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Abstract: The influence of an external test mass on the phase of the signal of an atom interferometer
is studied theoretically. Using traditional techniques in atom optics based on the density matrix
equations in the Wigner representation, we are able to extract the various contributions to the phase
of the signal associated with the classical motion of the atoms, the quantum correction to this motion
resulting from atomic recoil that is produced when the atoms interact with Raman field pulses
and quantum corrections to the atomic motion that occur in the time between the Raman field
pulses. By increasing the effective wave vector associated with the Raman field pulses using modified
field parameters, we can increase the sensitivity of the signal to the point where such quantum
corrections can be measured. The expressions that are derived can be evaluated numerically to isolate
the contribution to the signal from an external test mass. The regions of validity of the exact and
approximate expressions are determined.
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1. Introduction

Since its birth about 30 years ago [1], the field of atom interferometry (AI) has matured significantly.
Experiments based on AI have been used to measure fundamental constants [2–5], the acceleration
of gravity near the Earth’s surface [6–9], the gradient of the Earth’s gravitational field [4,10,11]
and the curvature of the gravitational field produced by source masses [12]. Atom interferometer
gyroscopes allow one to measure rotation rates; experiments have utilized optical fields [13],
nanofabricated structures [14] and three or four spatially- or temporally-separated sets of fields
that drive Raman transitions to split and recombine the matter waves [15–18]. The frequency shift
arising from a quadratic Zeeman effect was also measured precisely [19]. There have been limits set on
a non-Newtonian Yukawa-type fifth force [20] and on dark energy [21] using AI, as well as theoretical
proposals for using AI to measure general relativity effects [22,23], including gravitational waves [24].
A detailed theoretical analysis of the combined effect of rotation and gravity on the AI signal has been
given [17], based on three- and four-pulse Raman schemes.

Atom interferometry has also been used to probe the gravitational field produced by a heavy
test mass [4,5,12,20,21]. Using a double-difference technique [4], one can extract that part of the
phase of the AI signal caused by the gravitational field of the test mass. This article provides
a theoretical calculation of this contribution to the phase, based on an atom interferometer using
three Raman field pulses. The results can be used to optimize measurements of the Newtonian
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gravitational constant G and to provide a complete derivation of results outlined in a previous
paper [25]. We might point out that an analytic, semi-classical expression for the phase response of
an atom interferometer to an arbitrarily-placed, stationary point mass has been derived recently [26].

Estimated Phase Corrections Resulting from the Test Mass

The phase in an atom interferometer depends on the interactions of the atoms with the applied
Raman fields, as well as the motion of the atoms between and following the applied Raman pulses.
The Raman pulses couple two hyperfine sub-levels, g and e, in the atomic ground state manifold, and
it is the phase associated with the Raman coherence ρeg that is measured using the interferometer.
The presence of a gravitational potential modifies the atomic trajectories, leading to a modification
of the AI phase. This modification of the phase serves as a measure of the sensitivity of AI to
gravitational effects. Since the Earth’s gravitational potential is only slightly inhomogeneous over the
physical extent of the atom interferometer, it can be approximated by a Taylor series in which only the
lead and gradient terms are retained [27–30]. Approximate solutions for the atomic trajectories were
obtained in [17,29], where effects related to the Earth’s rotation (centripetal and Coriolis forces) were
also included. An exact expression for the atom trajectories with these combination of forces has also
been derived for a non-spherical gravitational source (i.e., for an arbitrary gravity-gradient tensor),
rotating with constant angular velocity [31].

The situation can change dramatically if a massive test object is brought close to the interferometer
(see Figure 1). The accumulated phase produced by the test mass’ gravitational field, δg (x,t),
increases with decreasing distance ymin between the test mass and the trajectories of the atoms
in the interferometer and also increases with increasing delay times T between the Raman pulses.
For sufficiently long T and small ymin, it is no longer a good approximation to retain only the lead and
gradient terms when considering the gravitational potential associated with the test mass, as was done
for the Earth’s gravitational potential.

Figure 1. Schematic representation of an atom interferometer in the presence of a test mass M. The atom
cloud of the interferometer is launched at t = 0 with velocity v0 and interacts with Raman pulses at
times t = τ1, t = τ2 ≡ τ1 + T and t = τ3 ≡ τ1 + 2T, indicated by the stars in the diagram. (a) A generic
interferometer; (b) the fountain geometry used for the numerical calculations. In this case, the mass is
a point mass or spherical mass having radius ymin that is centered at position (x, y, z) = (xm0, ym0, zm0)

at time t = 0. The case of a stationary test mass (x(1)m (t) = 0) and a test mass moving at constant velocity

(x(2)m (t) = xm0 + vmt) are considered. The modification of the signal produced by the test mass would
be a maximum if the atom cloud were to touch the test mass at the top of the cloud’s trajectory.

The maximum value of T is limited by experimental considerations; the largest delay time that
has been achieved is T = 1.15 s [32]. Even for smaller delay times, the inhomogeneity of the field can
be significant. For example, with T = 200 ms, in a symmetric fountain geometry [33], the length of the
atomic trajectory is longer than:

L =
1
2

gT2 = 0.196 m (1)
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where g is Earth’s gravitational field. With ymin . 0.1 m (see Eqs. (103) and (104) in Section 3),
the usually accepted assumption that the gravitational acceleration is constant or slightly
inhomogeneous along the atom trajectory becomes invalid.

