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Abstract: In light of the immense interest in understanding the impact of an electron on atoms
in the low-energy scattering phenomena observed in laboratories and astrophysical processes, we
propose an approach to construct potentials using relativistic coupled-cluster (RCC) theory for the
determination of electron-atom (e-A) elastic scattering cross-sections (eSCs). The net potential of an
electron, scattered elastically by an atom, is conveniently expressed as the sum of the static (Vst) and
exchange (Vex) potentials due to interactions of the scattered electron with the electrons of the atom
and potentials due to polarization effects (Vpol) on the scattered electron by the atomic electrons. The
Vst and Vex potentials for the e-A eSC problems can be constructed with a knowledge of the electron
density function of the atom, while the Vpol potential can be obtained using the polarizabilities of the
atom. In this paper, we present the electron densities and electric polarizabilties of Be, Mg, Ne and Ar
atoms using two variants of the RCC method. Using these quantities, we construct potentials for e-A
eSC problems. To obtain Vpol accurately, we evaluate the second- and third-order electric dipole and
quadrupole polarizabilities using a linear response approach.

Keywords: coupled-cluster theory; electron scattering; electric polarizabilities

1. Introduction

The accurate estimation of scattering cross-sections of electrons with atomic systems is
of interest for a wide range of applications in laboratory scattering processes and astrophy-
sics [1–4]. The challenge for the calculation of scattering cross-sections lies in determining
accurate wave functions for the scattered electron in the vicinity of an atomic target [5,6].
The coupling between the scattered wave functions and atomic wave functions are ad-
dressed through the close-coupling [7] and R-matrix [8] formalism, but they are mostly
used in a non-relativistic framework [9,10] owing to the complexity involved in the rel-
ativistic formalism. In another approach, the interactions among the scattered electron
and atomic electrons are included by splitting them into two parts—an electron-electron
correlation component and the effects of electron polarization due to the atomic elec-
trons [11–16]. In this approach, the wave functions of the electron and atom are solved
separately. The electron correlation effects within the atom are accommodated via a suitable
many-body method in the determination of the atomic wave functions (equivalent to atomic
wave density functions (ρ)). These functions are further used to construct the interaction
potential for the scattered electron. It has both direct and exchange terms owing to the
indistinguishable nature of the electrons. An atom is polarized due to the charged scattered
electron which modifies the behavior of its wave functions. This effect also influences the
construction of the effective potentials of the scattered electrons and is estimated using
the electric polarizabilities of the atom. These effective potentials are used to obtain the
wave functions of the scattered electrons, for different ranges of kinetic energies, using
a distorted wave function (DW) formalism [17,18]. For a highly energetic scattered elec-
tron, it is desirable to use the relativistic Dirac equation in the DW approximation (RDW
method) [19–22].
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In light of several applications of electron-atom scattering cross-sections, such as in
modelling metal vapour lasers and plasma plasma environments [23], insights have been
gained into different physical processes in many natural and technological environments,
including the Earth’s atmosphere and in the atmospheres of other planets and their satel-
lites [24], as well as understanding of electron-atom interactions [25]. Theoretical studies
on electron scattering by Be, Mg, Ca, Ne, Ar and other atoms have previously been carried
out [26–33]. Most of these atoms have closed-shell electronic configurations.

From the above discussion, it is clear that improvement in the accuracy of the scattering
cross-section depends on the accurate evaluation of the atomic wave function and the
electric polarizabilities of the atom. Typical many-body methods employed to determine
the atomic wave functions include a method informed by many-body perturbation theory
(MBPT method), the configuration interaction (CI) method, and the coupled-cluster (CC)
method. Among these, the CC method is viewed as the “gold standard” for its ability
to incorporate electron correlations in the determination of the atomic wave functions at
a given approximation level [34–37]. Here, we employ the CC method in a relativistic
framework (RCC method) to evaluate the atomic wave functions. Although the (R)CC
method has previously been widely applied to calculate many spectroscopic properties
to a high degree of accuracy, its ability to obtain scattering cross-sections has not been
rigorously tested, except in our first demonstrations in Mg+ [38] and Ca [39] when studying
scattering cross-sections in plasma embedded and confined atom problems. Furthermore,
atomic polarization effects on the scattering cross-sections are quite significant. Often, only
contributions from the electric dipole polarizabilities (αd) are considered in the construction
of scattering potentials due to their dominant contributions. In recent calculations, it has
been shown that contributions arising through the electric quadrupole (αq) and coupled
dipole-quadrupole (B) polarizabilities are non-negligible [15,40]. The aim of the present
investigation was to provide general approaches to accurately determine the ρ, αd, αq and
B values of atomic systems by employing an RCC method that can be used whenever
required to obtain the elastic scattering cross-sections of an electron from the closed-shell
atomic systems. For representation purposes, we give the results for Be, Ne, Mg and Ar
atoms; however, the scheme is very general and can be extended to atomic systems with
open-shell configurations.

