
atoms

Article

Obtaining Atomic Matrix Elements from Vector
Tune-Out Wavelengths Using Atom Interferometry

Adam Fallon and Charles Sackett *

Physics Department, University of Virginia, Charlottesville, VA 22904, USA; ajf8mv@virginia.edu
* Correspondence: sackett@virginia.edu

Academic Editors: A. Kumarakrishnan and Dallin S. Durfee
Received: 4 February 2016; Accepted: 23 March 2016; Published: 30 March 2016

Abstract: Accurate values for atomic dipole matrix elements are useful in many areas of physics,
and in particular for interpreting experiments such as atomic parity violation. Obtaining accurate
matrix element values is a challenge for both experiment and theory. A new technique that can be
applied to this problem is tune-out spectroscopy, which is the measurement of light wavelengths
where the electric polarizability of an atom has a zero. Using atom interferometry methods, tune-out
wavelengths can be measured very accurately. Their values depend on the ratios of various
dipole matrix elements and are thus useful for constraining theory and broadening the application
of experimental values. To date, tune-out wavelength measurements have focused on zeros
of the scalar polarizability, but in general the vector polarizability also contributes. We show here
that combined measurements of the vector and scalar polarizabilities can provide more detailed
information about the matrix element ratios, and in particular can distinguish small contributions
from the atomic core and the valence tail states. These small contributions are the leading error
sources in current parity violation calculations for cesium.

Keywords: atom interferometry; atomic matrix elements; tune-out wavelength; polarizability

1. Introduction

Most of our knowledge about atoms derives from spectroscopic studies. Conventional
spectroscopy provides precise information about the energy of electronic states in an atom. These states
can be represented as poles in the frequency response of the atom to an applied field. A complementary
approach can be found in the recently developed technique of tune-out spectroscopy, in which zeros
of the atomic frequency response are measured [1,2]. Although tune-out measurements are generally
more complicated to implement than conventional spectroscopy, it is still possible to achieve high
accuracy results [3–7].

An important feature of tune-out spectroscopy is that it provides information about the
relationship between the atomic response of different states. For example, in between a nearby
pair of dipole-allowed transitions there is a zero in the dynamic electric polarizability, where the
positive polarizability from one state perfectly cancels the negative polarizability from the other state.
The location of the zero depends primarily on the ratio of the electric dipole matrix elements of the
two states. While there are techniques to directly measure matrix elements for some states, the ratio
determined via tune-out spectroscopy can be much more accurate than the ratio of direct measurements.
For instance, our recent tune-out frequency measurement for the rubidium 5P states improved
the accuracy of the matrix element ratio by a factor of 100 compared to direct measurements [6].
Furthermore, for many states it is difficult to measure the matrix elements directly with good precision.
Tune-out spectroscopy can be used in such cases to relate the desired matrix element to that of a more
easily measured transition. For instance, Herold et al. improved knowledge of the 6P matrix elements
in rubidium by a factor of ten by relating them to the better-known 5P elements [4].
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While these results demonstrate the utility of tune-out spectroscopy, a challenge is that to some
degree the frequency of any single response zero depends on all of the accessible states and matrix
elements in the atom [2]. To deal with this, theoretical estimates are used for contributions that are not
of direct interest. This introduces additional sources of uncertainty and limits the applicability of the
measurements to systems where high-quality theoretical estimates are available.

We present here a technique to reduce this dependence on theory. Up to now, most studies have
centered on the scalar response of the atom, which can be obtained by averaging over the atomic spin
states and/or the optical polarization of the light. However, spin-polarized atoms also have a strong
vector response, which can be measured by varying the light polarization and the spin orientation.
The effect on the tune-out wavelength was measured in a recent study by Schmidt et al. [7].

Like the scalar response, the vector response depends on multiple transition matrix elements.
However, these elements combine in a different way for the scalar and vector quantities. We show
here that by making joint measurements of both responses, different contributions to the electric
polarizability can be experimentally resolved. This can lead to improved accuracy and can provide
experimental information about matrix elements that cannot easily be observed directly.