In calculating the atomic trajectories, we can assume [34] that the magnitude δg of the gravitational
field of the test mass at the position of the atoms in the interferometer is much less than that of the
Earth’s field [35],

δg� g (2)

Nevertheless, both the average field and field gradient associated with the test mass can modify
the phase of the AI signal. Let us denote the average field of the test mass over the interferometric
path as δg. The interferometric phase δφ associated with this average field strength is of order [6–9]:

δφ ∼ kδgT2 (3)

where k is an effective wave vector of the Raman field and T is the time delay between Raman pulses.
This phase change arises owing to the acceleration of the atoms produced by the field of the test mass.

In addition to this “classical” contribution to the phase, there are quantum corrections whose
effect we would now like to estimate. Atom interferometers that make use of copropagating optical
fields or copropagating Raman pulses as their beam splitters and combiners have a signal phase that is
insensitive to quantum corrections if the gravity field is homogeneous. Quantum corrections arise as
a result of rotation [39] or inhomogeneous field terms [28,29]. Quantum corrections φq to the phase
from an inhomogeneous gravitational field are of order:

φq ∼
h̄k2

Ma
γT3 (4)

where Ma is an atomic mass and γ is the magnitude of the relevant terms in the gravity-gradient
tensor. One can understand the estimate (4) as the quantum part of the phase addition kγvT3 [28–30]
associated with the change of atomic velocity v = h̄k/Ma owing to recoil [36] after interaction with
a Raman pulse. When the length of the atomic trajectory L becomes comparable to the characteristic
distance over which the gravitational potential of the test mass changes, a reasonable estimate for γ is
γ ∼ δg/L. As a consequence, we find:

φq

δφ
∼ h̄kT

MaL
(5)

For Rb87 k ≈ 1.61× 107 m−1:
φq

δφ
∼ 1.2× 10−2 (6)

Calculations [25] indicate that δφ can be as large as 1 rad, implying that φq can be as large as
10−2 rad. Since a lower limit for the phase noise in the interferometer is of order [32]:

φerr = 10−3 rad (7)

one sees that quantum corrections φq are small, but measurable; we will include them in our considerations.
Another type of quantum correction is produced during the free evolution of the atomic coherence

between the Raman pulses. We formulate the problem in terms of the Wigner representation [37,38]
for the atomic density matrix, ρ (x, p,t). This is a standard approach for studying phenomena related
to quantization of the atomic center of mass motion [36] and laser cooling [40]. However, to our
knowledge, it has been used sparingly in the context of AI [17,41]. The convenience of this approach
is that, for the time between Raman pulses, ρ (x, p,t) obeys an equation that is similar to the classical
Liouville equation for the distribution function [37,38].
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The Wigner distribution function can be written as,

ρ (x, p, t) =
1

(2πh̄)3

∫
dsρx

(
x+

1
2

s, x− 1
2

s, t
)

exp (−ip · s/h̄) (8a)

=
1

(2πh̄)3

∫
duρp

(
p+

1
2

u, p− 1
2

u, t
)

exp (ix · u/h̄) (8b)

where ρx (x, x′, t) is the density matrix in the coordinate representation and ρp (p, p′, t) is the density
matrix in the momentum representation. To estimate the quantum corrections, we start from the time
evolution equation for the Wigner function for times between the application of the Raman pulses.
In the absence of the Earth’s rotation, this equation can be written as [17]:{

∂t +
p

Ma
∂x− ∂xU∂p + Q

}
ρ (x, p, t) = 0 (9a)

Q = − (ih̄)−1
[

U
(

x+
1
2

ih̄∂p

)
−U

(
x− 1

2
ih̄∂p

)]
+ ∂xU∂p (9b)

where U (x) is the gravitational potential. For nearly homogeneous fields, such as the Earth’s field,
the potential functions in Eq. (9b) can be expanded to first order in h̄. In that limit, one finds that Q ∼ 0
and that the Wigner function obeys the same Liouville equation as the classical density matrix in the
time between pulses. In the presence of a test mass, however, the gravitational potential is strongly
inhomogeneous, and higher order terms in the expansion are needed.

Let us estimate the correction from these higher order terms. If the term ∂xU∂p in the Liouville
Equation (9a) is responsible for the phase δφ in estimate (3), then the Q-term results in a quantum correction:

φQ ∼
Q

∂xU∂p
δφ (10)

The density matrix depends on atomic momentum p in two characteristic ways. There is both
a thermal momentum:

p0 =
√

2MakBTC (11)

(kB is Boltzmann constant, TC is atom cloud temperature) and a momentum associated with the
Doppler phase,

pD ∼
Ma

kT
(12)

