
Atoms 2014, 2, 1-14; doi:10.3390/atoms2010001
OPEN ACCESS

atoms
ISSN 2218-2004

www.mdpi.com/journal/atoms

Article

Evaluation and Comparison of the Configuration Interaction
Calculations for Complex Atoms
Charlotte Froese Fischer

National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
E-Mail: Charlotte.Fischer@nist.gov

Received: 24 January 2014; in revised form: 10 March 2014 / Accepted: 12 March 2014 /
Published: 19 March 2014

Abstract: Configuration interaction (CI) methods are the method of choice for the
determination of wave functions for complex atomic systems from which a variety of atomic
properties may be computed. When applied to highly ionized atoms, where few, if any,
energy levels from observed wavelengths are available, the question arises as to how a
calculation may be evaluated. Many different codes are available for such calculations.
Agreement between the results from different codes in itself is not a check on accuracy,
but may be due to a similarity in the computational procedures. This paper reviews basic
theory, which, when applied in a systematic manner, can be the basis for the evaluation of
accuracy. Results will be illustrated in the study of 4s24p5 (odd) and 4s24p44d (even) levels
in W39+ and the transitions between them.
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1. Introduction

Currently, tungsten (W) is an element of great interest as a possible wall material in future tokamaks,
but progress is hindered by the lack of accurate spectroscopic data. In connection with a study of heavy
ion impurities in fusion plasmas, Fournier [1] performed extensive collisional-radiative calculations
(energy levels, radiative transition probabilities for allowed and forbidden transitions, collisional
cross-sections) for candidate lines in observed spectra for W37+–W47+ using the RELAC code of
Klapisch et al. [2,3]. This data was used by Utter et al. [4] to identify some of the lines observed in
their electron beam ion trap (EBIT). Radtke et al. [5], using a similar HULLAC code [6] for their
predictions and high-resolution X-ray and EUV spectroscopy for their measurements, extended the ions
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of interest to W25+–W47+. Similarly, Ralchenko et al. [7] observed spectra in the W39+–W47+ ion range
with an EBIT and confirmed the identification of some of the lines through the use of Flexible Atomic
Code (FAC) [8]. The tentative identification of lines has spurred others to improve upon these results
using more recent variational codes that are fully relativistic and can include both Breit and quantum
electrodynamic (QED) effects, as well as correlation in a many-electron system. Froese Fischer and
Gaigalas [9] used GRASP2K [10] for the study of the 4p64d, 4p64f and 4p54d2 configurations in W37+

and the transitions among these levels, Aggarwal, Jha and Mohan (AJM) [11] and also Aggarwal and
Keenan [12] used a similar version called GRASP [13,14] for 4s24p5, 4s24p44d and 4s4p6 configurations
in W39+, and Quinet [15] used the same code to produce a theoretical survey of 4pk and 4dk ground
configurations in W29+–W43+ from which, M1 transition data were computed.

In highly ionized atoms where few, if any, classified levels are available, the question of accuracy
remains. Codes for atomic structure calculations do not, by themselves, determine the accuracy of the
final result, but rather, the computational procedure that was adopted. A good example is the calculation
reported by Jonauskas et al. [16], where GRASP2K was used to get the radial functions for orbitals,
but the calculation of the configuration interaction (CI) strength for hundreds of configurations was
performed using the method of global characteristics. This calculation is hardly a typical GRASP2K
calculation, but the results from this calculation, referred to as GRASP2K results, were found to be
in large disagreement with other methods [15]. Codes have many options, and there can be significant
disagreement, even when the same codes are used [11,12].

Configuration interaction methods are the method of choice for complex atomic systems [17]. Many
options determine the computational model. This paper describes factors that define the accuracy
of the final result and strategies that can be used for assessing the accuracies. For lighter elements,
energy levels are available for comparison with theory, but when these are not available, other methods
must be considered. Though there are many similarities between non-relativistic methods corrected
for relativistic effects (see [18] for the basic theory) and fully relativistic calculations to which Breit
and QED corrections are added, this paper is concerned primarily with the latter, though, at times, the
problem may be discussed in non-relativistic terms.

2. Underlying Theory

In a configuration interaction (CI) calculation, the wave function for an atomic state function (ASF),
Ψ, is assumed to be a linear combination of configuration state functions (CSFs), Φ, namely:

Ψ =
∑

ciΦi (1)

where each CSF is antisymmetric in the coordinates of the electrons and has radial and angular factors
that together yield an eigenstate for total angular momentum and total spin quantum numbers LS if
the calculations are performed starting with non-relativistic ls orbitals, or J and parity if orbitals are
fully relativistic and coupled in the jj-coupling scheme. Thus, one configuration may generate several
CSFs. In all CI methods, the vector of expansion coefficients is defined by an eigenvector of the
interaction matrix, and the energy is the eigenvalue of the associated eigenvector. What differs among
calculations are:
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(1) the configurations that define the CSFs in the expansion and
(2) how the radial function of the one-electron orbitals that define the CSFs are determined.