Of particular significance, it is possible to independently determine the effects of the atomic core
and of the infinite manifold of high-lying valence states. The electric polarizability of the ionic core
can in some cases be determined directly by Rydberg atom experiments [8], but such a measurement
requires a theoretical correction to account for core-valence interactions in the ground-state atom [9].
The “tail” contribution from the valence manifold is even more challenging, and no direct measurement
of its effect seems possible due to the many states involved [10].

These core and tail contributions are small but have significant importance. In particular, the well
known experimental measurements of parity violation in cesium [11] can be related to fundamental
quantities in high-energy physics, but this requires precise knowledge of atomic dipole matrix elements
including the core and tail contributions. Theoretical uncertainty in the tail is currently the dominant
source of error in interpreting the experimental results [10]. Experimental measurement of the
tail contribution using the tune-out spectroscopy technique discussed here could therefore be of
great utility.

Accurate knowledge of atomic matrix elements is useful for other applications as well.
Important examples include the prediction and characterization of Feshbach resonances in atomic
collisions [12,13] and estimation of blackbody shifts for atomic clocks [14,15].

This paper presents calculations regarding the utility of vector tune-out measurements in alkali
atoms, with rubidium as a specific example. Section 2 presents an analysis of the lowest tune-out
frequency, while Section 3 shows that more information can be obtained by combining measurements
at several tune-out frequencies. Section 4 discusses experimental considerations, and Section 5
offers conclusions.

2. Vector Tune-out Analysis

The response of an atom to an off-resonant optical field at frequency ω is largely governed by the
electric polarizability, α(ω). For an alkali atom in state i, this can be expressed as [16]

α(ω) =
1
h̄ ∑

f

2ωi f

ω2
i f −ω2

∣∣∣di f

∣∣∣2 + αc + αcv. (1)

The sum is over all excited states f of the valence electron, and ωi f is the transition frequency
between i and f . Here we neglect hyperfine structure and let i and f represent individual Zeeman
states |i〉 =

∣∣n L J mJ
〉

and | f 〉 =
∣∣∣n′ L′ J′ m′J

〉
. The matrix element di f is 〈 f |d · ε̂|i〉 where d is the

dipole operator and ε̂ is the polarization vector of the light. Given the S ground state for alkali atoms,
only excited P states will appear in the sum. The polarizability contribution of the core electrons is
represented by αc, while αcv is the correction accounting for core-valence interactions [2].
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Using Equation (1), the interaction energy of the atom with the field can be expressed as

U = −1
2

α〈E2〉 (2)

where E is the electric field of the light and the angle brackets denote a time average.
It is often convenient to decompose Equation (1) into spherical tensor components. The interaction

energy can then be expressed as [17]

U = −1
2
〈E2〉

[
α(0) − i

2
(ε̂∗ × ε̂) · b̂

mJ

J
α(1)

]
(3)

where the α(0) is the scalar component and α(1) is the vector component. The quantization axis for
the states is defined by a magnetic field pointing in the b̂ direction. The polarizability components
themselves can be calculated in terms of reduced matrix elements Di f as

α(0) =
1

3h̄ ∑
f
|Di f |2

ωi f

ω2
i f −ω2

+ αc + α
(0)
cv (4)

and
α(1) =

1
3h̄ ∑

f
CJ′ |Di f |2

ω

ω2
i f −ω2

+ α
(1)
cv (5)

Here the sums over excited states f include n′ and J′ but not m′J . The reduced matrix elements

Di f ≡ 〈5S1/2||d|| n′PJ′〉 are defined using the convention of, for instance, Reference [2]. In α(1),
CJ′ = 3J′ − 7/2 is either −2 or +1 depending on the excited state angular momentum. Since the ionic
core has zero spin, the core term αc has only a scalar contribution. The core-valence term αcv can have
a vector component as well, denoted by α

(1)
cv .

High precision measurements require that hyperfine structure be taken into account, resulting
in more complicated formulas for the α(q) components [17]. However, this will not produce any
qualitative changes to the results described here.

