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Abstract: Extreme learning machines explore nonlinear random projections to perform computing
tasks on high-dimensional output spaces. Since training only occurs at the output layer, the approach
has the potential to speed up the training process and the capacity to turn any physical system into a
computing platform. Yet, requiring strong nonlinear dynamics, optical solutions operating at fast
processing rates and low power can be hard to achieve with conventional nonlinear optical materials.
In this context, this manuscript explores the possibility of using atomic gases in near-resonant
conditions to implement an optical extreme learning machine leveraging their enhanced nonlinear
optical properties. Our results suggest that these systems have the potential not only to work as an
optical extreme learning machine but also to perform these computations at the few-photon level,
paving opportunities for energy-efficient computing solutions.

Keywords: cold atoms; nonlinear optics; optical computing

1. Introduction

In the last decades, the advent of artificial intelligence and neuromorphic architectures
has completely reshaped the computing landscape. In particular, the logic procedures
and arithmetic operations of the von Neumann paradigm may now be replaced by an
alternative optimization-based approach. This establishes opportunities in two distinct
directions. On one hand, on the side of algorithms, where rules and strategies are now
autonomously inferred from data-driven processes [1]. On the other hand, on the side of
the hardware, co-locating processing and memory operations pave for simpler hardware
solutions capable of competing with electronic devices [2–4].

From the perspective of hardware, one of the most promising architectures is the
reservoir computing framework. This design leverages the nonlinear dynamics of a physical
system to simplify the transference of neuromorphic concepts to hardware implementations,
allowing most physical systems to act as a computing platform. A particular group of
reservoir computers that uses neither temporal dependence nor system feedback are
Extreme Learning Machines(ELM), which have an architecture closer to a common feed
forward network and are typically easier to implement [5–7]. In short, an Extreme learning
machine exploits an untrained nonlinear random transformation to project each element
of an input space onto a high-dimensional output space. The learning process is then
performed in this output space, i.e., at the output layer, which reduces the computational
load and bypasses the need to fine-tune all the network weights [5].

ELMs and reservoir computers have the potential to simplify the deployment of al-
ternative physical systems as effective computing platforms, from mechanical [8,9] and
hydraulic [10–13] to optical systems [14–17], with the latter being the main focus of this
work. Yet, deploying an effective physical ELM requires control of the relevant nonlinear
dynamics [7,18,19]. From the optical computing perspective, this means that one needs
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optical media with a tunable nonlinear optical response. Nonlinear crystals or thermo-
optical media may be explored for that purpose, but their relatively weak nonlinearity may
limit their applications, requiring either large propagation distances that forbid miniatur-
ization and increase losses or higher laser power that can be prohibitive from the power
efficiency perspective.

In this context, atomic gases in near-resonant conditions may constitute a valuable
alternative for the construction of such devices. Indeed, provided with a suitable level
structure, one can engineer the light–matter interaction conditions to achieve a tunable
optical media with enhanced nonlinear susceptibilities at ultra-low intensities [20–23].
Motivated by this background, this manuscript explores how such near-resonant media
can be utilized for deploying effective optical extreme learning machines (OELM). For
that, we will start by modeling the optical response of a typical N-type four-level atomic
system to demonstrate how it can be utilized to obtain a highly nonlinear optical medium
that is suitable to perform at low-intensity levels. Then, introducing the basic concepts of
ELMs, we demonstrate how such configuration can be envisioned and used as a processing
solution by using a phase encoding scheme and interferometric processes occurring during
the nonlinear optical propagation of an optical beam inside a gas cell. By performing
beam propagation numerical simulations under realistic physical conditions, we test the
computing capabilities of these systems, demonstrating the importance of controlling the
nonlinear properties of the system.

2. Propagation of an Optical Beam in an Atomic Media under Near-Resonant Conditions

Regarding the goal of a strong nonlinear optical response, multiple atomic systems
with a variety of level structures are known to support such phenomenology through effects
related to quantum state coherence [21,22]. For this manuscript, we will focus on a typical 4-
level atomic system [23–26] interacting with three continuous-wave electromagnetic fields,
which is widely known in the literature to support giant cross-Kerr nonlinearities even at
ultra-low intensity levels [23,24]. In particular, we choose a typical N-type configuration(see
Figure 1). First, a weak probe field Ep = 1

2

[
Ep(r, z)eikpz−iωpt + c.c.