The latter may be obtained from a model potential, a simple energy expression that depends only on
the configuration in the extended average level (EAL) method of GRASP, or a fully variational method
that optimizes all the radial functions that contribute to one or more ASFs of interest, such as the extended
optimum level (EOL) method available in GRASP2K.

ASFs are labeled according to the composition of their wave function, where normally, the label is
that of the CSF with the largest expansion coefficient. Such labels are not always unique and, ideally,
when needed, should include two or more expansion coefficients, along with relative phases for unique
identification, but such a complicated label is rarely adopted. For highly ionized atoms, composition
in jj-coupling is usually more dominant in that the largest component represents a larger fraction of
the composition. The composition of the wave function is relative to the CSFs included in a specific
calculation. The least squares fitting method used by the HFR method of the Cowan code [19] achieves
accurate energy levels from observed wavelengths by adjusting the values of Slater integrals. This
adjustment will not correct for the missing angular symmetries in the wave function expansion. Thus, the
composition for the ground state of W37+ is 100% 4s24p64d in the Atomic Spectra Database (ASD) [20],
whereas it is 98% in a more accurate ab initio calculation [9].

In some papers that use the early GRASP code, the ASFs of interest are the same as the set of the
CSFs. Generally, when this method is used, the number of CSFs is sufficiently small, so that the entire
interaction matrix can be stored in memory and a library routine used to compute all eigenvalues and their
associated eigenvectors. In fact, the desired spectrum defines the CSF set, but since there is no interaction
between CSFs of different J and parity, this means that permutations exist that divide the interaction
matrix into distinct, non-interacting sub-blocks that require iterative methods to have initial estimates
of eigenvectors of the appropriate J and parity [21]. For large-scale calculations, there are several
advantages to treating the sub-blocks as distinct eigenvalue problems; the calculations are faster and
require less memory. GRASP2K supports both options, but the “block” version is recommended for large
calculations. For large-scale calculations, the number of CSFs will vastly exceed the number of ASFs.

The accuracy of a wave function does not depend directly on the length of the expansion. Some
CSFs are more important than others. In the 1980s to the 1990s, when computer memory was
limited and computations were time consuming, the starting point was a single CSF that defined a
Hartree–Fock wave function, and then, a few CSFs were added that accounted for the most important
correlation contributions. In fact, non-relativistic Z-dependent perturbation theory defines the zero-order
approximation as an expansion over the CSFs of the complex (CSFs with the same parity and principal
quantum numbers) [22,23] for which the coefficients are an eigenvector of the interaction matrix.
The first-order correction to the wave function then consists of all CSFs that interact with one or
more CSFs in the zero-order approximation. In accurate GRASP2K calculations, including only the
first-order correction, CSFs with a sufficiently large expansion coefficient form a multi-reference (MR)
set. Typically, CSFs with an expansion coefficient larger than 0.1 in magnitude (or contributing 1% to
the composition of the wave function) should be in the MR set. The size of this set determines both
the accuracy and the computational resources needed. In practice, some CSFs in the complex may be
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unimportant for a particular case, and in others, CSFs outside the complex may be important, particularly
in neutral atoms.

Since the interaction matrix element between CSFs that differ by more than two orbitals is zero,
the interacting CSFs are contained in the set of CSFs generated by single- and double- (SD) substitutions
of occupied orbitals to unoccupied or unfilled orbitals. (For states lowest in their symmetry, substitutions
are excitations and often referred to as such, but for excited states, there may also be some that are
de-excitations.) Thus, there are two important concepts:

(1) the role of the complex, which may contain potentially strong interactions, and
(2) the SD substitutions for other CSFs, whose expansion coefficients, in general, may be small, but

are large in number.

An alternative to expanding the MR set is to include also second-order effects through triple (T)
and quadrupole (Q) excitations, a process that may be applied to light atoms, but soon becomes
unmanageable for complex ones. The process of transferring selected CSFs to the MR set, in effect,
includes selected TQ excitations relative to the smaller MR set, in a first-order calculation for the larger
set. In GRASP2K, the JJGEN [24] module generates CSFs for wave function expansions according to
a number of rules, including SDTQ and higher excitations.

