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Abstract: The statistical model for calculations of the collisional-radiative processes in 

plasmas with tungsten impurity was developed. The electron structure of tungsten 

multielectron ions is considered in terms of both the Thomas-Fermi model and the 

Brandt-Lundquist model of collective oscillations of atomic electron density. The 

excitation or ionization of atomic electrons by plasma electron impacts are represented as 

photo-processes under the action of flux of equivalent photons introduced by E. Fermi. The 

total electron impact single ionization cross-sections of ions Wk+ with respective rates have 

been calculated and compared with the available experimental and modeling data (e.g., 

CADW). Plasma radiative losses on tungsten impurity were also calculated in a wide range 

of electron temperatures 1 eV–20 keV. The numerical code TFATOM was developed for 

calculations of radiative-collisional processes involving tungsten ions. The needed 

computational resources for TFATOM code are orders of magnitudes less than for the 

other conventional numerical codes. The transition from corona to Boltzmann limit was 

investigated in detail. The results of statistical approach have been tested by comparison 

with the vast experimental and conventional code data for a set of ions Wk+. It is shown 

that the universal statistical model accuracy for the ionization cross-sections and radiation 
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losses is within the data scattering of significantly more complex quantum numerical 

codes, using different approximations for the calculation of atomic structure and the 

electronic cross-sections. 

Keywords: plasma; tungsten; Thomas-Fermi model; equivalent photon flux; plasma 

oscillations; ionization cross-sections; radiation losses; corona limit 

 

1. Introduction 

Description of the radiative-collisional processes in plasmas with tungsten impurity ions became 

relevant in connection with the application of tungsten as the construction material of divertor plates 

in the future tokamak reactor ITER [1–5]. The problem has to be solved over a wide range of plasma 

electron temperature from a few eV in the edge and up to 20 keV in the center of plasma. Moreover, in 

all temperature ranges of interest, the multielectron tungsten ions have a very complex energy structure 

that results in time-consuming quantum mechanical calculations both of atomic structure and elementary 

processes, responsible for populations, ionization and radiative properties of tungsten ions in plasmas. 

As far as additional approximations applicable only in limited temperature ranges are used for 

atomic processes calculations, the noticeable discrepancies arise between the results of complex 

specific codes [6,7]. The analysis of this problem has shown a possibility of its solution within the 

general statistical methods [8,9] for modeling of the atomic processes with multielectron ions [10–12]. 

Indeed, according to the recently developed statistical model for radiative and collisional processes 

with multielectron ions [13–15], this way of consideration would be advantageous for the 

determination of atomic process scaling laws in a wide temperature range. 

The physical essence of the model is a representation of the electron structure of tungsten charge 

states similar to a plasma system, whereby excitations are equivalent to the excitations of local 

classical plasma oscillations in the atomic electron structure. The majority of atomic electrons occupy 

the atomic states with the large values of principle and orbital momentum quantum numbers where the 

electron motion is quasi classical [8-10]. The motion of plasma electrons, exciting electron shells of 

impurity ions, is also considered in the frames of classical approximation. The latter is based on the 

applicability of classical approximation to the Thomas-Fermi (TF) statistical potential. This was 

demonstrated in calculations of bremsstrahlung spectra [16] on multielectrons systems, which are in 

excellent agreement with quantum calculations of corresponding effects. The application of the Fermi 

method of equivalent photons [17] allows the consideration of the excitation processes in atoms as 

photoabsorption of the equivalent photon flux. The most detail modeling [18] estimates the accuracy of 

approximations under consideration. 

The statistical method describes the radiative properties of radiating tungsten ions in terms of 

simple functionals of electron density distribution inside the atom. The corresponding numerical 

realization of statistical models will be much less time-consuming and at the same time enough 

accurate as compared with more detail numerical codes. 

It is worth noting that the applications of conventional numerical codes over a wide range of plasma 

parameters result in strong discrepancies (up to 2–3 times depending on the specific situation). This is 
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due to the very complicated atomic structure of multielectron tungsten ions making problematic the 

selection of universal model for calculations of atomic data. For instance, in the low temperature 

range, the most adequate approximations are based on the strong coupling method (see, e.g., [18]). 