For Rb at temperature TC ≈ 1µK, k = 1.61× 107 m−1, and T = 200 ms,

pD
p0

=
1

kv0T
∼ 2.2× 10−5 (13)

where v0 = p0/Ma = 0.014 m/s is the thermal velocity. In qualitative terms, we can think of the
dependence of ρ (x, p, t) on momentum to vary as:

e−p2/p2
0eip/pD

where the first factor represents the thermal distribution and the second a phase factor resulting from
the accumulated Doppler phase between Raman pulses. Explicit forms for the Doppler phase acquired
by the Raman coherence ρeg in a time T are derived in the next section, but they are typically of order
kvT = p/pD.
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If ρ (x, p, t) ∼ e−p2/p2
0eip/pD , it follows that the Doppler phase factor makes the dominant

contribution to the momentum gradient, since:

∂p ∼ p−1
D � p−1

0 (14)

To estimate the quantum corrections, we expand Eq. (9b) to second order in h̄ to obtain:

Q ∼ 2h̄2

3!
∂3

xU
(

∂p

2

)3

(15)

Replacing ∂n
xU by U/Ln and ∂p by p−1

D , we find:

φQ

δφ
∼ Q

∂xU∂p
∼ 1

24
∂2

xU
Up2

D
=

1
24

(
h̄kT
LMa

)2
= 5.8× 10−6 (16)

Consistent with the phase noise given in Eq. (7), one should ignore the Q-term in Eq. (9a).
However, if one uses the AI technique to measure the Newtonian gravitational constant G with an
accuracy of several ppm (the level achieved is already 150 ppm [5]), then the Q-term should be
included. Anticipating innovations capable of reducing the phase noise to φerr ∼ 3× 10−7 rad [42], one
has to include the Q-term. Consequently, we will include the corrections resulting from this term.

To summarize, there are two types of quantum corrections to the AI phase that are to be considered.
The first, φq, arises from inhomogeneous gravitational field modifications of the Doppler phase
associated with the recoil the atoms undergo on interacting with the Raman fields. The ratio φq/δφ is
of order h̄kT/MaL. The second, φQ, arises from quantum corrections to the off-diagonal elements of
the Wigner distribution during periods of free evolution. The ratio φQ/δφ is of order (h̄kT/MaL)2.

It is possible to increase both δφ and the quantum corrections φq and φQ using larger values
of the effective wave vector k. Moreover, since δφ ∝ k, φq ∝ k2 and φQ ∝ k3 [see Eqs. (3), (4),
(16)], the relative weight of the quantum corrections also increases with increasing k. There are at least
five ways to increase k: the production of higher order atomic density harmonics in a standing
wave field in the Raman–Nath regime (see Eq. (4) in [1]), higher order Bragg scattering [43],
the sequential Bragg scattering technique [2], multicolor techniques [44] and Raman standing wave
techniques [45]. For example, standing wave pulses in the Raman–Nath regime were used to produce
the 10th harmonic of the atomic density without excessive loss of signal magnitude and without
sub-recoil cooling [46]. A 4h̄k beam splitter was demonstrated using an extension of the Raman
standing wave technique [47], and a 51h̄k beam splitter has been produced using higher order Bragg
scattering [48]. Recently, a high order Bragg scattering atom interferometer was used to determine
the fine structure constant with a resolution 0.25 ppb [3]. A 45h̄k beam splitter has been utilized for
atom interference using sequential Bragg scattering [49]. On the theoretical side, it was shown that,
with a proper choice of field polarization, Raman standing waves in the Raman–Nath regime can be
used to create a 4h̄k beam splitter without increasing the number of separated Raman pulses [45,50].
To account for such enhancements, our calculations of the AI’s phase are carried out for an effective
k-vector that is scaled by an integer factor nk.

This article is arranged as follows. In the next section, we derive exact and approximate
expressions for the phases δφ, φq, and φQ. The results of numerical calculations of the phases are given
in Section 3 for a stationary test mass and a test mass moving at constant velocity. The calculations
enable us to establish the regions of validity of the approximate expressions for the phases.

2. Basic Formalism

The working medium of the atom interferometer consists of a cloud of atoms that are launched
with some initial velocity at t = 0. The cloud interacts with three Raman pulses that are separated
in time; these pulses couple two hyperfine sub-levels in the atomic ground state manifold. In the
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time intervals between the pulses, the atoms move under the influence of a gravitational potential
U (x, t). The cloud is assumed to be characterized by a Wigner distribution f (x, p) at time t = 0 and
is assumed to be sufficiently localized, such that, at any time, the gravitational field is the same for
all atoms in the cloud. In other words, the cloud can be considered as a point insofar as it interacts
with both the Earth’s and the test mass’ gravitational fields. The problem can be broken down into
periods of “free evolution” of density matrix elements before the first Raman pulse is applied and
for the time intervals between subsequent Raman pulses and into time intervals in which the Raman
fields are applied. By “free evolution”, we mean evolution in the absence of applied radiation fields,
but including the effects produced by U (x, t). We consider each region separately and then piece
together the total response.

We will see that the quantum corrections leading to φq originate in the recoil the atoms undergo
as a result of their interaction with the Raman pulses. Following the interactions, this recoil leads
to a contribution to the Doppler phase of the off-diagonal density matrix elements ρeg (g and e are
sub-levels of the atoms’ ground state manifold) in the time intervals between the pulses. In addition,
the momentum derivatives of the Doppler phase factors give rise to the Q-term corrections; as such,
the Q-term corrections depend only on the free evolution of off-diagonal density matrix elements
between the pulses.