With every CI wave function, there is a set of orbitals that defines the CSF basis. The SD (or higher)
process divides this set into the orbitals occupied in the MR set and other orbitals for the correction
to the wave function. The latter are correlation orbitals, and associated CSFs may be large in number.
In perturbation theory, summations are applied over a predetermined set of CSFs. In FAC, the needed
orbitals are defined in terms of orbitals from a model potential and are essentially infinite in number, but
in practice, are terminated in some manner. What is important for perturbation theory is the completeness
of the basis. In variational methods, the radial functions for a set of orbitals are optimized so as to yield a
stationary energy. The energy functional may be a linear combination of total energies for a set of ASFs.
This is referred to as an extended optimal level calculation (EOL). A simpler strategy is to compute the
radial functions from an energy functional that is defined in terms of the average energy of all CSFs in the
wave function expansion of all ASFs. This method is referred to as the (EAL) method. The difference is
that the latter omits the interaction between CSFs in the orbital optimization phase of the calculation and
there is no large distinction between orbitals that are part of the MR set and other orbitals. In the EOL
calculation, correlation orbitals are more contracted [25,26] and total energies lower than in a similar
EAL calculation.

A systematic calculation [27] is one that computes wave functions of increasing expansion size that,
hopefully, converge to an accurate approximation and, in the process, indicate the extent of convergence
within the correlation model. This is done by increasing the set of correlation orbitals by layers, where,
typically, the next layer has the extra orbital of each symmetry. Therefore, for Be, for example [26],
where the complex defines the MR set as {1s22s2, 1s22p2} and the initial orbital set is {1s, 2s, 2p}, this
could be increased to {1s, 2s, 2p, 3s, 3p, 3d}, etc. Such calculations are referred to as n = 2, n = 3

calculations, respectively, where n designates the largest principal quantum number. When orbital sets
are restricted to a maximum orbital angular quantum number, they are referred to by both maximum
quantum numbers as in 5f (indicating that 5g has been omitted). Therefore, a third factor affecting the
accuracy of a CI calculation is:
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(3) the set of orbitals and the method by which they are derived.

For ground state energies, where only a single state is under consideration, the most accurate wave
function in non-relativistic theory is the one with the lowest total energy. In relativistic theory, Breit
and QED often raise the energy, so the comparison is more complex. “Spectrum” calculations, namely
calculations for energy levels relative to the ground state, are different in that only the energy differences
need to be accurate. The energy of the common core largely cancels. In variational methods, it has been
found advisable to have all orbitals for the core the same and treat core polarization and relaxation as
a correction. Another factor in a systematic calculation is the need for maintaining a balance between
the different states in the treatment of correlation, so that the energy difference is stable, converges and
can be monitored. For this reason, correlation in all states should be treated in a uniform manner. Thus,
if the substitution s2 → p2 is applied to one state, it should be applied to all states. SD excitations
from a single CSF achieve a balance, but when applying the MR-SD strategy (for generality, the MR-SD
method includes the case where the multi-reference set consists of only one configuration), the MR set
for odd and even states should also be balanced. One strategy is to require the MR set to represent
essentially the same percentage of the final composition of the wave function. This was the strategy used
in determining the 2s22p 2P3/2–2s2p2 4P5/2 excitation energy that determines the energy separation of
the quartets relative to the doublets in neutral boron [28].

3. Example of an Analysis

As an example, let us compare some configuration interaction calculations for the 4s24p5 (odd) and
4s24p44d (even) ASFs of W39+. The notation implies a 1s22s22p63s23p63d10 core, and most calculations
have treated this core as inactive. Because this is a heavy atom, a fully relativistic approach is needed,
and Breit, vacuum polarization, and self-energy corrections should be included, although, as documented
by Aggarwal, Jha, and Mohan [11], the Breit correction is the most important. It will be assumed that
each MR set consists of a single CSF, namely 4s24p5 (odd) and 4s24p44d (even).

Table 1 shows the excitations that were included by various authors in defining the interaction matrix.
Some single excitations from the core or from valence orbitals to 5s, 5p, 5d were included by some
authors, but these do not have a large effect, so this table is restricted to the potentially significant
excitations in the complex. It also shows whether the same excitation has been applied to both the
odd and even states. A blank indicates the excitation was not applied to any state. Probably because
of the large number of cases being considered, Fournier [1] restricted excitations to single excitations
that are balanced. Radtke applied the 4p → 4f excitation only to the odd states. Aggarwal, Jha and
Mohan (AJM) [11] included some double excitations not quite in a balanced fashion, whereas Aggarwal
and Keenan [12] performed a series of GRASP calculations. The first, GRASP1 (G1), has only a few
excitations and is almost balanced, whereas the second, GRASP2 (G2), includes more excitations, often
only in the odd state. Also included were several odd configurations, such as 4s24p4d4, 4s24p24d24f and
4s24p34d3, which are higher-order corrections and do not interact directly with the 4s24p5 configuration.
Thus, they do not affect the wave function significantly, but greatly increase the computational effort.
Finally, the present GK1 calculation using the GRASP2K code, included all SD excitations within the
n = 4 complex.
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Table 1. Excitations to the n = 4 orbital set from 4s24p5 (odd) and 4s24p44d (even)
configurations in different calculations. For each calculation, the Yes/No (Y/N) notation
indicates whether the excitation has been included in the odd and even states, respectively.
A blank field indicates that the excitation was not considered for any state.