Tune-out spectroscopy locates frequencies ω0 where α = 0. Our concern here is to relate the
value of ω0 to the dipole matrix elements and core contributions. We consider first the lowest
tune-out frequency for Rb atoms, located in between the 5S1/2 → 5P1/2 transition at 795 nm and the
5S1/2 → 5P3/2 transition at 780 nm. The atoms are initially spin polarized with mJ = +1/2.

Figure 1 shows the scalar and vector polarizabilities in this wavelength range. The atomic
parameters used for the calculation are summarized in Tables 1 and 2, and will be discussed further
below. The tune-out frequency ω0 is the solution of α(0) − vα(1) = 0, where v ≡ (i/2)(ε̂∗ × ε̂) · b̂ can
vary from −1/2 to +1/2 as the light polarization and magnetic field direction are adjusted. The data
points in Figure 2a plot the wavelengths λ0 corresponding to numerical solutions for ω0 at different v.
The dominant behavior is clearly linear, which can be understood as follows:

In this frequency range, the two 5P transitions dominate the sums in Equations (4) and (5). In the
limit that the fine structure splitting is small compared to ω, it is reasonable to keep only the 5P terms
and approximate them as

α ≈ 1
6

(
|D1|2 (1− 2v)

ω1/2 −ω
+
|D2|2 (1 + v)

ω3/2 −ω

)
(6)

where we abbreviate here D1 for D5S1/2,5P1/2 , D2 for D5S1/2,5P3/2 , and ωJ for ω5S1/2,5PJ . We can also
approximate |D2|2 ≈ 2|D1|2, as the state degeneracies would suggest. The root of Equation (6) is then
easily found as

ωa = ω1/2 +
∆
3
+

2∆
3

v (7)
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for ∆ = ω3/2 −ω1/2. The corresponding wavelength is plotted as the line in Figure 2a, and evidently
accounts for the main features of the exact solution. At this level, no useful information is
obtained from the tune-out measurement, since the fine structure splitting is already known from
conventional spectroscopy.
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Figure 1. Scalar polarizability α(0) and vector polarizability α(1) for Rb atoms near a wavelength λ of
790 nm. Values plotted are divided by 1000 and given in atomic units. The dashed lines indicate the
locations of the 5P resonances, with 5P1/2 at 795 nm and 5P3/2 at 780 nm. The scalar polarizability
crosses zero near 790 nm, defining a tune-out wavelength λ0.

Table 1. Reduced matrix elements 〈5S1/2||d||n′PJ′ 〉 for intermediate valence states used in the tune-out
frequency calculations. Values for n′ = 6 are taken from [4] and other values are theoretical estimates
described in [6]. Values are reported in atomic units, with estimated errors listed in parentheses.

State Matrix Element State Matrix Element

6P1/2 0.3235(9) 6P3/2 0.5230(8)
7P1/2 0.115(3) 7P3/2 0.202(4)
8P1/2 0.060(2) 8P3/2 0.111(3)
9P1/2 0.037(3) 9P3/2 0.073(5)

10P1/2 0.026(2) 10P3/2 0.053(4)
11P1/2 0.020(1) 11P3/2 0.040(3)
12P1/2 0.016(1) 12P3/2 0.033(2)

However, the deviations between the linear approximation and the exact solution are significant,
as seen in Figure 2b. These deviations can be compared to the 0.03-pm accuracy of the experimental
measurements in [6]. To analyze these deviations we develop a more accurate approximation. We retain
the 5P states as the dominant terms, and in particular assume that the frequency variation of the other
terms in Equations (4) and (5) can be neglected since those states are far from resonance. We also allow
for a non-ideal matrix element ratio as |D2/D1|2 = 2 + δR. The polarizability can then be expressed as

α ≈ 1
3

∣∣∣D2
1

∣∣∣ [F(ω) + A− Bv + δR
ω3/2 − vω

ω2
3/2 −ω2

]
(8)

for

F(ω) =
ω1/2 + 2vω

ω2
1/2 −ω2

+
2(ω3/2 − vω)

ω2
3/2 −ω2

(9)
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A =
1

|D1|2

[
3αc + 3α

(0)
cv + ∑

f

∣∣∣Di f

∣∣∣2 ωi f

ω2
i f −ω2

]
(10)

and

B =
1

|D1|2

[
3α

(1)
cv + ∑

f

∣∣∣Di f

∣∣∣2 CJ′
ω

ω2
i f −ω2

]
(11)