Apart from the application of electric polarizabilities to determine electron scattering
potentials, they are also immensely important for estimating Stark shifts in atomic energy
levels. This is why atomic polarizability studies are interesting in their own right. In the
literature, αd has been extensively studied due to its predominant contribution to the
energy shift, followed by αq then B in the presence of an external electric field. Recently,
we proposed a linear response approach to determine the αd, αq and B values for Zn in the
RCC and relativistic normal CC (RNCC) theory frameworks [41]. We had found that the
results from the RCC and RNCC theories differed significantly in the commonly considered
singles and doubles approximation. Here, we investigate ρ, αd, αq and B values using both
methods, and compare them with previously reported results for Be, Ne, Mg and Ar atoms.
Using these values, we determine the electron scattering potentials and represent these by
plotting them against the radial distances. Though these potentials are obtained using a
relativistic method, the estimated potentials can be used in both the DW and RDW methods
to calculate electron scattering cross-sections with different projectile energies.

2. Theory

For the spherically symmetric interaction potential V(r) of a projectile electron with
the target, the direct and exchange scattering amplitudes can be determined by [42]

f (k, θ) =
1

2ιk

∞

∑
l=0

((l + 1)(exp(2ιδκ=−l−1)− 1) + l(exp(2ιδκ=l)− 1))Pl(cos θ) (1)
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and

g(k, θ) =
1

2ιk

∞

∑
l=0

(exp(2ιδκ=l) − exp(2ιδκ=−l−1))P1
l (cos θ) (2)

Here k is the relativistic wave number, δκ=−l−1,l are the scattering phase shifts with
κ = −l − 1 and κ = l refer to the relativistic quantum numbers for projectile electron
with j = l + 1/2 and j = l − 1/2, respectively. In the above equation, θ is the scattering
angle, and Pl(cos θ) and P1

l (cos θ) are Legendre polynomials and associated Legendre
functions, respectively. Using these amplitudes, the differential cross-sections per unit solid
angle for spin unpolarized electrons can be calculated by

dσ

dΩ
= | f (k, θ)|2 + |g(k, θ)|2, (3)

from which integrated cross-sections can be estimated by integrating over the solid angle.
In the (R)DW approximation, the first-order scattering amplitude of an electron from an
atomic system with nuclear charge Z and N number of electrons can be expressed as

f (J f , µ f ; Ji, µi, θ) = 4π2

√
k f

ki
〈Fk f

DW |Hscat|Fki
DW〉, (4)

where J and µ represent the angular momenta of the states of the atomic target and the
scattered electron, respectively, k is the momentum of the scattered electron and FDF are the
(R)DW wave functions, while the subscript i denotes the initial state and f denotes the final
state. A similar expression can be given for g. In the DW method, the effective scattering
Hamiltonian in atomic units (a.u.) is given by

Hscat = −
1
2
∇2 + V(r) (5)

whereas in the RDW method, it is given by

Hscat = cα · p + βc2 + V(r). (6)

Here c is the speed of light, α and β are the Dirac matrices and V(r) is the scattering
potential. For accurate determination of scattering cross-sections, it is imperative to obtain
V(r) accurately. In a more convenient form, V(r) can be expressed as [11]

V(r) = Vst(r) + Vex(r) + Vpol(r), (7)

where Vst(r), Vex(r) and Vpol(r) are known as the static, exchange and polarization
potentials, respectively. The static potential can have contributions from the nuclear po-
tential (Vnuc(r)) and the direct electron-electron Coulomb interaction potential VC(r); i.e.,
Vst(r) = Vnuc(r) + VC(r). Usually, a point-like atomic nucleus is considered in the scat-
tering cross-section calculations by defining Vnuc(r) = − Z

r for the atomic number of the
system Z. In the present study, we have used the Fermi-charge distribution, given by