Excitation F a R b AJM c G1 d G2 e GK 1
f

4s2 → 4p2 Y Y Y Y Y Y Y Y
→ 4d2 Y N Y Y
→ 4f2 Y Y

4s → 4d Y Y Y N Y N Y Y
4p → 4f Y Y Y N Y N Y N Y Y
4s4p → 4d4f Y Y
4p2 → 4d2 Y Y Y Y

→ 4f2 Y N Y Y
4s4d → 4p2 Y Y

→ 4d2 Y Y
→ 4f2 Y Y
→ 4p4f Y Y Y Y Y Y Y Y

a Fournier et al. [1]; b Radtke et al. [5]; c Aggarwal, Jha and Mohan (AJM) [11]; d GRASP1 calculations [12]; e

GRASP2 calculations [12]; f present GRASP2K calculations.

In W39+, the ground state is 4s24p5 and the first excited configuration is 4s24p44d. The 4s4d → 4p2

excitation produces the 4s4p6 configuration, which happens to be a configuration within the spread of
4s24p44d. In order to include all the J = 1/2 levels, orbitals were optimized on the six lowest levels.

Table 2 shows the results from four different calculations using GRASP2K. In GK0, the orbitals for
the two levels of 4s24p5 were optimized for the equally weighted average energy for the two odd ASFs,
2P1/2 and 2P3/2. With the core orbitals then fixed, the 4s, 4p, 4d orbitals for 4s24p44d and 4s4p6 were
determined for the equally weighted energy of six J = 1/2, eight J = 3/2, eight J = 5/2, five J = 7/2

and two J = 9/2 ASFs. The GK1 calculation proceeded in the same fashion, except that the wave
function expansion included SD excitations from 4s24p5 for the odd states and from 4s24p44d for the
even to the n = 4 set of orbitals, which includes all the important CSFs within the complex. GK2

differs in that the excitations include SD excitations to the larger n = 5 orbital set. The table shows that
the energy spectra for both GK1 and GK2 are very similar. These calculations both include the effect
of “valence correlation”, where all the occupied orbitals in the n = 4 subshells are treated as valence
electrons. They differ in that GK2 also includes excitations to the n = 5 orbitals. Such calculations
have neglected the effect of core polarization. In a CI calculation, the effect of core polarization arising
from the 3d10 subshell is represented by excitations, where one of the orbitals is from the 3d subshell
and the other is a valence orbital. The GKCV results include the SD excitations from both valence and
3d-core-valence excitations, with Level 21 slightly lower than Levels 22 and 23, which have the same
energy in the observed spectra.
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Table 2. Comparison of energy levels (in units of 1,000 cm−1) for 4s24p5, 4s4p6, 4s24p44d

configurations in W39+ from four systematic calculations and the final composition in LS
and jj-coupling (see the text for details). In the latter, the J-value of 4s24p4 is given in
square brackets to designate the coupling. Levels not in the final order are shown in blue.

No. Pos. J GK0 GK1 GK2 GKCV CSF label in LS % CSF label in jj %

1 1 3/2 0.0 0.0 0.0 0.0 4s24p5 2P o 98.6 4s24p2−4p
3 98.6

2 1 1/2 751.2 745.9 746.3 747.4 4s24p5 2P o 98.3 4s24p−4p
4 98.3

3 1 3/2 1,208.4 1,215.6 1,215.2 1,216.5 4s24p4(3P )4d 4D 36.9 4s24p2−4p
24d− 91.5

4 1 1/2 1,227.3 1,233.6 1,233.4 1,234.7 4s24p4(3P )4d 4P 45.9 4s24p2−4p[2]4d− 94.2
5 1 5/2 1,227.1 1,234.4 1,234.0 1,235.3 4s24p4(3P )4d 4D 43.3 4s24p2−4p

2[2]4d− 92.0
6 1 7/2 1,249.5 1,256.3 1,255.2 1,257.2 4s24p4(3P )4d 4F 31.5 4s24p2−4p

2[2]4d− 96.9
7 2 3/2 1,317.8 1,321.3 1,319.8 1,322.1 4s24p4(1S)4d 2D 54.8 4s24p2−4p

2[0]4d− 77.2
8 2 7/2 1,373.4 1,380.2 1,380.4 1,381.0 4s24p4(3P )4d 4D 42.0 4s24p2−4p