2.1. Density Matrix Evolution between the Raman Pulses

Between the Raman pulses, the Wigner function evolves according to Eqs. (9). When the distance
L over which the gravitational potential energy varies significantly is much larger than h̄ divided by
the characteristic width ∆p of the momentum distribution, i.e.,

h̄
∆pL

� 1 (17)

we can expand Q [Eq. (9b)] in a power series in h̄ to obtain:

Q ≈ − h̄2

24
χ′ijl (x, t) ∂pi ∂pj∂pl (18)

where:
χ′ijl (x, t) = −∂xi ∂xj∂xlU (x, t) (19)

A summation convention implicit in Eq. (18) will be used in all subsequent equations. Repeated
indices and symbols appearing on the right-hand side (rhs) of an equation are to be summed over,
unless they also appear on the left-hand side (lhs) of that equation.

We have already shown in Eq. (16) that the Q-term can be considered as a small perturbation,
allowing us to write:

ρ (x, p, t) = ρ0 (x, p, t) + ρQ (x, p, t) (20)

where ρ0 (x, p, t) is the unperturbed density matrix obeying the equation:{
∂t +

p
Ma

∂x− ∂xU (x, t) ∂p

}
ρ0 (x, p, t) = 0 (21)

and ρQ (x, p, t) is a perturbation whose evolution is governed by the equation:{
∂t +

p
Ma

∂x− ∂xU (x, t) ∂p

}
ρQ (x, p, t) = −Qρ0 (x, p, t) (22)

The ρ0 (x, p, t) term contains the φq corrections, while the ρQ (x, p, t) term provides the φQ corrections.
Equation (21) has been studied in [17] for the Earth’s gravitational field. In this article, we obtain

a solution of Eq. (21) in the presence of a test mass and solve Eq. (22) to get the contribution to the AI
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phase arising from the Q-term. We assume that the density matrix is known at some preceding time t′

and arbitrarily set ρQ (x, p, t′) = 0 at this time, such that, at t = t′, ρ0 (x, p, t′) = ρ (x, p, t′). The solution
of the homogeneous Eq. (21) is then given by [17]:

ρ0 (x, p, t) = ρ
[
X
(
x, p, t′, t

)
, P
(
x, p, t′, t

)
, t′
]

(23)

where {X (x, p, t1, t2) , P (x, p, t1, t2)} are the atomic classical position and momentum at time t1 subject
to the constraint that the position and momentum are specified by {x, p} at time t2. In other words,
in Eq. (23), we look for the values {X (x, p, t′, t) , P (x, p, t′, t)} for which {X (t′) , P (t′)} will lead to
values {X (t) , P (t)} = {x, p} under the influence of the gravitational fields.

Turning our attention to Eq. (22), we see that the curly brackets in that equation are a total time
derivative, enabling us to write:

dρQ (x, p, t′′)
dt′′

= −Qρ0
(
x, p, t′′

)
(24)

Integrating this equation from t′′ equals t′ to t, using the fact that ρQ (x, p, t′) = 0, and making use
of Eqs. (18), (19) and (23), , we find

ρQ (x, p, t) =
h̄2

24

∫ t

t′
dt′′
[
χ′ijl

(
ξ, t′′

)
∂πi ∂π j ∂πl ρ0

(
ξ, π, t′′

)]
ξ=X(x,p,t′′ ,t),π=P(x,p,t′′ ,t)

(25)

Using Eq. (23) one more time, we arrive at:

ρQ (x, p, t) =
h̄2

24
∫ t

t′ dt′′
[
χ′ijl (ξ, t′′) ∂πi ∂π j ∂πl ρ0 (X (ξ, π, t′, t′′) , P (ξ, π, t′, t′′) , t′)

] ξ

π

=

 X (x, p, t′′, t)
P (x, p, t′′, t)


(26)

2.2. Changes in Density Matrix Elements Produced by the Raman Pulses

Consider now a cloud of atoms having two hyperfine sub-levels g and e in the ground state
manifold. The atoms are prepared in level g at time t = 0, and they proceed to interact with the
π

2
− π − π

2
sequence of Raman pulses applied at times:

τ = {τ1, τ2 = τ1 + T, τ3 = τ1 + 2T} (27)

where τ1 is time delay between cloud launch and the first Raman pulse and T is the time delay between
pulses. The initial atomic density matrix (8) is given by:

ρgg (x, p, 0) = f (x, p) (28a)

ρeg (x, p, 0) = ρee (x, p, 0) = 0 (28b)

where f (x, p) is the Wigner distribution at t = 0.
If a π/2-pulse is applied at time τj, the density matrix elements undergo changes given by [17]:

ρee
(
x, p, τj+

)
=

1
2
[
ρee
(
x, p, τj−

)
+ ρgg

(
x, p− h̄k, τj−

)]
+ Re

{
i exp

[
−i
(

k · x− δ
(j)
12 τj − φj

)]
ρeg

(
x, p− h̄k

2
, τj−

)}
(29a)

