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Abstract: Herein, we investigate scalar—tensor and bi-scalar—tensor modified theories of gravity
that can alleviate the Hy tension. In the first class of theories, we show that by choosing particular
models with a shift-symmetric friction term we are able to alleviate the tension by obtaining a smaller
effective Newton’s constant at intermediate times, a feature that cannot be easily obtained in modified
gravity. In the second class of theories, which involve two extra propagating degrees of freedom, we
show that the Hj tension can be alleviated, and the mechanism behind this is the phantom behavior
of the effective dark-energy equation-of-state parameter. Hence, scalar-tensor and bi-scalar-tensor
theories have the ability to alleviate the Hy tension with both known sufficient late-time mechanisms.

Keywords: Hj tension; modified gravity; Horndeski; scalar-tensor; bi-scalar theories; generalized
Galileon

1. Introduction

Although the ACDM concordance paradigm of cosmology, which is based on general
relativity alongside the cold dark matter sector and the cosmological constant, is very
successful in describing the universe’s evolution, it seems to exhibit possible disadvantages,
at both the theoretical and phenomenological levels [1]. In the first category, one can find
the cosmological constant problem, as well as the non-renormalizability of general relativity.
In the second category one may find possible cosmological tensions.

In particular, a first tension is related to the present value of the Hubble parameter H,
since the value estimated by the Planck collaboration was Hy = (67.27 £ 0.60) km/s/Mpc [2],
while the direct measurement of the 2019 SHOES collaboration (R19) gave a value of
Hy = (74.03 £ 1.42) km/s/ Mpc, representing a difference of about 4.4¢. Furthermore,
there is the issue of the oy related to matter clustering and the possible deviation of the cos-
mic microwave background (CMB) estimation [2] from the SDSS/BOSS measurement [3,4].
Although there has been much discussion as to whether these tensions are due to unknown
systematics, it seems that at least the Hy tension may indeed be a sign of new physics [5—44]
(for a review see, [45]).

On the other hand, modified gravity refers to a very broad class of theories that aim
to alleviate the non-renormalizability of general relativity, bypass the cosmological con-
stant problem, and lead to improved cosmological evolution, at both the background and
the perturbation levels [46,47]. In order to construct gravitational modifications, one can
start from the Einstein—Hilbert action of general relativity and add extra terms in the La-
grangian, resulting in f(R) gravity [48-57], Gauss—Bonnet and f(G) gravity [58-61], cubic
gravity [62], Lovelock gravity [63,64], etc. Alternatively, one can start form the equivalent
torsional formulation of gravity and modify it suitably, resulting in f(T) gravity [65-81],
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f(T, Tg) gravity [82,83], f(T, B) gravity [84-88], etc. Additionally, a broad class of gravita-
tional modifications are the scalar—torsion theories, which are constructed by one scalar
field coupled to curvature terms. In particular, the most general four-dimensional scalar—
tensor theory with one propagating scalar degree of freedom is Horndeski gravity [89] or
equivalently generalized Galileon theory [90-101]. Finally, one may extend this framework
beyond Horndeski theories [102-106], as well as to bi-scalar—tensor theories, in which one
has two extra scalar fields [107,108].

The effect of modified gravity on late-time universe evolution is two-fold. The first
aspect is that it induces new terms in the Friedmann equations, which can collectively be
absorbed into an effective dark-energy sector. The second is that it typically leads to a
modified Newton’s constant. Hence, in every cosmology governed by a modified theory of
gravity, one typically obtains Friedmann equations of the form [46]

871G ff
LT 0
H = —47Gogy (P + L + P+ PHE) @

eff eff

where pjr and ppp are, respectively, the effective dark-energy density and pressure,
and G,y is the effective Newton’s constant, all depending on the parameters of the the-
ory. Hence, qualitatively, we deduce that in order to alleviate the Hy tension in this
framework, i.e., obtain a higher Hj than standard lore predicts, we have two possible
methods [109,110]: (i) one could try to obtain a smaller effective Newton's constant, since
“weaker” gravity is reasonable to induce faster expansion, or (ii) one could try to obtain
suitable modified-gravity-oriented extra terms in the effective dark-energy sector, which
could lead to faster expansion, e.g., obtaining an effective dark-energy equation-of-state
parameter wpr := ppg/ppe lying in the phantom regime.