]
, with envelope function

E p(r), center frequency ωp and wave vector kp couples the levels |1⟩ and |3⟩. The additional
transitions are driven with stronger fields: a second ground state |2⟩ is coupled to the excited
state |3⟩ via a control field Ec = 1

2

[
E c(r)eikcz−iωct + c.c.

]
, with envelope function E c(r),

center frequency ωc and wave vector kc; and a switching field couples the second ground
state |2⟩ to a second excited state |4⟩ via Es = 1

2

[
E s(r)eiksz−iωst + c.c.

]
, with envelope

function E s(r), center frequency ωs and wave vector ks.
Taking a semi-classical approach for the light–matter interaction [27,28] and neglecting

the effects of the weaker probe beam on the dynamics of the control and switching fields,
the propagation of the optical probe beam equation under the paraxial approximation is
given by

ikp∂zEp +
1
2
∇2

⊥Ep =
1

2ε0c2 ∂2
t Pp. (1)

In this framework, the coherent light–matter interaction can be accounted for through the
polarization Pp density term that oscillates with ωp. For the current atomic medium it can

be defined as Pp = ηµ31ρ31ei(kpz−ωpt) + c.c., where µij and ρij are the dipole moment for
the transition |i⟩ → |j⟩ and the population coherence terms of the density matrix operator
ρ, respectively, and η is the atomic density. To proceed with an analysis, the dynamics of
the atomic populations can be modeled by the master equation

ρ̇ =
i
h̄
[
ρ, Ĥ

]
− Γ̂(ρ)

2
, (2)
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where H is the system Hamiltonian given by

Ĥ =
4

∑
i=1

h̄ωi|i⟩⟨i| − h̄
(

Ωpe−iωpt|3⟩⟨1|

+Ωce−iωct|3⟩⟨2|+ Ωse−iωst|4⟩⟨2|+ h.c.
)

, (3)

where the Lindblad superoperator Γ̂(ρ) accounts for all the decoherence processes of the sys-
tem, and the Rabi frequencies for the transitions are defined as Ωp,c,s = µ31,32,24Ep,c,s/h̄. Us-

ing the definition of optical susceptibility χp =
ηµ2

31
ε0 h̄Ωp

ρ31, we can simplify the Equation (1) to

i
1
kp

∂zΩp +
1

2k2
p
∇2

⊥Ωp + χpΩp = 0. (4)

Equations (2) and (4) are then coupled through the susceptibility term, which may be
obtained by solving the master equation. Assuming the steady-state solution, ρ̇ = 0 and by
making use of the rotating-wave approximation [28], Equation (2) can be expanded into
the form

ρ̇ =
(

M0 + Mp
[
Ωp

])
ρ, (5)

where ρ stands for a vectorized form of the ρij density matrix, and where M0 and Mp are
matrices related with the Ωp-independent and dependent parts of the master equation for
ρ, respectively. Recovering the weak probe beam assumption, i.e.,

∣∣Ωp
∣∣ ≪ |Ωs|, |Ωc|, a

perturbative approach to the weak probe beam gives ρij = ρ
(0)
ij + ρ

(1)
ij + ρ

(2)
ij + ρ

(3)
ij + . . .,

obtained iteratively from
M0ρ(n) = −Mpρ(n−1), (6)

starting from the ground state as the zero-th order solution (i.e., ρ
(0)
11 = 1, ρ

(0)
ij = 0 if i or

j ̸= 1).

