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Abstract: The extraordinary performance offered by cold atom-based clocks and sensors has the
opportunity to profoundly affect a range of applications, for example in gravity surveys, enabling
long term monitoring applications through low drift measurements. While ground-based devices
are already starting to enter the commercial market, significant improvements in robustness and
reductions to size, weight, and power are required for such devices to be deployed by Unstaffed
Aerial Vehicle systems (UAV). In this article, we realise the first step towards the deployment of
cold atom based clocks and sensors on UAV’s by demonstrating an UAV portable magneto-optical
trap system, the core package of cold atom based systems. This system is able to generate clouds of
2.1± 0.2× 107 atoms, in a package of 370 mm × 350 mm × 100 mm, weighing 6.56 kg, consuming
80 W of power.

Keywords: quantum technology; cold atoms; magneto-optical trap; atom interferometry; unstaffed
aerial vehicle

1. Introduction

Quantum technology based on cold atoms [1] has proven to be a powerful method for
precision sensing [2,3] and time keeping [4]. For example, within laboratories, cold atom
sensors have provided sensitive measurements of gravity [5], enabling investigations of
the equivalence principle [6], the fine-structure constant [7], and Newton’s gravitational
constant [8], as well as prompting the desire to transition these sensors into practical devices
for use in real-world environments [2]. Currently, cold atom-based sensors have been
demonstrated in urban [9] and mountainous environments [10,11], on road vehicles [12],
aircraft [13,14], ships [15], the International Space Station [16], and on rockets [17].

There is significant interest in developing such systems for small and remote, or
autonomous, platforms that require compact sensors. In particular, the deployment of
sensors using Unstaffed Aerial Vehicles (UAVs) would enable applications that require
access to inaccessible or hazardous locations—and future operation in flight on UAVs
may enable autonomous surveillance and a wide range of applications. UAVs are used
in a number of applications including archaeology [18], disaster recovery [19], forestry
research [20], precision agriculture [21], and detection of rift basins [22]. Adding cold atom-
based sensing to the array of sensors already deployed by and available on UAVs would
not only enhance existing applications, but has the potential to open up new ones [2,23].
However, before wide adoption of cold atom based sensors and clocks can be realised, a
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number of challenges need to be overcome, including strict Size, Weight, and Power (SWaP)
requirements and robustness against platform motion.

This article presents the first step towards a UAV portable cold atom device, by
demonstrating a compact Magneto-Optical Trap (MOT) capable of being moved and
deployed by a UAV, as well as demonstrating its operation during flight.

2. System Overview

The compact MOT system can be seen in Figure 1 and contains all the electronic,
vacuum, and laser components required to generate a MOT.

The ultra-high vacuum environment is maintained within the science chamber by
an active ion pump and passive getter pump when not in flight, and just the unpowered
getter pump while in flight. When actively pumping, the chamber is maintained at an
equilibrium pressure of 4× 10−9 mbar. The vacuum system houses rubidium dispensers
which generate a background gas from which the MOT can load, in addition to four 10 mm
prisms, a mirror, and a quarter wave plate arranged such that the beams required for laser
cooling can be generated from a single input telescope [24,25]. The science chamber is
shown in Figure 1B.

A) B)
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Figure 1. (A) The compact MOT system, which is contained within a custom light weight carbon fibre
enclosure with dimensions of 370 mm × 350 mm × 100 mm. (B) Schematic of the custom titanium
science chamber in which the atom cloud is formed. The science chamber design is similar to that in
reference [26]. A camera off axis to the input beam is used to observe the MOT through the same
window as the input beam.

The quadrapole magnetic field environment required by the MOT was generated
with permanent magnets arranged in a north–south cross configuration [24], with two
3 mm × 3 mm × 8 mm neodynium magnets at each cross point producing a magnetic field
gradient of 17 G/cm. As an alternative, the system can be fitted with a pair of coils that can
be used to generate a similar quadrupole field. If used, the coils require 6.4 W of power
to operate.