Table 2. Model parameters and fitting results for measurements of scalar and vector polarizabilities in
Rb atoms near 790 nm, 423 nm, and 421 nm. The parameters are model quantities to be determined by
a fit to experimental data, as explained in Section 3. The model estimate and model error are the current
best estimates for these parameters. The matrix element ratios are defined by Rn′ ,J′ = | Dn′ ,J′/ D1|2.
In the case of R5,3/2 the estimate is taken from [6], while R6,J′ values are from [4]. Other estimates are
theoretical values described in [6] and the current text. The fit error values are the errors obtained by
fitting synthetic data sets having accuracy comparable to the experimental results reported in [6]. Data
values are either dimensionless or reported in atomic units.

Parameter Model Estimate Model Error Fit Error

R5, 3/2 1.99221 3× 10−5 3× 10−5

R6, 1/2 0.00584 3× 10−5 2× 10−6

R6, 3/2 0.01526 5× 10−5 5× 10−6

αc + α
(0)
cv 8.71 9× 10−2 3× 10−2

α
(1)
cv −0.04 4× 10−2 9× 10−3

|t1/2|2 0.009 9× 10−3 1× 10−3

|t3/2|2 0.03 3× 10−2 3× 10−3

We use D1 = 4.2339(16) au as a common normalizing factor [6,18]. The sums in A and B are over
valence states with n′ > 5. We evaluate these terms at ωa0 ≡ ω1/2 + ∆/3. Since the δR term includes a
small denominator, we approximate it more accurately using ωa(v) from Equation (7). This gives

ω3/2 − vω

ω2
3/2 −ω2

≈ 3
4∆

, (12)

independent of v to lowest order.
The solution of F(ω) = 0 can be obtained analytically as ωF, and then the effect of the small terms

give an approximate root

ωb = ωF −
(

dF
dω

)−1 (
A− vB +

3
4∆

δR
)

(13)

with the derivative evaluated at ωF. Expanding this to second order in the fine-structure splitting ∆
and to first order in the small parameters A, B and δR yields a cubic polynomial in v,

ωb = ∑
n

bnvn (14)

with

b0 = ω1/2 +
1
3

∆− 1
9

∆2

ω1/2
− 4

27
∆2
(

A +
3δR
4∆

)
(15)

b1 =
2
3

∆− 1
9

∆2

ω1/2
− 4

27
∆2
(

A +
3δR
4∆

)
+

4
27

∆2B (16)

b2 =
2
9

∆2

ω1/2
+

8
27

∆2
(

A +
3δR
4∆

)
+

4
27

∆2B (17)
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and
b3 = − 8

27
∆2B (18)

This approximate solution is shown as the curve in Figure 2b, and agrees well with the full
numerical results. The difference between the polynomial approximation and the full solution is
shown in Figure 3c, where the shaded area represents the uncertainty in the theoretical parameters of
the model.
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Figure 2. Tune-out wavelength near 790 nm for Rb atoms. (a) Variation of tune-out wavelength
with polarization parameter v = i(ε̂∗ × ε̂) · b̂/2 for light polarization vector ε̂ and quantization axis
direction b̂. Atoms are taken to be in the spin-polarized ground state mJ = 1/2. Data points show
the numerical solution λ0 for the zero of the polarizability α(ω) = α(0)(ω)− vα(1)(ω) from the full
model of Equations (4) and (5). The straight line shows the approximate solution λa from Equation (7);
(b) Deviation from linearity λ0−λa. Points show the difference between the full numerical solution and
the approximation of Equation (7). The solid curve shows λb − λa for the polynomial approximation
λb from Equation (14); (c) The black curve shows the deviation λ0 − λb. The gray band illustrates the

variation obtained in λ0 as the model parameters R5,3/2, αc + α
(0)
cv , |t1/2|2 and |t3/2|2 (see Table 2) are

varied by their uncertainties.