However, in this case, the results are strongly dependent on the number of atomic states which increase 

rapidly with an increase of the number of bound electrons. As the temperature grows, the 

Coulomb−Born approximation, together with its modification [18] using distorted waves, starts to be 

more effective for calculations of collisional-radiative processes. At last the pure Coulomb−Born or 

Born approaches are successfully used in plasmas with the high temperatures. 

The most popular approach in atomic structure calculations is the Hartree−Fock method. However, 

its accuracy depends on the number of atomic states taken into account, and on the complicated electron 

coupling in complex tungsten ions. As these models need very laborious calculations, their joint application 

with the plasma codes (for instance, the transport ones) is all the more time consuming. 

The alternative possibilities of presented statistical theory in solving these problems are illustrated below 

by the specific calculations of atomic processes with tungsten ions in plasmas. It will be shown that the 

statistical theory data hit the scatter of discrepancies between more detailed conventional calculations. 

2. Basic Equations of Statistical Theory and Fermi’s Equivalent Photons Model 

2.1. Ionization Cross-Sections and Rates 

The interactions of plasma electrons with tungsten ions are considered using the method of 

equivalent photons (EQP) given by E. Fermi [17]. In this method, the action of the electric field of 

plasma electrons on the tungsten impurity ions is described as the photoabsorption of equivalent 

photons flux. Its intensity is determined by Fourier transform of the electric field of the plasma 

electron, moving along the classical trajectory in the TF ion potential. Thus the moving plasma 

electrons produce the electromagnetic field, which is absorbed by atomic electrons at the frequencies, 

related to the atomic plasma oscillations, while the EQP approach makes it possible to express the 

electron impact ionization in terms of photoionization cross-section. Moreover, the cross-section of any 

elementary process due to the multielectron ion interactions with plasma-charged particles may be 

represented in the dipole approximation in terms of cross-sections of photo-processes with EQP. 

In accordance with the statistical model [13], the electron impact ionization cross-section is given in 

terms of the photoionization cross-section at the frequency  , which satisfies the resonance condition [11] 

 2, 4 /p e n r m      (1)

which determines the effective absorption radius r  being the solution of the equation above. 

The conventional dimensionless reduced frequency / 2 / /as RyZ Z     satisfies the local 

resonance condition (1) via the implicit dependence of the reduced distance from the nuclear 
/s s TFx r r  where 2 1/3 1/3

0 (9 / 128)TFr a Z     is the TF radius, 0a  is the Bohr radius and then 

2 1/ 2 3/ 4(128 / 9 ) [ ( ) / ]s ss x x   , (2)

where  ;sr q  is the standard screening function in the TF model. 

The plasma electron trajectory in the TF ion potential could be described in the Coulomb 
approximation by the effective charge effz , determined by the resonance condition (1) 
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  0, /eff s sz Z r q qr r     
(3)

where 0 ( , )r Z q  is the TF ion radius for given q = zi/Z. 

The value of zeff is changed smoothly from zi at small frequencies up to Z at large frequencies. Such 

deviation for the tungsten ions with zi = 22,28,34 is given in Figure 1 versus s. 

 

Figure 1. Effective charge in Thomas-Fermi model, calculated from Equation (3) versus 

reduced frequency for ions W22+ (solid curve), W28+ (dashed curve), W34+ (short dashed curve). 

The EQP number ( ) /dN s ds  with the reduced frequency s  per unit frequency interval ds for the 

given reduced energy of electrons / (2 )R eE E RyZ  could be written in the form (compare with [14]) 

  3/2
2

( ) 1
2

4 3
eff R

R

dN s c
g z Zs ZE

ds ZsE e

   
 


 (4)

where с is the speed of light, е is the electron charge,   3/2
2eff Rg z Zs ZE

 
 

 is the Gaunt-factor, that 

describes the curvature of electron trajectory in the given potential of an ion with the charge zi and the 

charge of nuclei Z in the Coulomb approximation [13–16]. 