Figure 1. Schematic of the purposed optical extreme learning configuration (exaggerated scales for
illustration purposes). (A) Each input of the dataset X(i) is encoded into the phase profile of the
incident flat top weak probe beam Ωp, which can be achieved with a spatial light modulator, for
example. (B) The probe beam propagates inside a cell filled with an atomic vapor with a N-type
4-level atomic system, which acts as the intermediate layer of the OELM. (C) After the propagation,
the speckle pattern is recovered at the end, with the pixel intensity values being utilized as the
output state Y (i) for training the linear transformation W that completes the extreme learning
machine architecture.
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The results for this equation system are straightforward to obtain algebraically, but
the general full expressions are typically too cumbersome [26]. Yet, in the simplified
limit of negligible dephasing processes between the two ground states, and assuming
Γ32 = Γ31 = Γ42 = Γ41 = Γ, and the two-photon resonance condition ∆p = ∆c = ∆s = ∆, it
is possible to obtain that

ρ31 =
2i|Ωs|2

(Γ − 2i∆)
(
|Ωc|2 + |Ωs|2

)Ωp −
2i|Ωs|2

(
Γ2 + 4∆2 + 16|Ωs|2

)∣∣Ωp
∣∣2

(Γ + 2i∆)(Γ − 2i∆)2
(
|Ωc|2 + |Ωs|2

)2 Ωp (7)

≈ − 1
2∆

Ωp +
1

4∆|Ω0|2
∣∣Ωp

∣∣2Ωp (8)

where the second approximation is valid for sufficiently large detunings, ∆ ≫ Γ, Ωp,c,s
and equal amplitudes |Ωc| = |Ωs| = |Ω0|. Finally, introducing the new variables z′ = kpz,
x′ = kpx, y′ = kpy, r′ =

√
x′2 + y′2, the transformation Ω

′
p,s,c = Ωp,s,c/Γ, ∆

′
1,2 = ∆1,2/Γ

and the coefficient κ = ηµ2
31/(ε0h̄Γ) and dropping the primes, we obtain a dimensionless

Nonlinear Schrödinger equation (NSE) to describe the evolution of the probe field as

i∂zΩp +
1
2
∇2

⊥Ωp + nΩp − g
∣∣Ωp

∣∣2Ωp = 0, (9)

where the linear coefficient is given by

n = − κ

2∆
, (10)

while the nonlinear term, associated with a self-Kerr effect, is given by

g = − κ

4∆|Ω0|2
. (11)

In the context of this work, the NSE model will be utilized to investigate numerically
the propagation of a given envelope field Ωp that contains the input information encoded
in its wavefront. In the next section, we introduce how this propagation can be used to
construct an optical computing system to process information by establishing a parallel
to an extreme learning machine architecture. Furthermore, leveraging on the controllable
parameters of the model, specifically the detuning ∆, we investigate the impact of this
choice in the overall performance of our OELM, showcasing the opportunities of using
atomic systems for this specific purpose.

3. Building an Optical Extreme Learning Machine

To build an effective optical ELM, we first need to understand the inner workings of
this architecture. For this section, we consider the task of predicting a P(i) belonging to a
space RNtarget for a total of ND input states X(i) belonging to the feature space RNinput (with
Ninput being the total number of features) and associated with ground-truth targets T(i)

that belong to a space RNtarget .
The ELM architecture comprises three stages. First, each input state X(i) is projected

into an intermediate space as

Y
(

X(i)
)
=

 G(w1X, b1)
...

G(wNc X, bNc)

 (12)

with G being a nonlinear activation function, Nc the number of output channels, and wi
and bi the internal weights and bias for each channel. The second step concerns the learning
stage. It is performed on this high-dimensional intermediate space and assumes that we
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can train a linear transformation W from RNc to RNtarget and that matches the target values
T by minimizing a given loss function. For example, it can be an output weight matrix
W̄ = [W1 · · ·W Nc ]

T that belongs to RNtarget×Nc and that under the typical regularized ridge
regression can be obtained from minimization of the loss function

L
(
W̄

)
= min

W̄

∥∥∥∥∥∑
i

W̄Y (i) − T(i)

∥∥∥∥∥
2

+ α
∥∥W̄

∥∥2

, (13)

considering all the inputs i and associated targets T(i) of the training dataset. Note that
while the Ridge model is typically suitable for regression tasks, classification is also possible,
for example, by converting binary class targets to positive/negative values and keeping the
sign of the prediction. Additionally, under the theory of extreme learning machines [5–7],
it is known that the universal approximation capabilities of this framework require two
conditions under the activation function: (i) an infinitely differentiable nonlinear activation
function G and (ii) a random distribution of weights wi [5].