ρA(r) =
ρ0

1 + e(r−c)/a
, (8)

where ρ0 is the normalization constant, c is the half-charge radius and a = 2.3/4ln(3) is
known as the skin thickness, to take into account the finite size effect of the nucleus. This
corresponds to the expression for the nuclear potential, as [43]
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Vnuc(r) = −
Z
N r
×{

1
c (

3
2 + a2π2

2c2 − r2

2c2 +
3a2

c2 P+
2

6a3

c2r (S3 − P+
3 )) for ri ≤ c

1
ri
(1 + a62π2

c2 − 3a2r
c3 P−2 + 6a3

c3 (S3 − P−3 )) for ri > c,
(9)

where the factors are

N = 1 +
a2π2

c2 +
6a3

c3 S3

with Sk =
∞

∑
l=1

(−1)l−1

lk e−lc/a

and P±k =
∞

∑
l=1

(−1)l−1

lk e±l(r−c)/a. (10)

Similarly, we can express VC(r) = ∑Ne
b=1〈φb| 1

|~r−~rb |
|φb〉 with Ne, denoting the total

number of electrons of the target atom, and |φb〉 is the single particle wave function of the
atomic electron b such that

1
|~ri −~rj|

=
∞

∑
k=0

4π

2k + 1
rk
<

rk+1
>

k

∑
q=−k

Yk∗
q (θ, ϕ)Yk

q (θ, ϕ), (11)

where r> = max(ri, rj), r< = min(ri, rj), and Yk
q (θ, ϕ) is the spherical harmonics of rank k

with its component q. In terms of the Racah operator (Ck
q), the above expression is given by

a scalar product as

1
|~ri −~rj|

=
∞

∑
k=0

rk
<

rk+1
>

Ck(r̂i) ·Ck(r̂j). (12)

In the Dirac theory, the single particle orbital wave functions are given by

|φ(r)〉 = 1
r

(
P(r)χjmj lL(θ, ϕ)

iQ(r)χjmj lS(θ, ϕ)

)
, (13)

where the upper and lower components are the large and small components of the single
particle wave function, respectively, P(r) and Q(r) denote the radial parts of these com-
ponents, and the χ’s denote the spin angular parts of each component which depend on
the quantum numbers j, mj, and l. lL denotes l for the large component, while lS denotes
l for the small component. Thus, for a closed-shell atomic target, such as those under
consideration here, we can have

VC(r) = ∑
b
(2jb + 1)

∫ ∞

0
drb

1
r>

[
P2

b (rb) + Q2
b(rb)

]
. (14)

It is worth noting that, for open-shell atomic targets, there will be a finite value of multipoles
k in the above expression and the computation of VC(r) will be quite difficult, but is
possible [38]. Using density function formalism, the above expression can be given by

VC(r) = ∑
b

[
1
r

∫ r

0
drbρb(rb)r′2b +

∫ ∞

r
drbρb(rb)rb

]
, (15)

where the atomic density function is given by ρ̂(r) = ∑i ρ̂i(r) = ∑i |φi〉〈φi| with

〈φj|ρ̂i(r)|φk〉 = δjiδik
(

Pj(r)Pk(r) + Qj(r)Qk(r)
)
. (16)
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It is not possible to determine Vex(r) separately as it depends on the wave function of
the scattered electron itself. However, it can be approximately estimated using the Hara
free electron gas model, given by [44]

Vex(r) = −
2
π

KF(r)F[η(r)], (17)

where the Fermi momentum KF(r) = (3πρ(r))1/3 and F(η) = 1
2 + 1−η2

4η ln
∣∣∣ 1+η

1−η

∣∣∣ with

η(r) = K(r)
KF(r)

for the local electron momentum given by

K2(r) = K2
F + 2I + k2. (18)

Here, I denotes the ionization potential (IP) of the target atom and k2/2 is the kinetic energy
of the projectile electron. This means that evaluation of Vex(r) requires the atomic density
function and the IP of the atom, along with the kinetic energy of the projectile. Since the
kinetic energy of the projectile is arbitrary, we provide here only the ρ(r) values, while IPs
can be used from the experimental data.