It is observed that the polynomial approximation ωb(v) depends on the non-5P state parameters
only through the combinations A + 3δR/4∆ and B. The first combination can be obtained anyway
from a scalar measurement with v = 0, so B is of more interest here. The sum in Equation (11) can be
broken into a finite number of terms from n′ = 6 to some nmax, plus an infinite sum over states very
near the dissociation limit. It is possible to obtain accurate theoretical estimates for the matrix elements
in the finite terms. For instance, Table 1 shows results up to nmax = 12 taken from Reference [6],
which together provide a contribution to B of 0.029± 0.002 au.

For the remaining tail contribution, theoretical estimates are uncertain due to significant
dependence on the calculational methods used. The estimates used in Reference [6] were

TJ′ ≡
1
3

ωion

ω2
ion −ω2

a0
∑

n′>12
|Dn′ ,J′ |2 (19)
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with T1/2 ≈ 0.022 au and T3/2 ≈ 0.075 au, both with error estimates comparable to their
values. In Equation (19), ωion corresponds to the ionization frequency at a wavelength of 297.8 nm.
The contribution of these terms to B will be (ωa0/ωion)(T3/2 − 2T1/2) ≈ 0.002± 0.007 au.
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- 0 . 4 - 0 . 2 0 . 0 0 . 2 0 . 4
4 2 0 . 6
4 2 0 . 8
4 2 1 . 0
4 2 1 . 2
4 2 1 . 4
4 2 1 . 6

 

 

� 0 
(nm

)

 

 

 v
Figure 3. Tune-out wavelengths λ0 for Rb atoms near 420 nm. For each value of the polarization
parameter v, there are two tune-out wavelengths near the 6P1/2 and 6P3/2 states.

We are not aware of any previous calculations of the vector core contribution α
(1)
cv . The scalar term

α
(0)
cv is calculated to be −0.37± 0.04 au [19]. From the general form of the polarizability expansion, we

expect the vector term to be smaller by a factor on the order of ωa0/ωcore where ωcore is the lowest
excitation frequency of the ionic core. For Rb+ this lies at a wavelength of 74 nm, so we expect
α
(1)
cv ∼ −0.04 au. If we estimate the uncertainty as comparable to this value, we obtain a total estimate

for B of 0.025± 0.016 au, with uncertainty dominated by the tail and core terms. A precise measurement
of B would therefore provide an experimental constraint on these uncertain quantities.

To estimate the feasible measurement accuracy, we use the error estimates discussed in
Reference [6]. The reported wavelength error δλ0 ≈ 0.03 pm corresponds to δω0 ≈ 2× 10−9 au.
Considering, for instance, the linear term a1 from Equation (16) and assuming that v can be varied by
about one, we get an expected accuracy

δB ≈ 27
4

δω0

∆2 ≈ 0.01 au (20)

Since this is smaller than the theoretical uncertainty, it can be expected that experimental measurements
will provide useful information.

3. Multiple Tune-out Frequency Analysis

The previous discussion illustrates that measurement of vector tune-out wavelengths can provide
an experimental constraint on parameters of theoretical interest, thanks to the differing character of their
polarization dependence. However, the measurements near 790 nm cannot provide definitive values
for these parameters. We show now that by combining vector measurements around multiple tune-out
frequencies, we can obtain more direct results. This is possible because the different components
have different frequency dependence, in addition to the polarization dependence. By varying
both the frequency and polarization, enough information can be obtained to extract the values of
individual contributions.

After the tune-out wavelength at 790 nm, the next longest tune-out wavelengths in Rb are a pair
associated with the 6P states near 420 nm. The scalar zeros were measured by Herold et al. to be
423.018(7) nm and 421.075(2) nm. We show that vector measurements near these wavelengths are
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sufficient to extract the polarizability terms of interest. Another pair of tune-out wavelengths near
360 nm is associated with the 7P states, and is also reasonably accessible.

The polarizabilities near 420 nm can be calculated using the same Equations (4) and (5). To good
approximation, the core terms should be the same as at 790 nm, since ωcore is still much larger than
ω [16]. Figure 3 shows plots of the tune-out wavelengths as functions of v. The behavior is more
complicated here since there are comparable contributions from several states, and an algebraic
analysis involves solutions to high-order polynomials. So, rather than developing an analytical model,
we consider a numerical fit to artificially generated synthetic data.