In this work, we present two broad classes of modified gravity that can fulfill the
above qualitative requirements in the correct quantitative way and alleviate the Hj tension.
The first class includes scalar-tensor theories [89], and the second includes bi-scalar—tensor
theories [107,108]. Interestingly enough, we show that in the first class the mechanism
behind the alleviation is the smaller G,f¢, while in the second class it is the phantom dark
energy. The rest of this paper is structured as follows: In Section 2 we briefly review scalar—
tensor theories and present specific models that can alleviate the tension. In Section 3
we present bi-scalar-tensor theories and construct models alleviating the tension. Finally,
in Section 4, we summarize the obtained results.

2. Scalar-Tensor Theories Alleviating the Hy Tension

In this section, we briefly review scalar—tensor theories and then present particular
models that can alleviate the Hy tension. The most general Lagrangian with one extra scalar
degree of freedom ¢ and curvature terms, giving rise to second-order field equations, is
L=Y>,L;[89,111,112], where

Ly =K(¢, X), (3)
L3 = —Gs(¢, X)0¢, @)
Ly = Gy(¢, X) R+ Gy x [(O)* = (V Vi) (VFV'9)], ©)

Ls = Gs5(¢, X) Gy (VIV"¢) — % Gsx [(O¢)® —3(0¢) (V4 Vi) (VFVY)
+2(VIVap) (VEVpo) (VPV,9)] . 6)

As usual, R is the Ricci scalar; Gy is the Einstein tensor; the functions K and G;
(i = 3,4,5) depend on ¢ and its kinetic energy X = —d"¢d,¢/2; and G; x := 9G;/dX,
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Gig = 0G;/0¢. Focusing on Friedmann-Robertson-Walker (FRW) geometry with the
metric

ds? = —dt* + a?(t) 5dx'dx/, @)

and adding the matter Lagrangian £, corresponding to a perfect fluid with energy den-
sity o, and pressure p,, by performing variation we obtain the two generalized Fried-
mann equations:

ZXK,X — K+ 6X4)HG3/X — 2XG3,¢ — 6H2G4 + 24H2X(G4,X + XG4,X)() — 6H(PG4/4,
—12HX¢$Gy px + 2HXp(5Gs,x + 2XGs,xx) — 6H2X(3Gs,g + 2XGs,px) = —pm, 8)
K —2X(Ga g + $Ga x) +2(3H? + 2H)Gy — 8HXGy x — 12H*XGy x — 4HXGy x

—8HXXG4,XX +2(¢+ 2H(]§)G4,4, +4XGypp + 4X(p — 2H¢)G4,¢X

—4H*X?$Gs xx — 2X(2H>¢ + 2HH@ + 3H?$) G5 x + 4HX (X — HX)Gs ¢x
+4HX G5 pp + 2[2(HX + HX) + 3H?X|Gs,p = —pm, ©)

with dots denoting derivatives with respect to t. Moreover, variation with respect to
¢(t) gives
3@ = Py, (10)
with
] := §K x + 6HXGs x — 2¢G3 9 — 12HXGygx + 6H*¢(Gy x +2XGy xx)
+2H?X(3Gs,x + 2XGs xx) + 6H*p(Gs,p + XGs px), (11)

Py := Ky — 2X(G 99 + $Gspx) + 6(2H* + H)Gyy
+6H (X + 2HX) Gy px — 6H*XGs gy + 2H> XpGs ¢ x. (12)

Lastly, as usual, we consider the matter conservation equation o, + 3H (om + pm) = 0.

In the following, we present specific models of scalar—tensor theories that can alle-
viate the Hy tension [113]. Since the Horndeski theory recovers ACDM cosmology for
Gy =1/(1671G), K = —2A = const, and G3 = Gs = 0, our strategy is to introduce devia-
tions that are negligible at high redshifts, where the CMB structure is formed, but become
significant at low redshifts, where local Hubble measurements take place.

We start by examining a subclass of Horndeski gravity that contains the Gs term, which
is called “non-minimal derivative coupling”. In particular, we can consider models with
G4 =1/(167G) and Gz = 0, which is the case in ACDM cosmology, and impose a simple
scalar-field potential and standard kinetic term, namely K = —V(¢) + X. Additionally,
since Gs affects the friction terms of the scalar field [114-116], we make the G5 term depend
onlyon X, i.e,, Gs(¢, X) = G5(X). Inserting this into (8) and (9) gives the effective dark-
energy density and pressure [113]:

ppE = 2X — K+ 2H3X¢(5Gs x +2XGs,xx), (13)

poE = K — 2XGs x (2H3<j) +2HH + 3H2<p) — AH?X*$Gs xx, (14)
and thus the dark-energy equation-of-state parameter becomes