Now we multiply the photoionization cross-section by the number of EQP (4) and then integrate 
overall EQP frequencies s from the reduced ionization potential / (2 )R iI I RyZ  up to RE , that results in 

the following expression for the total electron impact single ionization cross-section (compare with [14,15])  

   
24

3/22
0

( , )3
/ 2

64 ( , ) ( , ) /

R

R

E
s s

i e eff R
R s s sI

x x q
E a ds g z Zs ZE

ZE x q x q x


 

 
    (5)

where RI  is calculated using the TF form for iI  to make the theory self-consistent, while the fitting 

expression for the Gaunt factor is provided by the Coulomb approximation (see [13–16]). We use Equation 

(5) for calculations of ionization cross-sections for a large set of tungsten ions, presented below. 
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2.2. Excitation Rates 

The representation of atomic structure as a set of oscillators, being excited by collisions with 

external plasma electrons, is in the background of the present approach. The interaction of plasma 

electrons with atoms is considered in the Fermi approximation of EQP, where the electric field of 

equivalent photon flux is determined by the Fourier expansion of the electric field of electron, moving 

along the classical trajectory in the field of atom being excited. In this formulation the excitation of 

bound electrons in multielectron ion is expressed in terms of the photoabsorption cross-section, for 

which in its turn the aforementioned statistical models of multielectron atoms could be used [8–15]. 

In the LPF model [8], the photoabsorption cross-section is expressed in the form 

       
2 2 2 2

3 2 ( )2 2
4 / p

abs p

r r

d re e
d r n r r r n r

mc mc dr


 

      


        (6)

where m is the electron mass. 

If the atomic electron density distribution given by the Thomas-Fermi model is additionally used, 

Equation (6) is transformed to 

 
22 4

2
0

( , )3
/

16 ( , ) ( , ) /
B L s s
ph

s s s

x x qe
s a s

c x q x q x


 

    
 

 (7)

The behavior of the universal photoexcitation cross-section (7) versus s  for three values of 

stripping q is shown in Figure 2. 

 

Figure 2. Photoabsorption cross-section σ(s) in LPF model and statistical Thomas-Fermi 

model versus the reduced frequency s = ω/Z/ωa for three values of q: solid (red)  

curve—q = 0.3; short dashed (blue) curve—q = 0.4; long dashed (green) curve—q = 0.5. 

According to the universal statistical theory proposed in this work, the excitation rates now could be 

obtained by multiplying the photoabsorption cross-section Equation (7) by Equation (4) and the value 
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of electron flux ve en (where en  is the plasma electron density and ve  is the electron thermal velocity), 

and then integrating over the Maxwell distribution over energy of plasma electrons. 

3. Ionization Balance of Impurity Tungsten Ions in Plasmas 

3.1. Ionization Potentials and Average Charge 

For the self-consistency within the statistical theory in calculations of the electron impact ionization 

cross-sections, the ionization and excitation rates we use are the reduced ionization potentials IR, 

determined by the following expression (compare with [10]) 

0

02 ( , )
i

R
TF

I a q
I

RyZ x q Z r
   (8)

In Figure 3, the comparison of tabulated ionization potentials [19] for of tungsten ions with the 

Thomas-Fermi model values calculated from Equation (8) is presented. As can be seen by the figure, 

the statistical model quite reasonably approximates the available data [19]. 

 

Figure 3. Ionization potentials of W ions: solid lines—approximation in Thomas-Fermi 

model (TF); points—tabulated ionization potentials of W [19]. 

The calculations of total radiation losses need information on the charge state distribution (CSD) of 

radiating tungsten ions with the detailed knowledge of their ionization and recombination rates 

entering the ionization balance equations. In the present consideration we used the available in 

literature data on the average charge <z(Te)> instead of the detailed procedure of averaging over the 

CSD function. The performed analysis has shown that the accuracy of this approach is the same as of 

the statistical model itself. In Figure 4, we present the <z(Te> dependencies according to the current 

complex codes. The range of Te typical for large tokamaks corresponds to ions W20+—W56+. 
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Figure 4. Average charge of tungsten ions versus electron temperature in coronal 

equilibrium according to data from [1,7] (AIM ADPAK), [3] (CADW-ADPAK), [4] 

(CA-LARGE) and [20] (AIM). 

3.2. Gaussian Approximation 

In Figure 4, the appreciable discrepancies in the <z(Te> dependencies due to the difference in 

ionization and recombination rates, which are provided by the different approaches for the complex 

atomic electron structure of tungsten ions, become evident. We would like to demonstrate below some 

general properties of CSD for heavy ions based on peculiarities of their ionization balance equations. 