The polarization potential is given by [45,46]

Vpol(r) = −
(

αd
2r4 +

αq

2r6 −
B

2r7 + O(1/r8)

)
×
[
1− e(r/rc)6

]
, (19)

where αd, αq and B are known as the second-order dipole, second-order quadrupole and
third-order dipole-quadrupole polarizabilities, respectively. O(1/r8) corresponds to the
higher-order polarizability contributions and is neglected here. rc is an adjustable parameter,
which can be determined by estimating IP using the above potential in the equation of
motion, and is assumed to be different for different atoms and also for different levels of
approximation in the above expression. For convenience and demonstration purposes,
without losing much accuracy, we have considered rc = 3.5 in atomic units (a.u.) for all the
atoms considered [46].

In the following section, we present the RCC method to estimate ρ(r), Vst, αd, αq and B
in the closed-shell atomic systems. In place of calculating Vst(r) directly using RCC theory,
we estimate it by evaluating Vnuc(r) and VC(r) separately with VC(r) obtained from the
ρ(r) values. The expectation values of the operators are again evaluated using the standard
RCC and RNCC theory frameworks, and the results are compared with the earlier reported
literature values.

3. Methods for Calculations

Since αd, αq and B are determined by treating electric dipole operator D and quadrupole
operator Q as external perturbations, the atomic wave functions without these external
operators are denoted with the superscript 0 (|Ψ(0)

0 〉). We have utilized the Dirac–Coulomb
Hamiltonian to determine these unperturbed wave functions, given by

H0 =
Ne

∑
i=1

[
cαi · pi + (βi − 1)c2 + Vnuc(ri) + ∑

j>i

1
rij

]
, (20)

where rij = |~ri −~rj| is the inter-electronic separation between the electrons located at the ri
and rj radial positions with respect to the center of the nucleus.

The density matrix of the atomic state |Ψ(0)
0 〉 can be determined by

ρ(r) =
〈Ψ(0)

0 |ρ̂(r)|Ψ
(0)
0 〉

〈Ψ(0)
0 |Ψ

(0)
0 〉

. (21)
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Following [41], the expressions for αd, αq and B of the ground state of a closed-shell
system can be given by

αd = 2
〈Ψ(0)

0 |D|Ψ
(d,1)
0 〉

〈Ψ(0)
0 |Ψ

(0)
0 〉

,

αq = 2
〈Ψ(0)

0 |Q|Ψ
(q,1)
0 〉

〈Ψ(0)
0 |Ψ

(0)
0 〉

(22)

and

B = 2
〈Ψ(d,1)

0 |D|Ψ(q,1)
0 〉

〈Ψ(0)
0 |Ψ

(0)
0 〉

, (23)

where |Ψ(0)
0 〉 and |Ψ(o,1)

0 〉 are the zeroth-order wave function and the first-order wave
function of the atom due to an operator O ≡ D or Q.

From the above expressions, it is clear that accurate evaluations of αd, αq and B

depend on the many-body method employed to determine |Ψ(0)
0 〉 and |Ψ(o,1)

0 〉. These wave
functions can be determined by solving the following equations

H0|Ψ
(0)
0 〉 = E(0)

0 |Ψ
(0)
0 〉 (24)

and

(H0 − E(0)
0 )|Ψ(o,1)

0 〉 = (E(o,1)
0 −O)|Ψ(0)

0 〉 (25)

with the first-order energy correction E(o,1)
0 due to O, which is zero in the present study.

Our intention here is to demonstrate the evaluation of ρ(r), αd, αq and B in the closed-
shell atoms using the RCC and RNCC theories to construct the electron-atom scattering
potentials. In the RCC theory, we can express [47,48]

|Ψ(0)
0 〉 = eT(0) |Φ0〉, (26)

and
|Ψ(o,1)

0 〉 = eT(0)
T(o,1)|Φ0〉, (27)

where T(0) accounts for electron correlation effects, and T(o,1) includes electron correlations,
along with the effect due to O, while acting on the Dirac–Hartree–Fock (DHF) wave function
|Φ0〉 of the system.

