + Σ/τ)q2 , Z = `0
q3 τ2/3(1 + Σ/τ)q3 , (89)

where q1 + q2 + q3 = 1 and q2
1 + q2

2 + q2
3 = 1. For Σ = 0 or τ → ∞, we recover the isotropic

solution corresponding to the modified Einstein–de Sitter model.
It is interesting to explore the implications of these solutions for the dimensionless

deceleration parameter defined for the x direction, say, by Qx = −(Ẍ/X)/(Ẋ/X)2, etc.
Let us first recall that Σ > 0 is the anisotropy parameter; in fact, for Σ = 0, we obtain

the standard Einstein–de Sitter result that Q = 1/2 in every direction. Let anisotropic
expansion occur in the z direction; then, Equation (86) allows two possibilities, namely,
(q1, q2, q3) = (0, 0, 1) and (q1, q2, q3) = (2/3, 2/3,−1/3). We choose the former case for the
sake of simplicity. We are interested in the nature of deceleration parameter Qz in the z
direction. For S = 0, we have Qx = Qy = 1/2 and

Qz = 2
(t + Σ)(t− 2Σ)

(2t− Σ)2 <
1
2

. (90)

Indeed, for t < 2 Σ we have Qz < 0 and hence acceleration in the z direction that later turns
into deceleration for t > 2 Σ with magnitude < 1/2. As t→ ∞, Qz → 1/2; that is, isotropy
is recovered at late times.

How do these results change in the presence of S(t)? In terms of temporal parameter
τ, we find for the x direction, say,

Qx = −X
d2X
dτ2

(
dX
dτ

)−2
+

dS
dt

X
(

dX
dτ

)−1
. (91)

Therefore, with

X = Y = τ2/3 , Z = `0 τ2/3(1 + Σ/τ) , (92)

the results are

Qx = Qy =
1
2
+

3
2

τ
dS
dt

(93)

and

Qz = 2
(τ + Σ)(τ − 2Σ)

(2τ − Σ)2 + 3
(

τ + Σ
2τ − Σ

)
τ

dS
dt

. (94)

Let us suppose, for instance, that dS/dt > 0. Then, the deceleration increases in the x
and y directions. The same is true in the z direction for τ > 2 Σ; however, for τ < Σ/2, the
presence of dS/dt > 0 causes extra acceleration in the z direction. For 2 Σ > τ > Σ/2, the
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sign of Qz depends upon the magnitude of dS/dt. We note that isotropy is restored at late
times τ � Σ.

5. Solution for Dynamic Dark Energy with Λ = 0

Let us imagine a universe that in the absence of the cosmological constant (Λ = 0) is
dominated by dynamic dark energy with Pde + ρde = 0. Therefore, Equation (60) implies

ρde = ρde(t0)
1 + S0

1 + S
, ρde(t0) > 0 , S0 = S(t0) , (95)

where t0 refers to some fiducial epoch in the expansion of the universe. The pressure of
dark energy is always negative, Pde = −ρde, and we assume on the basis of Equation (95)
that

6πGρde(1 + S) = 6πGρde(t0) (1 + S0) :=
1
τ2

0
, η :=

τ

τ0
, (96)

where τ0 > 0 is a constant with the dimensions of time, and henceforth we employ η as the
new dimensionless temporal variable. To explore the anisotropic acceleration of this dark
energy universe model, we assume for the sake of simplicity that X = Y. Thus, we have a
cylindrical model with the z direction as the main direction of anisotropy. Let us note here
that for S = 0 our dynamic dark energy source in effect reduces to a cosmological constant.

With X = Y, Equation (68) reduces to

2
X

d2X
dη2 +

1
X2

(
dX
dη

)2
=

4
3

. (97)

This nonlinear equation can be easily solved with

X := α2/3 ,
d2α

dη2 − α = 0 , α = C+ eη + C− e−η , (98)

where C± are integration constants. Next, Equation (65) implies

1
X2

(
dX
dη

)2
+

2
Z

dZ
dη

1
X

dX
dη

=
4
3

, (99)

or

1
Z

dZ
dη

=
α

β
− 1

3
β

α
, (100)

where α = dβ/dη and

β =
dα

dη
= C+ eη − C− e−η . (101)

Hence, Z = C0 α−1/3 β, where C0 is an integration constant. Therefore,

X = Y = α2/3 , Z = C0 α−1/3 β , V = X2Z = C0 α β = C0(C2
+ e2η − C2

− e−2η) . (102)