The standard set of balance equations for ionization and recombination processes for the impurity 

CSD function fk has the form 

 1 1 1 1
k

k k k k k k k

f
R f R S f S f

t    


   


 (9)

where Rk and Sk are recombination and ionization rates respectively for the k-th charge states of the 

impurity, k = 0,1,2,...,Z. 

In the case of heavy ions, the relative charge state change is rather small as compared with the 

nuclear charge Z, and so it is possible to consider the parameter k as continuous. 

Let us introduce the relative charge xk = k / Z changing from 0 to 1, then it is possible to transform 

Equation (9) to the equivalent differential equation. Assuming that k >> Δk = 1, we expand both 

     2

1 1 2

1 1
...

2! !

n
k k k k k k

k k k k n

R f R f R f
R f R f

k k n k 

  
    

  
 (10)

and 

       2

1 1 2

11
...

2! !

n n
k k k k k k

k k k k n

S f S f S f
S f S f

k k n k 

   
    

  
 (11)

where the derivations can be determined using the interpolation Lagrange formula. Substituting 

Equations (10)–(11) into Equation (9) gives the expression 
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 
1

nZ
nk kk
n

n

C ff

t x




   
(12)

where /x k Z   . The coefficients in Equation (12) take the form 

 1

!

n

k k
nk n

R S
C

n Z

 
  (13)

Equation (12) belongs to the Fokker−Plank−Kolmogorov type in the charge state space where all 

series of coefficients are expressed in terms of the variable combinations Sk and Rk. As it follows from 

Equation (13), the series and the coefficients Сnk are decreasing rapidly. It thus makes it possible to 

limit the consideration by the first two terms in the case of large Z  values 

   2

2 22
k k k kk k k

S R R Sf f f

t Z x Z x

   
   

  
 (14)

Equation (14) is of the diffusion type, where the diffusion coefficient is inverse proportional to Z2. 

This means that the CSD of heavy ions could be very sharp with the increase of Z, and the coefficients 

(13) change slowly on the width of the CHS distribution. 

In this case, Equations (12)–(14) could be transformed to the parabolic type equation with the 

approximately constant coefficients. It is well known that the solution of such equation is close to 

Gaussian distribution, which can be written in our case in the form 

   2

21
exp

22
a

k

x x
f x Z



 
   

  
 (15)

where xa = <z> / Z is the relative average charge of CHS distribution and δ is its dispersion. 

The main feature of the tungsten impurity CSD is demonstrated in Figure 5 by the comparison 

between Gaussian distributions and ones obtained with ionization-recombination rates used in  

AIM-ADPAK code [1] for a wide range of temperatures. Some deflection of these CSDs from the 

Gaussian form can be seen near Te = 100 eV and 2 keV, where the ramps of ionization rates between 

neighboring atomic shells affect the correct solutions of Equation (9). 

Figure 5. Comparison of the tungsten impurity equilibrium CSDs, obtained as the  

steady-state solutions of Equation (9), with the Gaussian distributions, calculated by 

Equation (15): (a)—for Te < 1 keV; (b)—for Te > 1 keV (the curves are labeled by 

corresponding Te values). 
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The dispersion δ of the impurity CSD has the form 

22

0

Z

k
k

k f z


   (16)

In the case of tungsten plasma impurity the calculated function δ(<z>) is shown in Figure 6. It is seen 

that by using Equation (15) for Gaussian distributions with δ(<z>), one can rather accurately 

approximate the solutions of Equation (9) for tungsten impurity in a wide range of plasma electron 

temperatures. 

 

Figure 6. Dispersion of tungsten impurity in coronal equilibrium versus average charge of 

CSD: calculated from the data of AIM-ADPAK code [1] for ionization and recombination 

rates (the corresponding Te values are noted by points along the curve). 

4. Plasma Radiative Losses 

4.1. Coronal Radiative Losses 

It can be shown that the conditions of coronal model, in which the radiation losses are determined 

totally by collisional excitation rates of ions, are mainly fulfilled in the applications for thermonuclear 

fusion with magnetic confinement. Therefore, within the aforementioned approximations, the radiation 

losses of energy per an electron and per a given ion of multielectron impurity take the universal form, 

expressed in terms of photoexcitation rates of atoms in the field of EQP. 