ρgg
(
x, p, τj+

)
=

1
2
[
ρee
(
x, p + h̄k, τj−

)
+ ρgg

(
x, p, τj−

)]
− Re

{
i exp

[
−i
(

k · x− δ
(j)
12 τj − φj

)]
ρeg

(
x, p +

h̄k
2

, τj−

)}
(29b)



Atoms 2016, 4, 14 8 of 28

ρeg
(
x, p, τj+

)
=

i
2

exp
[
i
(

k · x− δ
(j)
12 τj − φj

)] [
ρee

(
x, p +

h̄k
2

, τj−

)
− ρgg

(
x, p− h̄k

2
, τj−

)]
+

1
2

{
ρeg
(
x, p, τj−

)
+ exp

[
2i
(

k · x− δ
(j)
12 τj − φj

)]
ρge
(
x, p, τj−

)}
(29c)

Similarly, for π-pulse applied at time τj,

ρee
(
x, p, τj+

)
= ρgg

(
x, p− h̄k, τj−

)
(30a)

ρgg
(
x, p, τj+

)
= ρee

(
x, p + h̄k, τj−

)
(30b)

ρeg
(
x, p, τj+

)
= exp

[
2i
(

k · x− δ
(j)
12 τj − φj

)]
ρge
(
x, p, τj−

)
(30c)

In these equations, k is an effective wave vector (assumed to be the same for all of the pulses);
δ
(j)
12 is the detuning between the hyperfine transition frequency and the effective frequency of the

Raman fields (the effective frequency is the frequency difference of the two fields used to create the
Raman pulse); φj is the phase difference between traveling components of the Raman field; and τj± are

times just after and before the pulse. We allow pulses to have different detunings and phases δ
(j)
12 , φj

(j = 1, 2, 3).
It is assumed that the temporal width of the Raman pulses is sufficiently short to guarantee that

all phases related to the detuning, Doppler shifts and the gravitational fields are effectively frozen
during the application of the pulses. In addition, we assume that the Raman field amplitude and phase
are constant over the size of the atomic cloud, allowing us to neglect corrections arising from the ac
-Stark effect and wave front curvature of the Raman fields. In principle, most of these assumptions are
not necessary. One can derive and explore the analogue of Eqs. (29) and (30) considering extended
atom clouds at finite temperature, including corrections arising from Doppler broadening, ac-Stark
effects and gravitational acceleration produced during the Raman pulses. In this case, however,
the corrections depend on the initial atomic distribution f (x, p) . Since this distribution is usually
not known accurately, it is preferable for high precision atomic interferometry to use Raman pulses
of sufficiently short duration, sufficiently large diameter and sufficiently flat wave fronts to avoid
such corrections.

If a π/2 pulse acts on a ground state atom, it produces a superposition of ground and excited
states. If there were a momentum p associated with the ground state amplitude ag(p) before the pulse
is applied, the excited state amplitude ae(p) depends on ag(p−h̄k). As a consequence, the off-diagonal
density matrix element following the pulse involves the product of state amplitudes evolving with
different momenta. It is this difference in momentum that leads to the Q-term correction in periods of
free evolution.

2.3. AI Signal

Our goal is to calculate ρee (x, p, τ3+), the excited state atomic density matrix element following
the third Raman pulse, since ρee (x, p, τ3+) can be related to experimentally-measurable quantities.
To carry out the calculation, we use Eqs. (23) and (26) for the “free evolution” of density matrix
elements before the first Raman pulse is applied and for the time intervals between subsequent Raman
pulses and use Eqs. (29) and (30) for changes in the density matrix elements resulting from the
application of the Raman pulses. In these free evolution regions, density matrix elements are affected
by the presence of a gravitational potential that ultimately contributes to the phase of the AI signal.

From the time the cloud is launched at t = 0 to the time τ1 that the first Raman pulse is applied,
the only non-vanishing density matrix element is ρgg (x, p, t). In the time interval between t = 0 and
t = τ1, this density matrix element evolves to:

ρgg (x, p, τ1−) = f (X (x, p, 0, τ1) , P (x, p, 0, τ1)) (31)
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For reasons to be discussed below, corrections from the Q-term can be neglected in this time
interval. After the first π/2-pulse, the density matrix elements change to:

ρee (x, p, τ1+) =
1
2

f (X (x, p− h̄k, 0, τ1) , P (x, p− h̄k, 0, τ1)) , (32a)

ρgg (x, p, τ1+) =
1
2

f (X (x, p, 0, τ1) , P (x, p, 0, τ1)) , (32b)

ρeg (x, p, τ1+) = − i
2

exp
[
i
(

k · x− δ
(1)
12 τ1 − φ1

)]
f
(

X
(

x, p− h̄k
2

, 0, τ1

)
, P
(

x, p− h̄k
2

, 0, τ1

))
. (32c)

One uses these density matrix elements as initial values for the free evolution between the first
and second pulses of the unperturbed density matrix; that is,

ρ0 (x, p, τ1+) = ρ (x, p, τ1+) (33)