2[2]4d 96.6
9 2 1/2 1,376.9 1,382.8 1,383.8 1,385.5 4s24p4(3P )4d 2P 35.1 4s24p2−4p

2[2]4d 82.9
10 1 9/2 1,382.3 1,390.8 1,390.6 1,391.6 4s24p4(3P )4d 4F 68.7 4s24p2−4p

2[2]4d 98.7
11 2 5/2 1,491.3 1,494.3 1,493.3 1,494.8 4s24p4(1S)4d 2D 45.7 4s24p2−4p

2[2]4d 53.5
12 3 3/2 1,532.4 1,531.6 1,530.8 1,528.7 4s24p4(3P )4d 4P 24.0 4s24p2−4p

2[2]4d 90.7
13 3 5/2 1,559.7 1,556.3 1,555.2 1,552.4 4s24p4(3P )4d 2D 22.1 4s24p2−4p

2[2]4d 64.2
14 3 1/2 1,643.8 1,643.8 1,644.6 1,647.0 4s4p6 2S 69.1 4s4p2−4p

4 69.1
15 4 1/2 1,914.9 1,917.8 1,918.5 1,920.3 4s24p4(3P )4d 4D 78.3 4s24p−4p

3[1]4d− 88.8
16 4 3/2 1,955.3 1,957.4 1,957.6 1,959.8 4s24p4(3P )4d 4D 33.9 4s24p−4p

3[1]4d− 69.6
17 4 5/2 1,991.6 1,993.0 1,992.6 1,995.2 4s24p4(3P )4d 4F 45.2 4s24p−4p

3[1]4d− 53.9
18 3 7/2 2,000.2 2,001.6 2,000.7 2,004.0 4s24p4(1D)4d 2G 58.6 4s24p−4p

3[2]4d− 98.2
19 4 7/2 2,098.8 2,102.6 2,103.3 2,104.9 4s24p4(3P )4d 4D 41.7 4s24p−4p

3[1]4d 88.6
20 5 3/2 2,129.9 2,130.3 2,130.5 2,130.9 4s24p4(1D)4d 2P 50.4 4s24p−4p

3[2]4d 44.6
21 5 1/2 2,164.1 2,148.9 2,147.2 2,141.8 4s24p4(1D)4d 2S 41.3 4s24p−4p

3[2]4d− 77.6
22 5 5/2 2,150.4 2,148.8 2,147.1 2,143.3 4s24p4(3P )4d 2D 32.0 4s24p−4p

3[2]4d− 49.2
23 6 3/2 2,158.2 2,150.1 2,149.1 2,146.7 4s24p4(3P )4d 2P 45.4 4s24p−4p

3[2]4d− 40.7
24 6 5/2 2,159.0 2,151.9 2,152.1 2,154.0 4s24p4(3P )4d 2F 42.8 4s24p−4p

3[1]4d 77.4
25 2 9/2 2,152.5 2,154.9 2,154.6 2,157.0 4s24p4(1D)4d 2G 68.4 4s24p−4p

3[2]4d 98.3
26 7 5/2 2,179.4 2,178.6 2,178.5 2,180.3 4s24p4(1D)4d 2D 31.4 4s24p−4p

3[2]4d 73.3
27 5 7/2 2,212.4 2,211.6 2,211.0 2,213.6 4s24p4(1D)4d 2F 56.2 4s24p−4p

3[2]4d 88.2
28 7 3/2 2,339.7 2,327.8 2,326.8 2,324.0 4s24p4(3P )4d 2D 39.2 4s24p−4p

3[2]4d 43.9
29 6 1/2 2,396.5 2,378.1 2,376.9 2,370.1 4s24p4(3P )4d 2P 36.1 4s24p−4p

3[2]4d 89.0
30 8 3/2 2,887.6 2,871.0 2,869.7 2,868.2 4s24p4(1S)4d 2D 34.1 4s24p4[0]4d− 92.5
31 8 5/2 2,939.5 2,932.8 2,932.9 2,936.5 4s24p4(1S)4d 2D 36.6 4s24p4[0]4d 97.3

In Table 2, the levels are presented in the order of the most accurate calculation (in theory), namely
GKCV . Levels not in this order are depicted in blue. This shows that the order of the levels without
correlation (GK0) is not always correct, although some levels are very close together and the order of
such levels can be expected to be uncertain. The computed spectra from GK1 and GK2 are almost in
the final order in that Levels 22 (J = 1/2) and 21 (J = 5/2) are very close. Only with the addition
of core polarization are the levels in the final order. Levels 21–23 have been observed as parts of a
blended line [4].