In this approach, the expressions for ρ, αd, αq and B are given by [41]

ρ(r) =
〈Φ0|eT(0)†

ρ̂(r)eT(0) |Φ0〉
〈Φ0|eT(0)† eT(0) |Φ0〉

, (28)

αd = 2
〈Φ0|eT(0)†

DeT(0)
T(d,1)|Φ0〉

〈Φ0|eT(0)† eT(0) |Φ0〉
, (29)

αq = 2
〈Φ0|eT(0)†

QeT(0)
T(q,1)|Φ0〉

〈Φ0|eT(0)† eT(0) |Φ0〉
(30)

and

B = 2
〈Φ0|T(d,1)†eT(0)†

DeT(0)
T(q,1)|Φ0〉

〈Φ0|eT(0)† eT(0) |Φ0〉
. (31)
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Evaluating the above expressions involves two major challenges, even after making
approximations in the level of excitations in the RCC calculations. The first being that there
are two non-terminating series in the numerator and denominator. The second challenge
is that the numerator can have factors which are both connected and disconnected to the
operators D or Q. These problems can be partially addressed by defining a normal-order
form of operators with respect to |Φ0〉, in which the above expressions can be simplified
to [49,50]

ρ(r) = 〈Φ0|eT(0)†
ρ̂(r)eT(0)

T(d,1)|Φ0〉c, (32)

αd = 2〈Φ0|eT(0)†
DeT(0)

T(d,1)|Φ0〉c, (33)

αq = 2〈Φ0|eT(0)†
QeT(0)

T(q,1)|Φ0〉c (34)

and

B = 2〈Φ0|T(d,1)†eT(0)†
DeT(0)

T(q,1)|Φ0〉c, (35)

where subscript c denotes connected terms only appearing within the respective expression.
Although this removes the non-terminating series appearing in the denominator, it still
contains a non-terminating series in the numerator. Further, the above expressions with
connected terms hold good only when there is no approximation made in the T operator.
In practice, T is truncated as for our RCCSD method. These expressions again do not
satisfy the Hellman–Feynman theorem [34]. All these problems can be circumvented by
the RNCC theory.

In the RNCC theory, the ket state is the same as in RCC theory but the bra state is
replaced by

〈Ψ̃(0)| = 〈Φ0|(1 + Λ(0))e−T(0)
, (36)

with a de-excitation operator Λ(0) that satisfies

〈Ψ̃(0)|Ψ(0)〉 = 〈Φ0|(1 + Λ(0))e−T(0)
eT(0) |Φ0〉 = 1. (37)

It can be shown that the eigenvalues of both 〈Ψ(0)| and 〈Ψ̃(0)| are the same if

〈Φ0|ΛH̄0|Φ0〉 = 0, (38)

where H̄ = e−T(0)
H0eT(0)

= (HeT)c.
Now, we can write the first-order perturbed wave function in the RNCC theory

as [41,51]

〈Ψ̃(o,1)| = 〈Φ0|
[
Λ(o,1) + (1 + Λ(0))T(o,1)

]
e−T(0)

. (39)

Consequently, the RNCC expressions for ρ(r), αd, αq and B are given by

ρ(r) = 〈Φ0|
(

1 + Λ(0)
)

˜̂ρ(r)|Φ0〉, (40)

αd = 〈Φ0|
(

1 + Λ(0)
)

D̃T(d,1) + Λ(d,1)D̃|Φ0〉, (41)

αq = 〈Φ0|
(

1 + Λ(0)
)

Q̃T(q,1) + Λ(q,1)Q̃|Φ0〉 (42)

and

B = 〈Φ0|Λ(d,1)D̃T(q,1) + Λ(q,1)D̃T(d,1)|Φ0〉, (43)

where Õ = (OeT(0)
)c. In the RNCC theory, we also consider only the singles and dou-

bles excitations (RNCCSD method) to carry out the calculations. It is worth noting
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here that the next leading-order electron correlation effects to ρ(r), αd, αq and B aris-
ing through the higher-level excitations will converge faster in the RNCC theory than the
RCC theory [41,51].