The light used to cool and trap the atoms is generated with a frequency-doubled fibre
laser system, a schematic of which can be seen in Figure 2. The use of fibre integrated
components alleviates alignment issues, improving resilience against the effects of plat-
form motion, such as mechanical shock and vibration [27]. The two frequencies needed
for cooling 87Rb atoms on the D2 transition are derived from the carrier and first-order
frequency sideband created by phase modulation. The laser is linearly scanned over a
region of 500 MHz to generate the cooling frequency. The laser frequency is scanned using
an Arduino microcontroller generating a triangle wave, which scanned the piezo input of
the seed laser, passing over half the cooling frequency on the cycling |F′ = 2〉 → |F′ = 3〉
transition roughly once every 40 s. The light from the seed laser is passed through an
electro-optical modulator (EOM), which modulates the light at 6.5 GHz to generate a
sideband that acts as the repumping frequency on the |F = 1〉 → |F′ = 2〉 transition. After
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the EOM the light is then amplified with an erbium-doped fibre amplifier (EDFA) before
being frequency doubled from 1560 nm to 780 nm in a periodically poled lithium niobate
(PPLN) waveguide. The system can produce up to 450 mW of 780 nm laser light at the
output into the fibre. The light out of the fibre then passes through a quarter waveplate
to produce circularly polarised light and two beam expanders such that when the light
reaches the prisms it has a beam diameter of 30 mm (1/e2). When left to run autonomously,
the system generates a cloud of atoms lasting roughly 1 s every 40 s. Alternatively, the
system could be locked to the fluorescence of the MOT [24].

Camera
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controlLaser
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Figure 2. A block diagram of the electrical and optical components in the payload. The 22.2 Volt
line from the batteries is fed into the payload; this is then converted into the required powers for
each component. The output light from a seed laser (1560 nm) is modulated by an EOM driven by
an oscillator to generate frequency sidebands, this is then amplified by a 1 W EDFA before being
frequency doubled via second harmonic generation using a PPLN waveguide. The output of the fibre
passes through two beam expanders and a quarter waveplate. This light is then input into the MOT
vacuum chamber. A user interface allows for users to communicate with various sub-components
and monitor the status of the payload. While in flight, the camera feed is broadcast in real time to the
operator on the ground.

The laser system and control system are integrated around the vacuum system into a
custom carbon fibre enclosure as shown in Figure 3.

EDFA

Seed laser

EOM

Beam
control

PPLN Camera

Permanent
magnets

Vacuum
system

Figure 3. Photo showing the laser system and vacuum system integrated into the carbon
fibre enclosure.
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The atom number produced in the system was characterised using a MOT loading
curve [28]. An example loading curve can be seen in Figure 4. The MOT, when fully loaded,
has an atom number of 2.1± 0.2× 107 and has a loading time constant of 1.47± 0.12 s. This
is similar to what is achieved in existing cold atom based sensors [3,10,13,29].

2.0 

l,... 
1.5 

1.0 

0.5 

0.0 

1×107 
• Raw Data

- Fitted Curve

0 1 2 3 4 

Time, s 

5 6 

Figure 4. Example MOT loading curve taken while on the ground with the ion pump in operation.
The loading curve has been fitted with equation 2 from reference [28]. The inset shows a photo of
prism MOT. The atom cloud is highlighted within the red square.

The weight and power consumption when the MOT is running at peak power in
flight is shown in Table 1. The majority of the power consumption is by the UAV itself;
depending on the environmental factors, such as wind, and the amount of acceleration,
the consumption may vary significantly. However, in a calm environment with moderate
acceleration, the consumption would remain near the lower end of power range. The
power consumption of the compact MOT is dominated by the laser system, in particular the
EDFA, which accounts for 37% of the power consumption. The batteries are the heaviest
component in the system and account for 28% of the total weight. The total weight of the
UAV, compact MOT, and batteries, as well as the total power draw, will limit the total flight
time possible with the system; we estimate this to be 18 min, compared to a maximum
flight time of 32 min without the compact MOT system. Longer flight times will become
possible with further SWaP reductions in cold atom systems; for example, halving the
weight of the compact MOT would increase the max total flight time to 26 min. Examples
of innovations which could be utilised to produce a SWaP optimised cold atom sensor
include compact laser systems [30–32], optimised 3D printed components [33–36], high-flux
compact cold-atom sources [37], and passively pumped vacuum cells [38–40].