One can check that this is the general solution of the field equations in the present case.
For these solutions, the Kretschmann scalar K can be written as

1
4
(1 + S)4 τ4

0 K =
16
9

K1 −
8
3

β

α

(
1− β2

3α2

)
τ0

dS
dt

+ K2
α2

β2

(
τ0

dS
dt

)2
, (103)
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where

K1 = 1− 2
3

β2

α2 +
1
3

β4

α4 , K2 = 1− 2
3

β2

α2 +
β4

α4 . (104)

We are interested in the behavior of the acceleration of these anisotropic solutions.
For the deceleration parameters of this model, we find

Qx = Qy =
1
2

(
1− 3

α2

β2

)
+

3
2

τ0
dS
dt

α

β
, (105)

Qz = −4
(

1− 3
α2

β2

)−2

− 3τ0
dS
dt

α

β

(
1− 3

α2

β2

)−1

. (106)

At late times η → ∞, α/β → 1, and these expressions reduce to Qx = Qy = Qz =
−1 + (3τ0/2) dS/dt. However, for finite η there could be anomalous behavior when β = 0
or 3α2 = β2. If β = 0, then Qx = Qy = −∞, while Qz = 0. On the other hand, if
3α2 = β2, then Qx = Qy = ±(

√
3τ0/2)dS/dt, while Qz = −∞. To give an example

of the former situation, consider, for instance, the case where C+ = C− = C > 0 with
α = 2C cosh η and β = 2C sinh η. In this case, 3α2 > β2. Then, X = Y = (2C)2/3 cosh2/3 η

and Z = C0(2C)2/3 cosh−1/3 η sinh η. The universe starts from a singular pancake state
at η = 0 and expands with infinite acceleration in the x and y directions but with zero
acceleration in the z direction. Indeed, inspection of the Kretschmann scalar K given by
Equation (103) reveals that K diverges at τ = 0 provided dS/dτ 6= 0.

For an example of the case where 3α2 = β2, let us consider, for instance, C+ = 1
and C− = −(2 +

√
3). Then, the universe starts from a cigar state at η = 0 with infinite

acceleration in the z direction but with finite acceleration −(
√

3τ0/2)dS/dt in the x and
y directions assuming that dS/dt > 0. The Kretschmann scalar (103) remains finite in
this case.

These results could be interesting in connection with recent observational evidence in
favor of anomalous anisotropic acceleration of bulk flow in the local universe [34–38].

6. Discussion

The cosmic acceleration in the standard cosmological model is assumed to be isotropic.
Large-scale anisotropy in the Hubble flow has been the subject of numerous studies. We
have explored anisotropy in cosmic acceleration within the theoretical framework of a
recent teleparallel extension of general relativity that corresponds to the local limit of
nonlocal gravity. This modified theory involves a function S(x) such that GR is recovered
for S = 0. We are interested in the cosmological significance of the extra function S(x). In
particular, in a dynamic Bianchi type I model that is consistent with the modified GR field
equations, we theoretically investigate anisotropy in cosmic acceleration and determine
the contribution of S(t) to local anisotropic acceleration. Our results in Sections 4 and 5 for
possible local anisotropic cosmic acceleration depend explicitly upon dS(t)/dt.

The function S(t) may also possibly contribute to the resolution of an anomaly in the
quadrupole anisotropy of CMB temperature. It has been reported that the CMB temperature
angular power spectrum suffers from a deficit in its quadrupole moment [47–50]. The
anomaly has to do with the low amplitude of the quadrupole anisotropy compared to the
prediction of the standard ΛCDM model. On the other hand, in an anisotropic universe
described by metric (26), one would in general expect a change in the quadrupole moment
of the CMB temperature due to different amounts of redshift suffered by photons traveling
after recombination along different directions toward the observer [51–55]. However, Big
Bang nucleosynthesis (BBN) puts a tight constraint on the anisotropy of the expansion
rate [56]; hence, it is rather difficult for the anisotropic expansion to justify the CMB
quadrupole deficit [51]. A suitable susceptibility function S(t) of the modified gravity
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theory may be able to ameliorate the situation. That is, S(t) may allow the quadrupole
deficit anomaly to be alleviated while respecting the BBN constraint. A more complete
discussion is beyond the scope of the present paper.
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