4. Results and Discussion

We first evaluate the density functions ρ(r) of the ground states of the Be, Mg, Ne
and Ar atoms. Since the correlation contributions, i.e.,the differences between the DHF
and RCC/RNCC values (given as δρ(r)), to these functions are very small compared to the
DHF values, we consider these contributions separately. In Figure 1, we plot ρ(r) values
from the DHF method, while the correlation contributions δρ(r) from the RCCSD and
RNCCSD methods are shown in Figure 2. As can be seen from the first figure, the density
profiles of Be, Mg, Ne and Ar appear to be different. This suggests that the electronic charge
distributions among these atoms are quite different. From the second figure, we see that
there are slight differences in the correlation contributions from the RCCSD and RNCCSD
methods in Be, while, for the other atoms, not much difference is observed. As mentioned
earlier, accurate values of αd, αq and B are important in determining Vpol(r) for the electron-
atom scattering problem. Therefore, the roles of the electron correlation effects through the
RCCSD and RNCCSD methods in the above atoms can be better understood through the
calculation of electric polarizabilities.
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Figure 1. Densityprofiles of (a) Be, (b) Mg, (c) Ne and (d) Ar atoms obtained using the DHF method
in their ground states. The radial distances (r) are given in atomic units (a.u.), while density values
ρ(r) are unitless.
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Figure 2. Correlation contributions to ρ(r) (shown in figure as δρ(r)) from the RCC and RNCC
methods in (a) Be, (b) Mg, (c) Ne and (d) Ar. As seen, the δρ(r) values are almost the same through
the RCC and RNCC methods in all atoms except Be in which slight differences are evident.

To our knowledge, there are no available calculations of ρ(r) of the atoms considered
which explicitly use the (R)CC methods previously discussed. In a recent study [52], a CI
method was employed in a non-relativistic framework to determine density functions for
studying the quantum potential neural network of Li, Be and Ne atoms. We found that
the density function behaviors we obtained for Be and Ne almost matched those of the
density functions of these atoms reported in [52]. We could not find any reference which
specifically reported the density functions of Mg and Ar; however, from analyses of radial
function distributions in Ne and Ar shown in [53], we assume that the behavior of the
density functions of the Ar atom we obtained using the DHF method follow the correct
trend. Moreover, in a different investigation [54], calculations of the ρ(r) values in carbon
atoms followed similar trends to our results for Mg. From all these analyses, we infer that
our ρ(r) values for Mg should be correct. Since the previous studies did not explicitly
discuss δρ(r) contributions, we were unable to compare our findings for these values with
any other calculations.

In Table 1, we present the αd, αq and B values calculated using the DHF, RCCSD and
RNCCSD methods. It can be seen from this table that there are large differences between
the results from the DHF and RCCSD methods. These differences become larger in the
determination of αq followed by the B values. The RCCSD values of B in the alkaline-earth
atoms are about 2.5 times larger than the DHF values. In all atoms, the RNCCSD values of
αd, αq and B are seen to be lower than the RCCSD values, except in the determination of
αq in the Be atom. The αd values from the RCCSD and RNCCSD methods are very close
to each other, but there are significant differences observed among the αq values of the
RCCSD and RNCCSD methods. These differences are quite prominent in the evaluation
of the B values. As discussed in the previous section, an approximated RNCC method is
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more reliable in the determination of properties than an approximated RCC method; thus,
we believe that our RNCCSD results are more accurate and should be treated here as the
final results.

Table 1. Our calculated values of αd, αq and B (in a.u.) of the Be, Mg, Ne and Ar atoms from the
DHF, RCCSD and RNCSSD methods. These values are also compared with precise values from
the literature.

Property DHF RCCSD RNCCSD Others

Be atom
αd 30.53 38.33 37.40 37.739(30) [55]

37.76(22) [56]
37.86(17) [57]
37.74(3) [58]

αq 220.15 299.82 304.34 300.96 [55]
300.6(3) [56]

B −1218.38 −2729.17 −2172.95 −2100(60) [55]

Mg atom
αd 54.94 71.74 69.40 71.22(36) [55]

71.3(7) [56]
72.54(50) [57]
71.2(4) [58]

αq 567.37 809.56 797.91 813.9(16.3) [55]
812(6) [56]

B −3847.89 −9293.74 −7226.24 −7750(780) [55]

Ne atom
αd 1.98 2.70 2.62 2.6669(8) [59]

2.652(15) [57]
2.66110(3) [58]

2.64 [60]
αq 4.76 7.48 7.09 7.52(15) [55]

7.36 [60]
B −6.15 −14.38 −11.67 −18.12(54) [55]

−17.27 [60]