In addition to implementing SWaP reductions to cold atom systems, implementing
existing solutions to increase UAV flight times would enable longer flight times and include
integration of a tether for power and data transmission [41], autonomous deployment and
recovery from a charging station [42,43], solar-powered photovoltaic panels [44], larger
UAVs, and use of batteries with high-power density such as high voltage lithium-ion
polymer batteries [45].
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Table 1. The weight and power budget of the UAV with the portable compact MOT system in flight.
The brackets show the effect of running the system with coils instead of magnets has on the power
consumption of the system.

Subsystem Weight (kg) Power/Energy

Vacuum Chamber 1.58 15.00 W

Magnetic field generation 0.02 — (6.4 W)

Laser and control system 4.46 65.00 W

Housing and mounting 0.50 —

UAV 7.40 3.00–15.55 kW

Batteries 5.40 977.00 Wh

Total 19.36 3.08–15.63 kW
(3.09–15.64 kW)

3. Test Flight

The system was shut-down and transported via car for ∼45 min to a field in Birming-
ham, United Kingdom, on 7 March 2017 for a test flight. The compact MOT was mounted
to a Vulcan UAV (from Raven UAV Ltd. Mitcheldean, Gloucestershire, UK) along with two
Lithium Polymer (LiPo) batteries, which were able to supply 22.2 Volts with 22 Amp-hours
of charge. These batteries were used to power both the compact MOT system and the
UAV. The system can be seen in Figure 5A. The system was set to generate atom clouds
periodically while on the ground and left to run autonomously throughout the whole of
the test flight. The system was then flown to a height of ∼10 m, after which it hovered
for 10 min before landing, during which time several atom clouds where generated. The
system in flight can be seen in Figure 5B.

A) B)

Battery

Cold atom
payload

5 mm

Figure 5. (A) The VulcanUAV Raven complete with (LiPo) batteries and compact MOT payload.
(B) The MOT system in flight. The inset shows a photo of an atom cloud generated in the system
during flight, after background subtraction.

4. Discussion

The high precision and low-drift measurements offered by cold atom systems, once
realised in a UAV portable package, have the opportunity to enhance sensing capability,
particularly in a number of hard to reach, inaccessible or hazardous locations (examples
include steep sides of volcanoes and dense forests) as well as rapid redeployment in cases
of time-varying features for applications such as hydrological monitoring. Furthermore, a
future UAV portable system could allow for deployment and redeployment of sensors to
enable automated large area surveys, for example in archaeological applications, enabling
the detection of tombs or buried cities or used for the mapping of aquifers.
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To push cold atom based sensors towards the SWaP profile that is required for deploy-
ment and operation on UAVs, the first UAV portable cold atoms system has been developed.
This system is capable of generating atom clouds consisting of 2.1± 0.2× 107 laser-cooled
atoms in a system package of 370 mm × 350 mm × 100 mm, weighing 6.56 kg and power
consumption of 80 W. The system has successfully shown autonomous operation during a
10 minute flight ∼10 m above the ground on-board a commercial-off-the-shelf UAV.

To upgrade the demonstrator shown here to a full sensor, additional functionality will
need to be implemented, primarily needing extensions to the control and laser system,
while meeting the requirements for UAV operation. These requirements can be split into
two categories, namely sufficiently small SWaP and robustness to platform motion, both of
which are active research areas. For example, for the gravimeter gradiometer in reference [9]
to have the same weight, and hence similar flight time, as the MOT demonstrator presented
here, it would need to be reduced in weight by a factor of≈50 times while having techniques
such as those implemented in references [12,13,15] incorporated into the system to allow
for measurements while in motion. While there is a clear route to further reduce the SWaP
and realise sensing capabilities, achieving a UAV portable MOT is the first step towards
achieving cold atom-based sensing on UAVs.
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