Taking into account only the bound states, the integration over frequencies is performed up to the 

ionization potential of a given ion. The integration over energies of incident electron goes from the 

equivalent photon frequency, which corresponds to the excitation thresholds of atomic transitions in 

the statistical model. 

So, the radiative energy losses in corona approximations can be expressed in terms of the absorption 

power in electron-ions collisions. As it was already noted the electron excitation rates can be expressed 

in terms of photoexcitation cross-sections from Section 2.2, multiplied by the intensity of the EQP flux 

that could be obtained, using results of Section 2.1. This allows the writing of the radiative losses 

power per one electron and one ion in the form 
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 

 

0

0 2
0 /

( )1
/ ( )

1
2 ( ) ,

6

R

R

R

R

CoulombI
E

abs e ph
e

I
u

a ph

s TR

dI s
Q n ds s

n ds

c
a RyZ ds s du e g s u

e ZT



 





 
 

    



 


 (17)

where  / 2R eT T RyZ  and u = ER / TR, σph (s) is the ion photoexcitation or photoionization cross-section; 

  3/2
( , ) 2eff Rg s u g z Zs ZuE

    is the introduced above Gaunt factor;   ( )
R

Coulomb
EdI s   is the intensity of 

equivalent photon flux with the reduced frequency s  per unit frequency interval ds , averaged over 

energy ER of the electron projectile, scattered by the target. 

Thus, in the frame of the statistical Thomas-Fermi model, the radiation losses in coronal 

equilibrium could be represented in the form (compare with [13]) 

   
24

3
0

0 /

( , )3 1
2 ,

16 ( , ) ( , ) /6

R

R

I
uabs s s

a
e s s s s TR

Q s x x q
a RyZ ds du e g s u

n x q x q xZT


 




     
    (18)

and for g(s,u) = 1 

   
24

3
0

0

( , )3 1
2 exp /

16 ( , ) ( , ) /6

RI

abs s s
a R

e s s sR

Q s x x q
a RyZ ds s T

n x q x q xZT


 


   

   (19)

In the case of the electromagnetic method (EM) [13], the numerical values of the corresponding 

photoabsorption cross-sections from [12] were substituted into Equation (17). 

4.2. Transition to Boltzmann Equilibrium 

The consideration above deals with the corona approximation related to low densities and high 

temperature plasmas. When temperature falls down or density increases, one has to use a more 

complex radiative-collisional model for calculations of radiative losses. The appropriate model could 

be constructed in the frames of statistical theory [8–15]. 

In order to obtain the Boltzmann limit, we need to derive expressions for the excitation and deexcitation 

rates, connected by the detailed balance relation that contains the Boltzmann exponent with the plasma 

frequency in its power in terms of the atomic “plasma model,” using the Fermi EQP method and 

operating with the cross-sections of emission and absorption. 

It is presumed here that plasma electrons have isotropic Maxwell distribution over velocities and the 

EQP flux is unpolarized. As it was already implemented above, the photoabsorption cross-section in 

the local plasma frequency model (LPF) could be represented in the form [11] 

     
2 2

32
abs p

e
d n r r d r

mc

         (20)

Based on this, we can express the Einstein coefficient for spontaneous emission in the form 
2

2 3
3

( ) / 2 ( ) [ ( )]if p

e
dA d n r r d r

mc
        (21)

The total emission probability then is 
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 
2 2

2 3 2 3
3 3

2 ( ) ( ) [ ( )] 2 ( ) ( )if p p

e e
A d r n r r d r r n r d r

mc mc
         (22)

Hence, the total Einstein coefficient for induced radiation has the form 
3 2

2 2 3
3

2 ( )
( )ij ij

p

c e
B A n r d r

m r
 

 
 


 (23)

Let Nvp(ω) be the EQP number, Bij Nvp(ω) and Bji Nvp(ω) the deexcitation and excitation rates 

correspondingly under the action of EQP flux. Then from the equality of the direct and reverse 

processes we have 

( ) ( )if vp i fi vp fB N N B N N   (24)