We now consider the modifications produced by the Q-term in the time interval between the first
and second pulses. The modifications produced by the Q-term (26) in the atomic coherence before the
second pulse acts, ρQeg, can be calculated from Eqs. (26), (32c) and (33) as:

ρQeg (x, p, τ2−) = −i
h̄2

48

∫ τ2

τ1

dt

×

χ′ijl (ξ, t) ∂πi ∂π j ∂πl


exp

[
i
(

k · X (ξ, π, τ1, t)− δ
(1)
12 τ1 − φ1

)]
× f

 X
(

X (ξ, π, τ1, t) , P (ξ, π, τ1, t)− h̄k
2 , 0, τ1

)
P
(

X (ξ, π, τ1, t) , P (ξ, π, τ1, t)− h̄k
2 , 0, τ1

) 

 ξ

π

=

 X

P

(x,p,t,τ2)

. (34)

In Eq. (34), the π derivatives lead to two types of terms. The first of these originates from the thermal
distribution and is of order:

∂πiThermal ∼ p−1
0 (35)

where p0 is thermal momentum defined in Eq. (11). The second arises from the phase
factor exp

[
i
(

k · X (ξ, π, τ1, t)− δ
(1)
12 τ1 − φ1

)]
in Eq. (34), evaluated at t − τ1 ∼ T. To estimate

this contribution, we “turn off” the gravitational field. In this approximation:

X (ξ, π, τ1, t) = ξ −π (t− τ1) /Ma (36)

and the Doppler phase becomes equal to k ·π (t− τ1) /Ma. This phase factor is a rapidly oscillating
function of momentum π having period of order pD defined by Eq. (12), from which we find:

∂πiDoppler ∼ p−1
D (37)

In the limit that:
kv0T � 1 (38)

the thermal derivative is smaller than the Doppler derivative by the ratio given in Eq. (13) and can be
neglected.

When inequality (38) holds, the time separation between pulses T is sufficiently large to ensure
that the dominant contributions to the Q-term comes from the momentum derivatives of the Doppler
phase factor. As we will show, the atomic levels’ populations (ρee and ρgg) have no phase factor
for 0 < t < τ3−; therefore, the Q-term corrections arise only from the atomic coherence ρeg.
As a consequence, we can neglect any contribution to the Q-term corrections from atomic
state populations. It was for this reason that we did not include any Q-term corrections to the
Wigner distribution for the time interval 0 < t < τ1−. In the Doppler limit defined by Eq. (38), the AI phase
is pretty much independent of the atomic momentum and spatial distributions.
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Calculating the derivatives and retaining those contributions to the derivatives arising from the
Doppler phase only, we arrive at:

ρQeg (x, p, τ2−) = −
h̄2

48
kukvkw

∫ τ2

τ1

dt

×
[
χ′ijl (ξ, t) ∂πi Xu (ξ, π, τ1, t) ∂π j Xv (ξ, π, τ1, t) ∂πl Xw (ξ, π, τ1, t)

] ξ

π

=

 X

P

(x,p,t,τ2)
exp

[
i
(

k · X (ξ, π, τ1, t)− δ
(1)
12 τ1 − φ1

)]
× f

 X
(

X (ξ, π, τ1, t) , P (ξ, π, τ1, t)− h̄k
2 , 0, τ1

)
,

P
(

X (ξ, π, τ1, t) , P (ξ, π, τ1, t)− h̄k
2 , 0, τ1

) 
 ξ

π

=

 X

P

(x,p,t,τ2)

(39)

where ku is the u-th component of the effective k-vector. In this approximation, the derivative no longer
acts on the term inside the curly brackets. Therefore, we can apply the multiplication law,{

X
P

} (
X
(
x, p, t′, t′′

)
, P
(
x, p, t′, t′′

)
, t, t′

)
=

{
X
P

} (
x, p, t, t′′

)
(40)

to get: {
X
P

}
(ξ, π, τ1, t)ξ=X(x,p,t,τ2),π=P(x,p,t,τ2)

=

{
X
P

}
(x, p, τ1, τ2) (41)

The expression inside the curly brackets of Eq. (39) becomes t-independent, and the Q-term just
before the second pulse is given by:

ρQeg (x, p, τ2−) = −
h̄2

48

{
exp

[
i
(

k · ξ − δ
(1)
12 τ1 − φ1

)]
f (ξ, π)

} ξ

π

=

 X(x,p,τ1,τ2)

P(x,p,τ1,τ2)−h̄k/2


×kukvkw

∫ τ2

τ1

dt
[
χ′ijl (ξ, t) ∂πi Xu (ξ, π, τ1, t) ∂π j Xv (ξ, π, τ1, t) ∂π l Xw (ξ, π, τ1, t)

] ξ

π

=

 X

P

(x,p,t,τ2)

(42)

We still need an expression for the time evolution of ρ0 (x, p, t) between the first and second
pulses. From Eqs. (23), (32) and (40), we find:

ρee (x, p, τ2−) =
1
2

f (X (ξ, π, 0, τ1) , P (ξ, π, 0, τ1))ξ=X(x,p,τ1,τ2),π=P(x,p,τ1,τ2)−h̄k , (43a)

ρgg (x, p, τ2−) =
1
2

f (X (x, p, 0, τ2) , P (x, p, 0, τ2)) , (43b)