Also included in Table 2 is the largest component of the wave function composition for each level. For
neutral atoms, LS coupling describes the composition well and has the advantage that it is easy to classify
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E1 transitions readily into spin-allowed and spin-forbidden transitions. However, for fully relativistic
calculations in jj-coupling for highly ionized atoms, the largest component in LS coupling is often less
than 50%. Since states are labeled by the largest component, this may lead to situations where two
different ASFs have the same label, which occurs frequently when three CSFs interact strongly. Table 2
includes the largest component in both schemes and shows that, in most cases, the largest component
in the jj-coupling scheme is more dominant and, thus, is a better representation of the ASF. A more
detailed study of composition for the J = 1/2 states shows that, for Level 9, the 4s4p6 CSF accounts for
14.4% of the wave function composition and should have been included in the MR set for even states,
although it would affect only the even J = 1/2 levels. This illustrates that it is not always possible to
determine the best MR set before a calculation is started when observed energy levels are not available.

Table 3 compares the J-values of levels 20–25 between the different theoretical calculations. In the
GRASP2K calculations, the order of these levels changed significantly when the SD correlation in the
complex was added in, going from GK0 to GK1. The J = 1/2 and J = 9/2 levels were affected the most,
and some of their positions changed. Note that other calculations with smaller expansions that exclude
excitations to CSFs with more 4d and 4f electrons (see Table 1) are closer to that of the uncorrelated
order of GK0. The final column shows the results from a least squares fitting of observed wavelengths
using the HFR code [19] for which Levels 24 and 25 are interchanged. Because of their uncertainty,
Levels 24 and 25 are not included in the ASD website [20].

Table 3. Table showing the order of J-values for Levels 20 to 25 for the different
calculations.

No. GK0 GK1 GK2 GKCV F a AJM b G1 c G2 c F1 c F2 c HFR d

20 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2
21 5/2 5/2 5/2 1/2 9/2 9/2 5/2 5/2 5/2 5/2 1/2
22 9/2 1/2 1/2 5/2 5/2 5/2 9/2 3/2 3/2 9/2 5/2
23 3/2 3/2 3/2 3/2 5/2 5/2 3/2 9/2 9/2 3/2 3/2
24 5/2 5/2 5/2 5/2 3/2 3/2 5/2 5/2 5/2 5/2 9/2
25 1/2 9/2 9/2 9/2 1/2 1/2 1/2 1/2 1/2 1/2 5/2

a Fournier [1]; b AJM [11]; c Calculations from Aggarwal and Keenan [12]; d A. Kramida (personal
communication).

Some upper levels are connected with the 2P o
3/2 ground configuration by a direct E1 transition, so that

their energy levels can be derived from observed wavelengths. Table 4 compares experimental values
with theoretical values from various calculations. The calculated value that agrees most closely with the
experiment is shown in blue. In all cases, the present results are the most accurate. The fact that often this
is GK2 rather than GKCV , indicates that more effects need to be included. Generally, there is reasonable
agreement between F [1], AJM [11] and G1 [12], since the expansions are similar in that the excitations
with the largest effect, namely 4p2 → 4d2, were not considered. Both AJM and G1 were obtained
through the use of the same code [13,14] and the same EAL method for obtaining radial functions for
the orbitals. It should be mentioned that Aggarwal and Keenan [12] labeled Level 13 as 2F5/2, rather than
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2D5/2. Because of the lack of balance in their excitations, particularly in G2, most transition energies
became larger in going from G1 to G2, increasing the discrepancy with the experiment.

Table 4. Comparison of energy levels (in units of 1,000 cm−1) from two different
experimental measurements with a number of different calculations. The best values are
denoted in blue.

No. LSJ Exp. a Exp. b GK0 GK2 GKCV F c AJM d G1 e G2 e

5 4D5/2 1,232.40 1,227.1 1,234.0 1,235.3 1,236.2 1,272.5 1,229.5 1,251.3
12 4P3/2 1,523.06 1,520.08 1,532.4 1,530.8 1528.7 1,540.1 1,578.9 1,534.6 1,544.7
13 2D5/2 1,546.50 1,544.64 1,559.7 1,555.2 1,552.4 1,565.5 1,603.3 1,561.9 1,570.5
14 2S1/2 1,638.0 1,643.8 1,644.6 1,647.0 1,656.0 1,694.0 1,649.3 1,685.8
17 4F5/2 1,973.92 1,991.6 1,992.6 1,995.2 1,999.6 2,035.6 1,994.2 2,010.7
21 2S1/2 2,135.50 2,164.1 2,147.2 2141.8 2,170.6 2,212.0 2,167.2 2,175.1
22 2D5/2 2,135.5 2,136.30 2,150.4 2142.1 2,143.3 2,165.1 2,194.8 2,161.6 2,172.4
23 2P3/2 2,135.5 2,136.30 2,158.2 2,148.7 2,146.7 2,165.4 2,204.7 2,160.7 2,166.6
26 2D5/2 2,176.09 2,179.4 2,178.5 2,180.0 2,189.7 2,204.6 2,181.8 2,200.5

a Utter et al. [4]; b Radtke et al. [5]; c Fournier [1]; d AJM [11]; e Aggarwal and Keenan [12]. Exp.: experiment.