With the architecture established, we can now discuss how to implement an OELM
based on the propagation of an optical beam in our nonlinear optical media. First, we
embed each input state into the phase of a given probe beam, namely

Ωp(X(i), z = 0) = ∑
j

Aj(x, y)eiϕ(X(i)
j ) (14)

where ϕ(Xi) are encoding function and Aj intensity distributions working as embedding
states. Then, we let the optical beam propagate inside the media before recovering it at the
end z = zL, utilizing an intensity sensor (e.g., a camera) for that purpose. Then, taking the
pixels as the output channels, we obtain

Y
(

X(i)
)
=


∣∣∣Ωp

(
X(i), z = zL

)∣∣∣2
1

. . .∣∣∣Ωp

(
X(i), z = zL

)∣∣∣2
Nc

 (15)

where a subscript for the right-hand side j = {1, . . . , Nc} may for example refer to a pixel
position (x, y) = (mod(j/Nx), int(j/Nx)) for a sensor of Nx × Ny pixels. Establishing a
parallel with the definition in Equation (12), it is straightforward to conclude that our
nonlinear activation function is provided by a mixed combination of multiple effects,
namely the interference of waves and generated patterns when interrogated with an
intensity sensor, and the nonlinear evolution of the optical state inside the nonlinear media.
Although the first by itself does not warrant the necessary conditions for an ELM with
universal approximation capabilities [7,16], it is known that the second may provide them
if the strength of the nonlinearity is sufficiently high [7,19].

4. Results

In this section, we present the results of numerical simulations of Equation (9) to
explore the performance of an OELM for regression and classification tasks. Additionally,
to increase the relevance of the work and maintain a close connection with a real-world
implementation—supporting its future experimental implementation in cold or hot atomic
gases—we have chosen as the N-type configuration the well-explored hyperfine structure
of the D line of 87Rb, more precisely the levels 5S1/2(F = 1), 5S1/2(F = 2), 5P1/2(F = 2)
and 5P3/2(F = 1) [29,30]. Realistic physical parameters [29] for this system are: µ13 ≃
2.11 × 10−29 Cm, µ23 ≃ 1.26 × 10−29 Cm and µ24 ≃ 1.79 × 10−30 Cm for dipole matrix
elements; Γ = 36 × 106 s−1 and γ21 ≃ 10−8Γ for decay rates. Also, we consider the
wavelengths of the optical fields to be λp ≈ λc = 795 nm and λs = 780 nm and a fixed
atomic concentration η = 1018 m−3. For the present work, we focus on the self-focusing
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Kerr regime, meaning that we will restrict our analysis to positive detunings. For the
simulations presented below, we utilized max(|Ωp|) = 1.5 in adimensional units (approx.
10 mW/cm2), |Ω0| = 4. We further explore the range of [1, 200] for g meaning that ∆
would in practice vary within a range [3.2Γ, 646.7Γ]. Encoding states are flattops with waist
w = 400 µm and propagate for a total distance of z = 1 cm inside the optical media. This
propagation distance is quite realistic from the perspective of hot atoms, as typical vapor
cells may feature propagation distances even an order of magnitude larger than that. From
the perspective of cold atoms, however, these often involve magneto-optical trapping, and
the atomic clouds normally fall within the millimeter range. Nevertheless, we shall also
note that the atomic densities may be much higher in this case, and the increased nonlinear
response effectively reduces the necessary propagation distance to obtain similar effects.

4.1. Regression of Nonlinear Functions

To understand the computing capabilities of our optical ELM, we first focus on a
typical regression task. For the purposes of this work, we have chosen to approximate the
function t( f1) = sin(4 f1)/x with f1 ∈ [−3, 3] encoded in the input state as

Ωp(X(i), z = 0) =
(

A0(x, y) + A1(x, y)eiϕ(X(i)
1 )

)
eiR(x,y) (16)

with the encoding ϕ(X(i)
1 ) = 2π

f1−min( f1)
max( f1)−min( f1)