ρ0eg (x, p, τ2−) = −
i
2

{
exp

[
i
(

k · ξ − δ
(1)
12 τ1 − φ1

)]
× f (X (ξ, π, 0, τ1) , P (ξ, π, 0, τ1))}ξ=X(x,p,τ1,τ2),π=P(x,p,τ1,τ2)−h̄k/2 (43c)

At time τ2, the π pulse acts, which, according to Eqs. (30), transforms these density matrix
elements at time τ2− into:

ρee (x, p, τ2+) =
1
2

f (X (x, p− h̄k, 0, τ2) , P (x, p− h̄k, 0, τ2)) (44a)

ρgg (x, p, τ2+) =
1
2

f (X (ξ, π, 0, τ1) , P (ξ, π, 0, τ1))ξ=X(x,p+h̄k,τ1,τ2),π=P(x,p+h̄k,τ1,τ2)−h̄k (44b)
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ρ0eg (x, p, τ2+) =
i
2

{
exp

{
i
[
k· (2x− ξ)− 2δ

(2)
12 τ2 + δ

(1)
12 τ1 − 2φ2 + φ1

]}
× f (X (ξ, π, 0, τ1) , P (ξ, π, 0, τ1))}ξ=X(x,p,τ1,τ2),π=P(x,p,τ1,τ2)−h̄k/2 (44c)

ρQeg (x, p, τ2+) = − h̄2

48

{
exp

{
i
[
k· (2x− ξ)− 2δ

(2)
12 τ2 + δ

(1)
12 τ1 − 2φ2 + φ1

]}
× f (X (ξ, π, 0, τ1) , P (ξ, π, 0, τ1))}ξ=X(x,p,τ1,τ2),π=P(x,p,τ1,τ2)−h̄k/2

×kukvkw

∫ τ2

τ1

dt
[
χ′ijl (ξ, t)

× ∂πi Xu (ξ, π, τ1, t) ∂π j Xv (ξ, π, τ1, t) ∂πl Xw (ξ, π, τ1, t)
] ξ

π

=

 X

P

(x,p,t,τ2)

.(44d)

The next step is to calculate the Q-term corrections in time interval [τ2, τ3] . Each density matrix
element in Eqs. (44) produces a Q-term correction. However, the diagonal matrix elements given by
Eqs. (44a) and (44b) contain no rapidly oscillating phase factors in momentum space, allowing us
to neglect their Q-term corrections. Moreover, Eq. (44d) is already linear in Q and can produce only
higher order corrections that we neglect in this work. As a consequence, we need consider only the
Q-term correction produced by the coherence in Eq. (44c), which we denote as ρ′Qeg. From Eq. (26),
we find:

ρ′Qeg (x, p, τ3−) = i
h̄2

48

∫ τ3

τ2

dt
{

χ′ijl (ξ, t) ∂πi ∂π j ∂πl

× exp {i [k · (2X (ξ, π, τ2, t)− X (ξ, π, τ1, t))

− 2δ
(2)
12 τ2 + δ

(1)
12 τ1 − 2φ2 + φ1

]}
× f
(

X
(

X (ξ, π, τ1, t) , P (ξ, π, τ1, t)− h̄k
2

, 0, τ1

)
P
(

X (ξ, π, τ1, t) , P (ξ, π, τ1, t)− h̄k
2

, 0, τ1

))} ξ

π

=

 X

P

(x,p,t,τ3)

(45)

where we used the multiplication law (40),{
X
P

}
(X (ξ, π, τ2, t) , P (ξ, π, τ2, t) , τ1, τ2) =

{
X
P

}
(ξ, π, τ1, t) (46)

In Eq. (45), the differentiation over momentum π is carried out only for the Doppler phase
factors. After differentiation, we apply the multiplication law two more times to the phase factor and
distribution f , namely:{

X
P

}
(ξ, π, τi, t) ξ

π

=

 X

P

(x,p,t,τ3)

=

{
X
P

}
(x, p, τi, τ3) (47)

for i = 1, 2, and find that these terms become t-independent. As a result, one gets for the Q-term ρ′Qeg
before the third pulse,

ρ′Qeg (x, p, τ3−) = − h̄2

48

{
exp

{
i
[
k · (2X (x, p, τ2, τ3)− ξ)− 2δ

(2)
12 τ2 + δ

(1)
12 τ1 − 2φ2 + φ1

]}
× f (X (ξ, π, 0, τ1) , P (ξ, π, 0, τ1))}ξ=X(x,p,τ1,τ3),π=P(x,p,τ1,τ3)−h̄k/2

×kukvkw

∫ τ3

τ2

dt
{

χ′ijl (ξ, t)
[

∂Xu (ξ, π, τ1, t)
∂πi

− 2
∂Xu (ξ, π, τ2, t)

∂πi

]
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×
[

∂Xv (ξ, π, τ1, t)
∂π j

− 2
∂Xv (ξ, π, τ2, t)

∂π j

]

×
[

∂Xw (ξ, π, τ1, t)
∂πl

− 2
∂Xw (ξ, π, τ2, t)