Taking into account the Boltzmann distribution of level populations  

 exp /i j ij eN N T   (25)

we obtain 

 ( ) exp / ( )ij vp ij e ji vpB N T B N     (26)

On the other hand, the excitation rate under the influence of the EQP flux could be represented as 

the photoexcitation rate in terms of the photoabsorption cross-section. Let us write down the 

probability of EQP-induced absorption. The probability of induced radiation is determined by the 
product of the Einstein coefficient for the induced radiation ( )ijB   and the radiation energy density 

( )U   (erg/cm3) with the polarization σ, connected with the integral over solid angles  of the 

radiation spectral intensity ( , )I k 


 with the polarization   in the direction, determined by the wave 

vector k


and divided by the speed of light c  

3
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


 

 (27)

The intensity of EQP flux produced in the elastic scattering of electrons by the Coulomb center and 

averaged over the electron energy could be expressed as 

 0
2

/

2
( ) ,

6
R

ue a

s TR

n a RyZ c
d I s ds du e g s u ds

eZT





     


 (28)

It is presumed here, that electrons have the isotropic Maxwell distribution over velocities and the 

EQP flux is unpolarized. As was already implemented the photoabsorption cross-section, the plasma 

model has the form 

     
2 2

32
abs p

e
d r n r r

mc

         (29)

This integral represents the sum over the oscillator strengths of all transitions, while the separate 
transition could be represented through the oscillator strength differential 3( )n r d r  
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     
2 2

32
abs p

e
d n r r d r

mc

         (30)

Considering each pair of levels in the two states’ approximation, and equating the excitation rate 

due to the EQP photoabsorption to the deexcitation rate due to the spontaneous and induced radiation 

decay initiated by the EQP flux, we can write the balance equation in the two-level approximation 

within the “plasma” statistical model. Then the population of excited state via population of the lower 

one is by the relation 

 
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min

min

min
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2 3 3
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
 (31)

The radiation losses due to the transition i→j could be presented in the following way 

 
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min
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2
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 (32)

In order to obtain the total radiation losses Q  for the particular charge state of ion, one has to add 

contributions from all possible transitions. Summation over the contributions from the different 
transitions i→j involves the populations of different levels j q

j

N N and then the integration over 3d r  

where qN  is the density of ions with the stripping q. Performing these operations, we arrive to the 

general form of the specific integral radiation losses / q eQ N n  in the effective two-state approximation 

in the plasma model and the Coulomb approximation of effective charge 

0
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 (33)

One can check that Equation (33) reproduces the coronal radiative losses (18) in the case of low 

values of electron density. In the opposite limit radiative losses (33) reproduce the Boltzmann result. In 

the last case, it is usually necessary to take into account the optical thickness of the medium. 

5. Numerical Data 

5.1. Ionization Cross-Section and Rates 

We developed the numerical code TFATOM to perform calculations on the basis of general 

equations presented above. The calculation time for orders of magnitude is less than other numerical 

codes because the code TFATOM deals with is comprised of calculations of single or double integrals 
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from the known Thomas-Fermi functions only. The results of comparison of the TFATOM code data 

for the electron impact ionization cross-sections with available series of experimental data [21–26] and 

the code CADW data [23,26] for ions Wk+ with k = 1,2,...10,17,22,45,63 are shown in Figure 7 

(compare with [15]). 

 

 

Figure 7. Cont. 
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Figure 7. Comparison of theoretical electron impact ionization cross-sections with 

experimental data for ions Wk+ with k = 1,2,...10,17,22,45,63: solid curves—present 

statistical model; black points—[21]; open triangles—[22]; full triangles—CADW data [23]; 

open circles [24]; full squares—[25]; dashed curves signed CADW—[26]. 

It is seen from the figure that there is quite reasonable agreement both with the experimental and 

theoretical data except highly ionized ions, where the number of bound electrons is not enough for 

application of the statistical methods. 