Table 5 compares transition data from methods GK2, GKCV and AJM along with an indicator of
accuracy, δT [29]. The latter is the deviation from unity of the ratio of the length and velocity form
of the line strength, which can be used as an accuracy indicator in addition to the transition energy.
The latter may not always be available, in which case, the length/velocity test may still be applied in
a statistical sense for a set of lines. Unlike the cancellation factor as defined by Zhang et al. [30] that
neglects the cancellation in the radial factor of the transition matrix element, the δT factor is sensitive to
all forms of cancellation. In Table 5, for most transitions, δT is considerably smaller for GK results than
for AJM. An exception is the first transition to 4D5/2. This is an intercombination transition, where the
line strength for a relativistic calculation is exceptionally small, due to cancellation [31], a case for which
all methods may have more uncertainty. In spite of the much larger δT in this one case, the average value
for these 10 transitions is 0.02, 0.025 and 0.041 for the three methods, GK2, GKCV and AJM. What is
a concern, however, is that the average δT is larger for GKCV than for GK2. At the same time, the
average δT for the present values are smaller than the average for AJM values, in agreement with the
energy level evaluation. A better understanding of the source of the remaining discrepancy is needed.
The omission of 4s4p6 from the even MR set has not resulted in a noticeable discrepancy, because, in this
particular case, the n = 4 expansion does not change, but its inclusion would result in a more reliable
n = 5 calculation.

Lines from M1 transitions between the fine-structure levels of the ground state have been observed [7].
Quinet [15] recently has computed many energy levels using the GRASP [13,14] code in the EAL
mode with SD excitations in the n = 4 shell for the 4pk (k = 1 − 5) and 4dk (k = 1 − 9) of
tungsten ions W29+ through W43+. Two experimental measurements have been reported for W39+,
one at 131.8 Å [5] and one at 134.74 Å [7] for which the 2P1/2 energy levels are 758,725 cm−1 and
742,170 cm−1, respectively. Table 6 shows fine-structure splitting of a number of calculations. All are
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closest to the Ralchenko et al. [7] value, but the inclusion of some core-valence correlation did not bring
results into better agreement with observation. At the moment, the source of the remaining discrepancy
is not clear. As shown by Aggarwal, Jha and Mohan [11] and confirmed in the present work, the largest
correction to the energy levels is the Breit correction, with vacuum polarization and self-energy being
significantly smaller.

Table 5. Comparison of E1 transition data for transitions from the 4s24p5 2P o
3/2 ground state

to selected upper levels for GK2, GKCV and AJM. Experimental values of λ are provided
when available [4], and the method in best agreement with that which is observed is displayed
in blue.

Upper λobs(Å) Method λ(Å) S gf A (s−1) δT

4D5/2 81.15 GK2 81.05 2.372 × 10−3 8.890 × 10−3 1.505 × 10+9 0.107
GKCV 80.95 2.232 × 10−3 8.375 × 10−3 1.421 × 10+9 0.124
AJM 78.597 1.90 × 10−3 7.32 × 10−3 1.32 × 10+9 0.06

4P3/2 65.66 GK2 65.32 0.2254 1.048 4.098 × 10+11 0.0115
GKCV 65.42 0.2203 1.023 3.986 × 10+11 0.017
AJM 63.335 0.216 1.04 4.30 × 10+11 0.04

2D5/2 64.66 GK2 64.29 0.4466 2.110 5.674 × 10+11 0.012
GKCV 64.42 0.4380 2.065 5.533 × 10+11 0.011
AJM 62.37 0.422 2.05 5.87 × 10+11 0.04

2S1/2 61.05 GK2 60.80 0.1368 0.6837 6.168 × 10+11 0.0059
GKCV 60.72 0.1332 0.6666 6.030 × 10+11 0.0115
AJM 59.03 0.126 0.648 6.19 × 10+11 0.07

4F5/2 50.66 GK2 50.19 0.01459 0.08832 3.898 × 10+10 0.017
GKCV 50.12 0.01502 0.09098 4.027 × 10+10 0.021
AJM 49.13 0.0162 0.104 4.62 × 10+10 0.03