To generate a synthetic data set, we calculated ω0 for nine v values near each of the three tune-out
wavelength at 790 nm, 423 nm, and 421 nm. To each point we added a random experimental error.
To account for variations in experimental sensitivity, we used an error estimate

δω2 =
δα2 + δv2[α(1)]2

(dα/dω)2 (21)

with α(1) and dα/dω calculated numerically at each measurement point. Here δα accounts for the
overall experimental sensitivity and δv accounts for experimental polarization control. From the
5P results in [6] we estimate δα = 0.02 au and δv = 3× 10−6. The resulting δω values are used
as the standard deviation for a random Gaussian error. This generated a total of 27 simulated data
points ωdata.

To this data set we fit the solutions of α(0) − vα(1) = 0, using seven adjustable parameters.
Three are the matrix element ratios R5, 3/2, R6, 1/2 and R6, 3/2 where RnJ ≡ |DnJ/D1|2. Two more

parameters are the core polarizabilities
(

αc + α
(0)
cv

)
/|D1|2 and α

(1)
cv /|D1|2. The last two parameters

describe the tail contributions. We define effective matrix elements

|tJ′ |2 = ∑
n′>12

|Dn′ J′ |2 (22)

so that the scalar tail contribution is

TJ′ ≈
|tJ′ |2

3
ωion

ω2
ion −ω2

. (23)

We normalize these and use fit parameters |tJ′ |2/|D1|2. For excited states n′ = 7 to 12, we use the
theoretical matrix elements in Table 1.

Values for the fit parameters were obtained by minimizing χ2 = ∑(ωdata −ωfit)
2. We generated

100 different synthetic data sets using the same model parameters but different errors. We fit each,
and the average value of the fitted parameters agreed well with the model parameters used. We report
the standard deviation of the fitted parameters as an estimated error for the procedure. The results are
shown in Table 2. The core and tail parameters have been multiplied by |D1|2 to report the physically
interesting values. It can be observed that the fitting errors are generally lower than current accuracies,
and in particular that definite values for the core and tail contributions can be obtained.

To gain a clearer understanding of why measuring multiple tune-out wavelengths is effective, we
can return to the decomposition of the polarizability used in Section 2. There, measurements provided
a value for the B parameter and for a combination of R and A. The more complicated dependence
on v observed at the 421 nm and 423 nm zeros breaks the degeneracy between A and R, so that
at each of these zero a value for A, B, and R can be determined. The unknown contributions to A
and B are the core and tail terms, which have distinctly different frequency dependence. By relating
the measurements near 790 nm and 420 nm, these components can be distinguished and the core
parameters isolated. Since A and B depend differently on the J = 1/2 and J = 3/2 tail parameters,
these components can be distinguished as well.
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4. Experimental Implementation

We briefly discuss how an experimental measurement of the type described might be implemented.
A variety of experimental techniques have been demonstrated for tune-out spectroscopy, including
atom interferometry [3,6], Bragg coupling in an optical lattice [4,7,20], or direct dipole force
measurements [5]. The highest precision has been achieved with the method of [6]. Here an
atom interferometer is implemented in a time-orbiting magnetic trap potential. An off-resonant
standing-wave laser is used to split and recombine the atoms in a Bose-Einstein condensate. While the
atomic wave packets are separated, one packet is exposed to a focused traveling-wave Stark laser
beam. This shifts the energy of the atoms according to Equation (2), which can then be detected as a
phase shift in the interferometer output. The tune-out wavelength is located by adjusting the Stark
laser frequency such that no phase shift is observed.

This method is intrinsically very sensitive. For the measurements proposed here, however, it is
also necessary to precisely control the polarization of the Stark beam. This is difficult to achieve with
purely optical techniques because the vacuum window through which the beam passes can change the
polarization in an uncontrolled way due to stress-induced birefringence. In the work of [6], we were
able to achieve v = 0 by alternating the direction of b̂ and thus the sign of v. By ensuring that the
interferometer phase did not vary in response, we could adjust the polarization to provide v = 0 at the
atoms. Also, during the actual measurement, the magnetic field establishing b̂ rotated rapidly so that
any residual polarization error was time-averaged to zero. These methods cannot be directly applied
to the measurements needed here since non-zero values of v are required.