− π obtained using a min-max normalization
of the features (see Figure 2 for spatial distributions and encoding strategy). The additional
fixed random phase distribution R(x, y) warrants the generation of speckles in such a short
distance and randomness of the projection onto the output space and can be applied ex-
perimentally using a spatial light modulator or an optical diffuser, for example. For each
state, we propagate it numerically, taking the intensity at z = zL (i.e., imaging the intensity
at the output plane) and recording a region of interest(ROI) of 60 × 60 pixels around the
center (x, y) = (0, 0). We further downsampled the ROI by averaging regions of 2 × 2 pixels,
before randomly choosing Nc superpixels as the output state Y(X(i)). Note that the effective
dimensionality of the output space may be higher or lower than Nc, and it is associated
with multiple factors such as the type of activation function and encoding strategy. Indeed,
from a purely theoretical perspective, the only formal statement known is that if the matrix
H = [Y(X(1)), . . . , Y(X(ND))] has rank(H) = ND then it can learn a dataset of ND elements
with zero error, which would imply ND ≤ Nc [5]. Still, this statement does not impose major
constraints on performance as one does not require ND ≤ Nc for effective learning [16,19].
Indeed, a higher Nc may be detrimental to performance as it may lead to overfitting issues
that must be dealt with using convenient regularization techniques.

Figure 2. Overview of the encoding for the regression task for dataset and targets presented in (A).
Panel (B) presents the flattop intensity of the probe beam utilized, whereas (C) presents one feature
of the encoding scheme in the phase of the wavefront for the point highlighted in red in the first
panel. (D) A constant random matrix on the phase is also applied to the wavefront to warrant the
speckle formation.
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To explore this framework, we test the system with the regression of the function t( f1).
The dataset is comprised of 64 points equally distributed in the interval [−3, 3] with an
80–20% train-test split where a standard Ridge Regression methodology from the sklearn
Python library is used to train the output layer [31]. Taking the root mean squared error
(RMSE) as an evaluation metric, the results obtained are presented in Figure 3. As we
can see, both the the dimensionality of the output space Nc and nonlinear strength g are
important for achieving a good performance in the regression task, achieving an error
below 5%, meaning that both play a role as hyperparameters of the model. Yet, looking
at Figure 3C, one can see that the nonlinear dynamics are more important for achieving a
good performance than simply increasing the number of output channels, meaning that
the dimensionality is important but not sufficient. Indeed, this becomes evident when
computing the error of the noisy dataset (same input data but with 5% random noise added
on top of it), for which one sees a decrease in the accuracy of the predictions with the
increase in the Nc, which suggest an overfitting of the model with the increase in Nc.

Figure 3. Results for the regression task with the optical ELM measured with the root mean squared
error (RMSE) metric. (A) Change in performance with the increase in output channels Nc with
fixed g = 200. (B) Varying performance with the increase in the nonlinearity parameter g for a
fixed Nc = 50. (C) Performance on the test dataset with varying g and Nc shows a clear increasing
performance tendency for stronger nonlinearities and larger output spaces.

4.2. Classification of the Spiral Dataset

For the second case study, we focused on the typical two-class spiral dataset to obtain
a grasp of the classification capabilities of our proposed implementation as well as to obtain
a clear picture of its generalization capabilities. Taking the dataset represented in Figure 4,
we encoded each pair of features ( f1, f2) into an input state

Ωp(X(i), z = 0) =
(

A0(x, y) + A1(x, y)eiϕ(X(i)
1 ) + A2(x, y)eiϕ(X(i)

2 )

)
eiR(x,y) (17)

with the encodings ϕ(X(i)
i ) = 2π

fi−min( fi)
max( fi)−min( fi)

− π obtained using a min-max normaliza-
tion of the features (see Figure 4 for spatial distributions). The associated vector on the
output space for each input state was computed following the same strategy as utilized for
the regression task.

Utilizing the logistic regression as a classification model, we followed the same 80–20%
train-test subset division procedure and varied the number of channels Nc and the nonlinear
strength g, obtaining the results depicted in Figure 5. As in the regression task, the results
again suggest that the output dimensionality and nonlinear strength of the physical system
are both important parameters, but only the nonlinear strength warrants good accuracy.
In ideal conditions, train and test accuracies above 90% can be achieved, meaning that
the model is not overfitting and validating our conceptual proposal as an effective OELM
capable of performing nonlinear classification tasks.
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Figure 4. Overview of the encoding for the classification task for dataset and targets presented
in (A). Panel (B) presents the flattop intensity of the probe beam utilized, whereas (C) presents a
two-feature encoding scheme in the phase of the wavefront for the point highlighted in red in panel
(A). (D) A constant random matrix on the phase is also applied to the wavefront to warrant the
speckle formation.