2P3/2 GK2 46.94 0.07297 0.4723 3.5749 × 10+11 0.014
GKCV 46.93 0.1056 0.6834 5.175 × 10+11 0.017
AJM 45.93 0.0401 2.65 2.104 × 10+11 0.04

2D5/2 46.87 GK2 46.58 0.5897 3.846 1.971 × 10+12 0.0078
GKCV 46.66 0.5594 3.636 1.857 × 10+12 0.0115
AJM 45.36 0.558 3.740 2.02 × 10+12 0.03

2S1/2 46.87 GK2 46.57 0.2581 1.683 2.488 × 10+12 0.0004
GKCV 46.69 0.2429 1.580 2.417 × 10+12 0.00052
AJM 45.207 0.264 1.77 2.89 × 10+12 0.05

2P3/2 46.87 GK2 46.53 0.2908 1.898 1.462 × 10+12 0.0072
GKCV 46.58 0.2361 1.539 1.183 × 10+12 0.013
AJM 45.359 0.321 3.15 1.74 × 10+12 0.03

2D5/2 45.95 GK2 45.90 0.03232 0.2139 1.129 × 10+11 0.013
GKCV 45.86 0.02221 0.1471 7.775 × 10+10 0.021
AJM 44.92 0.0669 0.452 2.49 × 10+11 0.03



Atoms 2014, 2 11

Table 6. The fine-structure splitting (in cm−1) of the 4s24p5 2P o configuration as predicted
by theory compared with experiment.

Theory Experiment
Source E (cm−1) λ (Å) Source E (cm−1) λ (Å)

Fournier (1998) [1] 748,547 133.6 Radtke et al. (2007) [5] 758,725 131.80
Radtke et al. (2007) [5] 749,232 133.47 Ralchenko et al. (2007) [7] 742,170 134.74(1)
AJM (2013) [11] 745,992 134.05
Quinet (2013) [15] 747,272 133.82
GK2 (present) 746,297 133.99
GKCV (present) 747,852 133.72
GKSDTQ4 (present) a 745,825 134.1

a SDTQ substitutions for n = 4 and SD for n = 5.

Highly ionized tungsten and similar elements are not super-heavy elements, where Breit and QED
corrections are more important than the many-body effects. At the same time, they are sufficiently
ionized, so that correlation effects converge fairly rapidly, requiring only a few layers of correlation
orbitals. As a result, the method for obtaining the radial functions of orbitals may not be as critical as
for neutral atoms. Certainly, in the present case, the determination of the orbitals for an n = 4 expansion
(within the complex) from an EAL calculation in GRASP or model potential in FAC, in comparison with
EOL for GRASP2K, does not appear to make a significant difference. Greater differences are expected
to occur when the orbital sets are increased to n = 5 or higher.

The most accurate results were the MR-SD results obtained using GRASP2K. The size of the matrices
were as follows:

Method Odd: J = 1/2, 3/2 Even: J = 1/2, 3/2, 5/2, 7/2, 9/2

GK2 851, 1,501 7,282, 13,079, 16,409, 16,937, 15,161
GKCV 2,999, 5,241 32,207, 57,696, 71,972, 73,858, 65,602

The inclusion of core-valence increases the size of the interaction matrices significantly, but with
sparse-matrix methods and iterative methods for finding the desired eigenvalues, the calculations can
readily be performed on current computers.

4. Conclusions

In summary, several important factors that affect the accuracy of results from different computational
procedures based on CI methods have been identified. In the W39+ example, the most important factor
was the CSFs included in the wave function expansion. It needs to be remembered that when two CSFs,
interact, say i and j, the ratio, cj/ci, of their expansion coefficients is,

cj/ci = −Hij/(Hjj − E) (2)

where E is an eigenvalue of the 2 × 2 interaction matrix, (Hij). Assuming Hij 6≡ 0, then, for
the order, such that ci > cj , cj is large (there is a lot of mixing) either if Hjj is close to E (near
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degeneracy) or if Hij is large. Including CSFs close in energy is not sufficient. Also important are
CSFs with a strong interaction (a large Hij). In quantum chemistry, correlation is classified as static
(nondynamic) correlation or dynamic correlation [32]. In atomic physics, static correlation arises from
near degeneracies, whereas dynamic correlation includes the correction needed for the electron–electron
cusp condition and is a short-range effect [33]. The MR-SD method of generating expansions with
sufficient layers of orbitals will include both types. In our example, the expansions from a single
configuration (4s24p44d) showed that 4s4p6 was an important component in the J = 1/2 levels, and
the calculation would be improved if 4s4p6 were added to the MR set.

A comparison with experimental energy levels (or wavelengths) for even a few levels helps the
evaluation of computed wave functions, but if these are not available, the internal check on the agreement
between length and velocity forms of line strengths can often be useful.
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