Ar atom
αd 10.15 11.21 11.15 11.083(7) [61]

11.070(7) [62]
11.089(4) [57]
11.083(7) [58]

11.33 [63]
10.73 [64]

αq 37.19 51.61 50.33 53.37(1.07) [55]
53.22 [63]
49.46 [64]

B −71.07 −140.53 −115.35 −159(8) [55]
−167.5 [63]
−141 [64]

Due to the enormously wide use of electric polarizabilities in various experimental
applications, a number of theoretical calculations have been presented in the literature.
We consider the results obtained from previous experiments [59,61,62], sources that pro-
vide compilations of earlier data [55,58], our own previous RCC calculations [57], and
evidence cited in papers that report most of these quantities using a single many-body
method [56,60,63,64]. The results of other studies are mostly summarized in [55,58]. Many
earlier theoretical studies determined the αd values, with less theoretically based results
found for the αq values of the atoms considered. To our knowledge, only a few non-
relativistic calculations for the B values of the Be, Mg, Ne and Ar atoms considered have
been reported [55,60,63,64]. Furthermore, we did not find any experimental results of αd
for Be and Mg, but precisely measured αd values are available for Ne and Ar. Both of
our RCCSD and RNCSSD values are in agreement with those obtained from previous
calculations. We note that our RCCSD value of αq is closer to the previously reported
precise calculation result than the RNCCSD value; however, this trend is different for the
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αd and B values. These findings are slightly different for the Mg atom, where it is observed
that both the αd and αq values from our RCCSD method closely matched the previously
reported accurate calculations, but the RNCCSD value for B was in closer agreement with
the previous calculation [55]. From these comparisons, it is not possible to argue that
the RCCSD method values are more accurate than the RNCCSD results wherever they
agree with the previous calculations unless they are verified experimentally. The αq and B
values, previously estimated using a finite-field (FF) approach, are not numerically reliably.
The experimental value of αd in Ne is very precise, and comparison of theoretical results
with this value can indicate the validity of the many-body methods employed. We also
compared our RNCCSD values of αd and αq with the literature values in Table 1. For Be,
there are several calculations of αd available; we have listed some of the precise theoretical
results in the above table from the CC and RCC calculations. Several calculations of αq of
the considered atoms, including Be, have been reported using non-relativistic variation-
perturbation methods using a finite-field (FF) approach [55,60,63,64], and using a combined
CI and MBPT (CI + MBPT) method in a sum-over-states approach [56]. Our RNCCSD
αd value closely matches the previously estimated values. We found a slight difference
for the αq value from the RNCCSD method and the previously reported precise value
using the CI + MBPT method [56]. Our RCCSD value of αd in Mg agrees closely with the
previously calculated values using various many-body methods. However, the previously
reported αd values from different calculations spread over a wide-range. This is due to the
large electron correlation effects exhibited by both the valence electrons of the Mg atom.
Nonetheless, our RNCCSD value of αd is also close to that obtained from other calculations.
However, our RCCSD value for αq is closer to previous calculations while the RNCCSD
result differs significantly from the earlier calculations. From this difference, we cannot
say with confidence that the RCCSD value is more accurate than the RNCCSD result. This
is because the earlier predicted αq values are obtained using non-relativistic methods or
lower-order relativistic methods. Thus, only empirical measurements can confirm the
reliability of these calculations. Comparing the αd value of Ne with experiment [59], our
RCCSD value is closer to the experimental value than the RNCCSD value. We anticipate
that after including Breit and quantum electrodynamic corrections, the RNCCSD value
will improve further. Similarly, the αq value from the RCCSD method is closer to the
previous calculations than the RNCCSD method. Since there is no experimental result for
αq available, we cannot claim that the RNCCSD value is less accurate than the RCCSD
result. Similar trends for the αd and αq values can be seen in the Ar atom.