WpE = pﬂ (15)
PDE

One can choose a suitable G5(X) in order for H(z) to coincide with Hycpm(z) :=
HO\/Qmo(l +Z)3 +1— Q0 atz = zopmp ~ 1100, namely H(Z — ZCMB) ~ HACDM<Z —
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zcms), but satisfy H(z — 0) > Hacpwm(z — 0). For simplicity, we focus on dust matter
(i.e., pm = 0), and without q loss of generality we consider K = — V¢ + X.
We start with the investigation of a model with

Gs(X) = ¢X2. (16)

In this case, (13) and (14) give

2

PDE = % + Voo + 7¢H ¢, (17)
2
PoE = % ~ Vop - ¢¢* (2H9 + 2HE + 5H? ). (18)

As we mentioned above, we choose the model parameter Vj and the initial conditions
for the scalar field in order to obtain H(zcys) = Hacom(zoms) and Q0 = 0.31, in agree-
ment with [2], and we handle ¢ as the parameter that determines the late-time deviation
from ACDM cosmology. We solve the Friedmann equation numerically, and in Figure 1
we depict H(z) /(1 + z)3/? for different choices of ¢. As one can see, the model coincides
with ACDM at high and intermediate redshifts, while at small redshifts it leads to higher
values of Hy. In particular, Hy depends on the model parameter ¢, and it can be around
Hy =~ 74 km/s/Mpc for ¢ = 1.3 (we mention here that since ¢ has dimensions of [M]~?
and since Hy ~ 10~°! in Planck units, this gives Cl/ 91040 GeV‘l). Hence, one can see
that the Hy tension can be alleviated at 3cif 1.2 < ¢ < 1.7.

80+

(%
o
1

N
o
1

H(@)/(1+2)"

0 -

0.01 0.1 1 10 100

Figure 1. The normalized H(z)/(1 4 z)%/2 in km/s/Mpc as a function of the redshift for ACDM
cosmology (solid black line) and for scalar-tensor Model I with V; = 0.06 and G5(X) = X2
for ¢ = 1.7 (purple dashed and dotted line), ¢ = 1.4 (red dotted line), and ¢ = 1.1 (blue dashed line)
in Hy units. We imposed ;o ~ 0.31.

Let us now examine the mechanism behind the tension alleviation, following [113].
In the left-hand graph of Figure 2, we depict the effective dark-energy equation-of-state
parameter wpg given in (15). As we can see, it does not exhibit phantom behavior, i.e., it
cannot be the cause of the increased Hy [109,110]). On the other hand, we note that in scalar-
tensor Horndeski gravity, one obtains an effective Newton’s constant as follows [117,118]:

Gefr
g -

In the right-hand graph of Figure 2, we depict the evolution of the normalized effective

1 . _
5 (Gs —2XGyx + XGs — PHXGs x) ' (19)

Newton’s constant % As we can see, we obtain a decrease in the effective Newton’s
constant at intermediate redshifts, and as we mentioned in the introduction, this can lead
to an increased Hy. Hence, we deduce that in the scenario at hand, the mechanism behind
the tension alleviation is the decreased Gy, i.e., a suitably weaker gravity.
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Figure 2. (Left): The effective dark-energy equation-of-state parameter wpg given in (15) as a function

of the redshift for Model I with V; = 0.08 and ¢ = 1.3 in Hy units. (Right): The corresponding

normalized effective Newton’s constant G"fo given in (19) as a function of the redshift. The graphs

are from [113].

Finally, let us discuss the perturbative behavior of the model at hand. As one can
show [111,119,120], in order for the Horndeski/generalized Galileon theory to be free from
Laplacian instabilities associated with the scalar field propagation speed, one should have

3(2w%w2H — w%w4 + dwqwytr — 2w%w2)

2 >0, (20)

w; (4w w3 + 9w3)
while in order to avoid perturbative ghosts, one should have

w1 (4w w3 + 9w3)
3w3

Qs =

> 0. (21)

Additionally, the light speed in these theories is [111]

‘ (S

2 >0, (22)
1

r

S

which at late times should be very close to 1, in agreement with LIGO/Virgo bounds [121].
By studying c2, Qs, and c%, one can show that the scenario at hand is viable [113], al-
though with a certain amount of fine-tuning required.