The TFATOM code data for the electron impact ionization rates are presented in Figure 8 for ions 

Wk+ with k = 28,33,38,41,44,46,51,56 in comparison with the data of code ADPAK [1] and CADW 

modeling data [3] (compare with [15]). Here, one can see also see quite satisfactory agreements 

between the statistical model and the quantum mechanical calculations. 
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Figure 8. Comparison of electron impact ionization rates of ions Wk+ with k = 

28,33,38,41,44,46,51,56: solid curves—present statistical model; dashed curves—code 

ADPAK data [1], short dashed curve—CADW modeling data [3]. 
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5.2. Radiative Losses 

The calculations of radiative losses within the statistical LPF and EM models in corona approximation 

are presented in Figure 9 (see also [13]). Here, only the contribution into the radiation losses due to  

the collisional excitation of atoms by plasma electrons, described in the EQP Fermi approximation  

is presented. 

 

Figure 9. Comparison of radiation losses on tungsten impurity within universal statistical 

approach (EM—electromagnetic method, LPF—method of local plasma frequency) with 

results of known codes versus plasma temperature: ADPAK—[6]; AIM ADPAK [7]; 

AIM—averaged ion model [20]; ADAS projected—[2,7]; ADAS COWAN/PWB—[2,7]; 

CA-LARGE—[4]; dark circles—ADPAK, light circles—CFG-AVE, dark triangles—FS-

NOCI, light triangles—FS-CI, dark squares—FS-FOM data of radiative-collisional models 

from [18]; Wexp—experimental estimate of radiation losses value [4]. 

The calculations of radiation losses by the known numerical codes [2,4,6,7,18,20] are presented in 

Figure 9 as well. It is seen that the discrepancy between the results of these numerical calculations are 

of the same order as for the statistical models. The largest difference of the statistical models with the 

numerical calculations is observed in the region of small temperatures, where the excitation of the 

outer ion shells becomes essential, and the statistical model application starts to be problematic. At the 

same time, the interesting circumstance is the sufficiently good conformity of the results of detailed 

numerical calculations [18] and those due to the statistical model at lowest temperatures 1–2 eV. 

Thus it is shown that the results of the universal statistical approach for the radiation losses are 

within the data scattering of known numerical codes [2,4,6,7,18,20], which use different approximations 

for the calculation of atomic structure and the electronic excitation cross-sections of complex ions. 

The calculated radiative losses in corona and Boltzmann approximations are shown in Figure 10. 

The calculations were made by the TFATOM code based on general expression for radiative  

losses (33). The Boltzmann limit is presented by the straight lines for the different electron densities. 
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One can see that for tokamak plasma the conditions of Boltzmann limit are practically unrealizable, 

except maybe for the temperature range less than 1 eV. 

 

Figure 10. Comparison of radiation losses on tungsten impurity within universal statistical 

approach Equation (33) (dashed lines, marked by values of electron density), accounting to 

transition between corona (solid line) and Boltzmann (straight dash-dotted lines) limits. 

6. Conclusions 

The consideration above demonstrates the efficiency of a statistical model for calculations of the 

atomic collisional-radiative processes with tungsten multielectron ions in plasmas. The results of the 

statistical approach have been tested by comparison with the experimental and code data for tungsten 

ions. The agreement between the statistical model and the available theoretical and experimental data 

is quite satisfactory in general. Some discrepancies are typical for charge states with the relatively 

small number of atomic electrons. The reasonable correspondence of the statistical model with the 

experimental data on the total electron impact single ionization cross-sections for multielectron ions 

seems to be due to the rather satisfactory implicit description of significant contribution of the 

excitation-autoionization cascades to the ionization processes. Indeed, these channels seem to be partly 

taken into account because of the collective nature of excitation and ionization processes in the 

statistical model. The larger discrepancies are observed for strongly ionized multiply charged ions, 

where the number of bound electrons is not enough for application of statistical description. 

The numerical TFATOM code was developed for calculation of atomic radiative-collisional 

processes with multielectron tungsten ions in plasmas. The code is based on the general principles  

of atomic statistical theory, making it possible to calculate universally both the atomic structure 

characteristics and the probabilities of radiative-collisional processes in plasmas. 

The results of the comparison with the other codes show that the developed TFATOM code is of  

the same accuracy as the codes based on more detailed description of atomic processes. The  

time-consuming efforts of the TFATOM code for orders of magnitude are less than for the other 
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numerical codes. This makes it possible to apply the numerical TFATOM code as the suitable routine 

in constructing complex plasma modeling codes. 
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