Instead, we propose to apply pure circularly polarized light to the atoms. This can be established
by, for instance, tuning the Stark laser to the 5P1/2 resonance. Since atoms in our ground state cannot
scatter σ+ polarized light on this transition, the light polarization can be optimized by minimizing
the scattering rate. The residual scattering rate obtained can serve to characterize the purity of
the polarization.

To this end it is convenient that circularly polarized light is not highly sensitive to birefringence
errors. If the vacuum window or other optical elements have a small birefringence β, then the effect
on v varies only as β2. This can be compared to the linearly polarized case, where v generally varies
linearly with β around v = 0. From our measurements with linearly polarized light we find β to drift
by about 10−3, so in the circularly-polarized case stabilities of 10−6 should be achievable.

Circularly polarized σ+ light corresponds to v = −0.5. In order to vary v, we propose to vary the
magnetic field direction b̂. In our magnetic trap the bias field rotates at a frequency Ω ≈ 2π × 12 kHz.
If we ensure that the plane of rotation contains the propagation vector of the Stark beam, then v will
vary in time as −0.5 cos Ωt. The total interferometer phase developed varies as the time average 〈v〉.
By applying pulses of the Stark beam that are appropriately synchronized with the field rotation,
arbitrary values of 〈v〉 can be achieved. Since timing measurements can be very precise, accurate
control of 〈v〉 is possible. Initial alignment in space and time between the pulses and the field can be
obtained using the 5P1/2 resonance as described above, since pure σ+ light can only be obtained when
b̂ is exactly parallel to the Stark beam.

We estimate that this technique can provide adequate polarization control for the measurements
suggested here. An alternative approach would be to use a vacuum window design that minimizes
uncontrolled birefringence [21] and use conventional optical control to provide the required
light polarization.

5. Conclusions

On the basis of the analysis discussed here, we conclude that practical tune-out spectroscopy
measurements can provide detailed information about various components contributing to the atomic
polarizability. We expect that such information will be useful for interpreting atomic parity violation
experiments and similar studies.
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It can be noted the all the parameters discussed here are normalized to a reference matrix element,
in our case D1. It is easy to see that such normalization is unavoidable, since tune-out measurements
never provide an absolute magnitude for the polarizability, but only a relationship between different
components. In the case of Rb this imposes a relative error of about 10−3, which would become
the dominant error for the n′ = 5 and n′ = 6 matrix elements if a measurement result such as in
Table 2 were achieved. However, this would have negligible impact on the core and tail parameters.
The accurate matrix element ratio measurements achievable with tune-out spectroscopy also mean
that any improved direct measurement of a matrix element could be applied to several other states.
Similar benefits would be obtained from an accurate measurement of the dc polarizability α(0) [22].

It can also be noted that the measurement technique proposed here uses a Bose condensate in a
magnetic trap. This limits its applicability in cases where Bose condensation is impossible, or where
interactions make magnetically trapped condensates unfavorable. However, other measurement
techniques might be feasible for such cases. In particular, Cs measurements would be of interest for
more direct application to existing parity violation results. While Cs is not favorable for magnetic
trapping [23], it might be possible to achieve similar precision using an optically trapped condensate
interferometer, such as demonstrated in [24].

While extending this type of study to Cs atoms may be a challenge, we expect that results obtained
in atoms like Rb and K would still be useful in providing guidance for improving theoretical techniques.
Several methods have been developed to calculate, for instance, tail contributions [10]. Experimental
results would allow such methods to be evaluated, and by using the best method the theoretical errors
for unmeasured atoms like Cs can be improved. Precise measurements of matrix elements ratios are
also useful, since they can provide a useful benchmark for checking theory calculations [6]. It might
also be possible to develop semi-empirical methods that incorporate experimental ratio values, similar
to the scaling techniques that incorporate experimental spectroscopic results for state energies [16].
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