Figure 5. Results for the classification task with the optical ELM. (A) Change in performance with
the increase in output channels Nc with fixed g = 100. (B) Varying performance with the increase in
the nonlinearity parameter g for a fixed Nc = 50. (C) Performance on the test dataset with varying
g and Nc shows a clear increasing performance tendency for stronger nonlinearities and larger
output spaces.

To finalize, Figure 5 also presents the accuracy for predictions on a noisy dataset,
i.e., propagating states with 5% random noise added on top of the initial state. As the
performance does not vary significantly, it suggests that the classification model is robust
and may generalize well for unseen data. Indeed, a better insight into model generalization
capabilities may be achieved by performing numerical simulations for each point covering a
20 × 20 rectangular grid with f1 ∈ [−π, π] and f2 ∈ [−π, π], and predicting the associated
label at each point using the previously trained model for Nc = 300. Figure 6 depicts the
obtained results, showing that a correct spiral-like separation of the data is possible for the
sufficiently high nonlinear regime of the reservoir, demonstrating that generalization is
possible but tightly connected with the strength of the nonlinearity.

Figure 6. Results for the two-spiral classification task with the optical ELM, regarding the generaliza-
tion capabilities of the model for two distinct nonlinear parameters, (A) g = 1.0 and (B) g = 100.
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5. Discussion and Concluding Remarks

The present manuscript reports a strategy to enable a physical implementation of an
OELM using the nonlinear optical properties of atomic vapors in near-resonant conditions.
The proposed implementation focuses on the use of an N-type configuration and the prop-
agation of a weak probe beam assisted by strong coupling and switching fields. Following
a perturbative approach, we derived an effective model for the propagation of a weak
probe optical beam in the form of a nonlinear Schrödinger equation. Then, leveraging an
encoding strategy based on the spatial modulation of the phase of the input probe beam,
we established a connection between the physical system and the ELM architecture, demon-
strating how one can benefit from the strong nonlinear optical properties of near-resonant
optical media to enable an optical implementation of an ELM. Additionally, by offering the
possibility to control the nonlinearity strength with external parameters such as detuning
or field intensity, the system presents an interesting playground to explore the crossover
between linear and nonlinear response and to assess its impact on the performance of an
optical ELM. The numerical results presented demonstrate how combining a sufficiently
large output dimensional space with strong nonlinear dynamics performs regression and
classification of nonlinear problems. To approximate experimental conditions, realistic
physical values, together with synthetic noise, are used to obtain the numerical results.
Therefore, it is plausible to expect similar observations in experimental setups, which are
soon to be explored.

Compared to previous results in the literature, we would also like to highlight two
interesting research directions for future works. On the one hand, the possible physical
deployment of the system would allow us not only to confirm the predictions described here
but also to explore the connections, benefits, and drawbacks of the proposed architecture
against previous all-optical processing hardware implementations. In particular, it would
be very interesting to compare the performance of this machine with other architectures,
such as diffractive deep neural networks [32] and specifically with those exploiting the
use of rubidium as a nonlinear activation function [33]. On the other hand, theoretical
research at the level of the activation functions for such optical machines would be very
beneficial for understanding the possible computing capacity of the all-optical ELMs for
more complex problems such as chaotic series prediction. In particular, we anticipate that
some insightful connections may be made with the recently proposed next-generation
reservoir computer architecture [34].

Finally, putting the results in perspective by comparing them with previous approaches
in free space [14,16], the system presented here benefits from the fact that the nonlinearity
does not reside solely in the measurement of the intensity of the field at the output plane
(commonly performed with an electronic element such as a camera) but also on the prop-
agation itself, which can be controlled externally. These findings pave an important step
for all-optical computing schemes and for establishing atomic vapors as possible building
blocks of fast and robust neuromorphic all-optical computers.
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Abbreviations
The following abbreviations are used in this manuscript:

ELM Extreme Learning Machine
OELM Optical Extreme Learning Machine
NSE Nonlinear Schrödinger equation
ROI Region of Interest
RMSE Root Mean Squared Error
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