We can examine other models that can lead to similar behavior, namely a smaller
effective Newton’s constant due to the friction term Gs(X) that can result in a higher Hy.
For instance, a model with Gs5(X) = AX* also leads to Hy ~ 74 km/s/Mpc for A = 11in Hy
units (since A has dimensions of [M] 17, we acquire A1/17~10% GeV~1), and the tension
can be alleviated at 3¢ if 0.5 < A < 1.2 in Hj units. On the other hand, one can see that
models with odd powers of X do not solve the tension, since the last term in (19) changes
signs, and this does not guarantee that G, ¢/ G will remain smaller than 1.

Finally, we can consider combinations of monomial forms, such as

G5(X) = EX> + AXH4, (23)

in which case we have more freedom to obtain the desired decreased G,ss/G. We elaborate
the equations numerically, and in Figure 3 we present the normalized Hubble constant
evolution. As one can observe, the Hy tension is alleviated due to the decreased effective
Newtons’ constant.
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Figure 3. The normalized H(z)/(1 + z)3/? in km/s/Mpc as a function of the redshift for ACDM
cosmology (solid black line) and for the combined scalar—tensor Model (23) with V) = 0.08 and with
¢ = 1.5, A = 0.001 (green dotted line) and { = 1.3, A = 0.002 (red dashed and dotted line) in Hj
units. We imposed €, ~ 0.31.

We close this section by mentioning that although in modified theories of gravity in
general one acquires an effective Newton’s constant in a different manner to standard theo-
ries, a viable G,¢¢/G < 11is not easily obtained. For instance, in f(R) gravity, where [56]

2
Gesr 1 1+ 4’;2 fJI;R
G fritaglw’
with k being the wave number, one can see that under the viability conditions fg > 0
for R > Rg (with Ry representing the present value of the Ricci scalar) and frg > 0
for R > Ry [48], as well as 0 < %(1’) < latr = Rﬁ—R = —2[48], Gs/G < 1
cannot be obtained. On the other hand, this is indeed possible in f(T) gravity, where

(24)

G, ff = ( + afT(TT)> [122]. However, scalar-tensor theories may present such behavior
quite easily.

In summary, as one can see, the above sub-class of scalar—tensor gravity can alleviate

the Hy tension due to the effect of the kinetic-energy-dependent G5 term on decreasing G-

3. Bi-Scalar-Tensor Theories Alleviating the Hy Tension

In this section, we present another class of modified gravity that can lead to the
alleviation of the Hy tension, namely bi-scalar theories of gravity. These theories are
determined by the action [107,108]

5= / /=8 f(R,(VR)%,0R), (25)

with (VR)? = ¢"V,RV,R. In this work, we focus on models with f(R, (VR)?,0R) =
K((R,(VR)?) 4+ G(R,(VR)?)OR. We can rewrite the above action by transforming the
Lagrangian using double Lagrange multipliers, in which case one can clearly see that they
correspond to bi-scalar—tensor theories of gravity. Hence, introducing the scalar fields ¢

and x through ¢, = %e‘\@‘gw and ¢ := fg, with  := [IR, we obtain [123]
15, 1 1 /2 1 /2
S = /d4x,/—g{1z — 58" VuxVx — NG ﬁ?‘gﬂ“gvywi + ¢ 2@%

+ e Virgry — 1 ¢ gl (26)
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Thus, varying the above action in terms of the metric, we extract the Friedmann
equations as follows [107,108]:

1
H? = 3 (oo + pm) (27)
2H +3H? = —(ppE + pm), (28)

where we define an effective dark-energy sector with energy density and pressure given by

poe = 2 — 2o V3 - 22 [ (Ver —oH) —3¢]g

+§a¢?x [Bcpgg i g (G - zicg)] (29)
PDE = %)’(z + %efz\/gXIC + %ef\/g)C (Bq';gg + 45294; — (§>, (30)

Here, K = K(¢,B); G = G(¢, B);

2
B = Ze\/;x §""VupVy¢; and, for simplicity, we set the Planck mass to 1. Moreover,
varying the action with respect to the scalar fields, we obtain their evolution equation as
follows [107,108]:

X +3Hx — %452 [4) (3\@H - 2;'() + \@ﬂ G + \}gez\/gxlc

1 /32 . : _
+me [X{2B¢QB—¢+2¢2(ICB+Q¢)} =0, (31)

with

16*\/?%['<79H+ V6x) — 36| K + 13{36#?%%445[43(914— V6x) + 3| } Gop
e fx[ <9H fx) +34>] Gy + {e*\/gXB¢+ %(f)z [4'><9H7 \/57() +345} }g&p
. {54,(91{ ~2V6)f - \L@f\/%xgx + g7 (18H2 +6H — 3V6Hy — %xz = \/Ex)} Gs
VIR + e VIGRG gy — eV IBKgs - LV 1+ LV, (32)

where Gpy = Gyp = aa;—a%, etc. Finally, one can define the effective dark-energy equation-of-

state parameter as wWpg := pPpE /pDE.