Compared to the αd and αq values, B values have received little attention both in
theoretical and experimental studies. The contributions of these values to the Stark effects
are extremely small when being precisely observed. Strong electron correlation effects are
also involved when evaluating B values accurately. In addition, extrapolation of B values
from the FF approach requires inclusion of both the electric dipole and quadrupole field
interactions in the atomic Hamiltonian. In the linear response approach, estimations of
the B values demand calculation of first-order perturbed wave functions due to both the
electric dipole and quadrupole operators. These are the main reasons why the B values
are not widely investigated in many atomic systems. We identified some literature values
for B of the Be, Mg, Ne and Ar atoms [55,60,63,64] which are listed in Table 1. These
literature values are obtained by adopting an FF approach in a non-relativistic framework.
By comparison of our calculations with literature values, we note that our RNCCSD values
agree with the earlier reported values, while the RCCSD results differ greatly for both the
Be and Mg atoms. However, this is reversed for the Ne and Ar atoms. The reason for this
could be that different many-body methods were considered to estimate the B values of the
alkaline-earth atoms and of the noble gas atoms. We assume that our RNCSSD results are
more reliable compared to all the listed values in Table 1.

In Figure 3a,b, we show the individual contributions to V(r) from the RCCSD and
RNCCSD methods for the Be atom. As can be seen in both these plots, the contributions
from Vnuc dominates while the VC contributions are also quite visible. There are also
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noticeable contributions arising from the Vpol(r). Similar trends can also be observed for
the RCCSD values, as shown in Figure 3c, and the RNCCSD values, as shown in Figure 3d,
for the Mg atom, but the shapes are slightly different due to VC(r) and Vpol(r) contributions.
These differences can be understood from the density profiles of both the atoms shown in
Figure 1. In Figure 4a–d, we show different contributions to V(r) from the RCCSD and
RNCCSD methods for Ne and Ar. As can be seen from the figure, the trends from individual
contributions to V(r) in both Ne and Ar appear quite similar except for their magnitudes.
The figure also shows that contributions from Vpol(r) are negligibly small in both the atoms.
Compared to the alkaline-earth atoms, the results for both the Ne and Ar atoms look quite
similar to those for the Mg atom. It is of note that the density profiles shown in Figure 1
of the Be and Ar atoms appear similar, while the density profiles of Mg and Ne appear
to have similar features. Thus, it is not possible to obtain a clear picture of the scattering
potential behavior of an electron from an atom just by looking at the density profile of the
atom. Nonetheless, we have discussed procedures to construct the electron-atom scattering
potentials by evaluating contributions from the static and polarization potentials due to
the Be, Mg, Ne and Ar atoms using the RCC and RNCC methods. These procedures can
also be adopted for heavier closed-shell atomic systems, where electron correlation effects
could be very pronounced.
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Figure 3. Plots demonstrating comparative analyses of contributions from Vnuc(r), VC(r) and Vpol(r)
to the electron scattering potential V(r) from the Be and Mg alkaline-earth atoms. In (a,b), results
are given from the RCCSD and RNCCSD methods, respectively, for the Be atom. Results from the
RCCSD and RNCCSD methods are shown in (c,d), respectively, for the Mg atom. All quantities are
given in a.u.
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Figure 4. Plots demonstrating different contributions to V(r) from the Ne and Ar noble atoms. In (a,b),
results are given from the RCCSD and RNCCSD methods, respectively, for the Ne atom, while the
results from the RCCSD and RNCCSD methods for the Ar atom are shown in (c,d), respectively. All
quantities are given in a.u.

5. Conclusions

We have demonstrated approaches employing relativistic-coupled cluster theory to
determine potentials for the evaluation of electron-atom elastic scattering cross-sections.
For this purpose, we considered both the standard and normal versions of the relativistic
coupled-cluster theory in the singles and doubles approximation, and presented results
for the Be, Mg, Ne and Ar atoms as representative elements for the alkaline-earth and
noble gas atoms of the Periodic Table. To estimate the static potential contributions, the
finite-size nuclear effect was determined through the nuclear potential, while the two-
electron correlation effects were estimated using relativistic coupled-cluster theory. The
density functions of the above atoms from both the considered relativistic coupled-cluster
theories were presented to estimate the Coulomb exchange potential contributions, which
we neglected here for estimating potentials. Furthermore, we determined the electric dipole,
quadrupole and dipole-quadrupole polarizabilities to account for the electron polarization
effects on the scattering potential. The results from both the standard and normal relativistic
coupled-cluster theories were compared with the literature values. These methods can be
further applied to other heavier atomic systems to study electron-atom scattering cross-
sections more accurately where the electron correlation effects within the atom will be more
prominent than for the lighter elements investigated here.
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