Let us now extract specific models that coincide with ACDM cosmology at CMB
redshifts while deviating from it at low redshifts, giving rise to a higher Hy. The first model
that we can examine is Model I, with

K(¢,B)= 56— 5B and G(p,B) =0, (33)
In this case, (29) and (30) give

poE = 5 - ée”@’%p + }Le*@" (0+24%), (34)

poe = 512+ 2o V3% - T ViT (g gg2). (35)

We solve the cosmological equatlons numerlcally, and in the left-hand graph of Figure 4
we depict the normalized combination H(z)/(1 + z)3/? as a function of the redshift for
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ACDM cosmology and for Model I with different values of {. We find that Hy depends on
the model parameter {, as expected, and for { = —10, it is around Hp ~ 74 km/s/Mpc,
which is consistent with its direct measurement (note that in natural units this corresponds
to a typical value of /4~ —1071% Gev1).

Let us now study the mechanism behind the Hj alleviation. In the right-hand graph of
Figure 4, we present the evolution of wpg(z). One can observe that most of the time it lies
in the phantom regime, which, as we discussed in the introduction, is a way in which one
can obtain tension alleviation. Hence, contrary to the case of single-scalar—tensor theories
discussed in the previous section, where a decreased G, ff is the cause of tension alleviation,
in the present bi-scalar theories it is the phantom behavior that leads to a higher Hy.

-0.95
-1.00
W -1.05 -
-1.10

-1.15

O ey T T

0.01 0.1 E 10 100 0 5 10 15 20 25

z
Figure 4. (Left): The normalized H(z)/(1+ z)3 in km/s/Mpc as a function of the redshift for ACDM
cosmology (solid black line) and for bi-scalar-tensor Model I with { = —8 (orange dashed line),
¢ = —10 (blue dashed and dotted line), and { = —12 (magenta dotted line) in Planck units. We
imposed 9 ~ 0.31. (Right): The corresponding effective dark-energy equation-of-state parameter
wpe as a function of the redshift for { = —10 in Planck units.

We can proceed to the investigation of other models within the examined class. For in-
stance, we can examine Model II, characterized by

K(¢,B)= 3¢ and G(g,B) = EB. (36)

Repeating the same steps as in the previous model, we find that the present Hub-
ble value Hy depends on the model parameter . In particular, for ¢ = —10, it is
around Hy ~ 74 km/s/Mpc (in natural units, {~—10 corresponds to a typical value of
&1/8~-1071° GeV~1). Similarly to the previous case, the mechanism behind the allevia-
tion is the phantom behavior. Hence, we conclude that bi-scalar—tensor theories are very
efficient in alleviating the Hj tension.

4. Conclusions

We investigated scalar—tensor and bi-scalar—tensor modified theories of gravity that
can alleviate the Hy tension. In general, gravitational modifications affect the late-time
evolution of the universe through the new terms they introduce into the Friedmann equa-
tions, namely in the effective dark-energy sector, as well as through the effective Newton’s
constant they induce. If these effects lead to weaker gravity (a smaller G,f) at suitable
redshifts, or to more repulsive effective dark energy (for instance, exhibiting phantom
behavior), then they can cause faster expansion compared to the ACDM paradigm and thus
lead to an increased Hj value.

As a first class of models, we examined scalar—tensor theories, namely Horndeski/
generalized Galileon gravity. Choosing particular models with a shift-symmetric Gs friction
term, we were able to alleviate the tension by obtaining a smaller effective Newton’s
constant at intermediate times, a feature that cannot be easily obtained in modified gravity
theories. Additionally, we showed that the models at hand were free from perturbative
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instabilities, and they could have a gravitational-wave speed equal to the speed of light,
though with a certain amount of fine-tuning necessary.

As a second class, we examined bi-scalar-tensor theories, namely theories involving
two extra propagating degrees of freedom. Choosing particular models, we showed that
the Hy tension can be alleviated, and the mechanism behind this is the phantom behavior
of the effective dark-energy equation-of-state parameter.

In summary, scalar-tensor theories with one or two scalar fields have the ability to
alleviate the Hy tension with both sufficient mechanisms. Such capabilities may be added
to the other known phenomenological advantages of these theories and act as an additional
indication that they could be good candidates for the description of nature.
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