∂πl

]} ξ

π

=

 X

P

(x,p,t,τ3)

(48)

The value of ρee (x, p, τ3+) will depend both on
{

ρQeg (x, p, τ3−) , ρ′Qeg (x, p, τ3−)
}

and
ρ0 (x, p, τ3−) . In other words, we must also calculate the time evolution of ρ0 (x, p, t) and ρQeg (x, p, t)
between the second and third pulses. Applying Eq. (23), we find:

ρee (x, p, τ3−) =
1
2

f (X (ξ, π, 0, τ2) , P (ξ, π, 0, τ2))ξ=X(x,p,τ2,τ3),π=P(x,p,τ2,τ3)−h̄k (49a)

ρgg (x, p, τ3−) =
1
2

f (X (ξ, π, 0, τ1) , P (ξ, π, 0, τ1))
{ξ=X(X(x,p,τ2,τ3),P(x,p,τ2,τ3)+h̄k,τ1,τ2),

π=P(X(x,p,τ2,τ3),P(x,p,τ2,τ3)+h̄k,τ1,τ2)−h̄k}

(49b)

ρ0eg (x, p, τ3−) =
i
2

{
exp

{
i
[
k · (2X (x, p, τ2, τ3)− ξ)− 2δ

(2)
12 τ2 + δ

(1)
12 τ1 − 2φ2 + φ1

]}
× f (X (ξ, π, 0, τ1) , P (ξ, π, 0, τ1))}ξ=X(x,p,τ1,τ3),π=P(x,p,τ1,τ3)−h̄k/2 (49c)

ρQeg (x, p, τ3−) = − h̄2

48

{
exp

{
i
[
k · (2X (x, p, τ2, τ3)− ξ)− 2δ

(2)
12 τ2 + δ

(1)
12 τ1 − 2φ2 + φ1

]}
× f (X (ξ, π, 0, τ1) , P (ξ, π, 0, τ1))}ξ=X(x,p,τ1,τ3),π=P(x,p,τ1,τ3)−h̄k/2

×kukvkw

∫ τ2

τ1

dt
[
χ′ijl (ξ, t) ∂πi Xu (ξ, π, τ1, t) ∂π j Xv (ξ, π, τ1, t)

× ∂πl Xw (ξ, π, τ1, t)
] ξ

π

=

 X

P

(x,p,t,τ3)

(49d)

Combining the different contributions to the off diagonal density matrix element given by Eqs. (48),
(49c) and (49d) and factoring out a common phase factor, we obtain:

ρeg (x, p, τ3−) = ρ0eg (x, p, τ3−) + ρQeg (x, p, τ3−) + ρ′Qeg (x, p, τ3−)

=
i
2

{
exp

{
i
[
k · (2X (x, p, τ2, τ3)− ξ)− 2δ

(2)
12 τ2 + δ

(1)
12 τ1 − 2φ2 + φ1

]}
× f (X (ξ, π, 0, τ1) , P (ξ, π, 0, τ1))}ξ=X(x,p,τ1 ,τ3),π=P(x,p,τ1 ,τ3)−h̄k/2

[
1− iφ̃Q (x, p)

]
(50a)

≈ i
2

{
exp

{
i
[
k · (2X (x, p, τ2, τ3)− ξ)− φ̃Q (x, p)− 2δ

(2)
12 τ2 + δ

(1)
12 τ1 − 2φ2 + φ1

]}
× f (X (ξ, π, 0, τ1) , P (ξ, π, 0, τ1))}ξ=X(x,p,τ1 ,τ3),π=P(x,p,τ1 ,τ3)−h̄k/2 (50b)

φ̃Q (x, p) = − h̄2

24
kukvkw

{∫ τ2

τ1

dtχ′ijl
(
ξ′, t

)
∂π′i

Xu
(
ξ′, π′, τ1, t

)
∂π′j

Xv
(
ξ′, π′, τ1, t

)
∂π′l

Xw
(
ξ′, π′, τ1, t

)
+
∫ τ3

τ2
dtχ′ijl

(
ξ′, t

) [ ∂Xu
(
ξ′, π′, τ1, t

)
∂π′i

− 2
∂Xu

(
ξ′, π′, τ2, t

)
∂π′i

] [
∂Xv

(
ξ′, π′, τ1, t

)
∂π′j

− 2
∂Xv

(
ξ′, π′, τ2, t

)
∂π′j

]

×
[

∂Xw
(
ξ′, π′, τ1, t

)
∂π′l

− 2
∂Xw

(
ξ′, π′, τ2, t

)
∂π′l

]}
 ξ′

π′

=

 X

P

(x,p,t,τ3)

(50c)

Finally, we use Eqs. (29a), (49a), (49b) and (50) to calculate ρee (x, p, τ3+) following the π/2 pulse at
time τ3 as:
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ρee (x, p, τ3+) =
1
4

f (X (ξ, π, 0, τ2) , P (ξ, π, 0, τ2))ξ=X(x,p,τ2,τ3),π=P(x,p,τ2,τ3)−h̄k

+
1
4

f (X (ξ, π, 0, τ1) , P (ξ, π, 0, τ1)) ξ

π

=

 X(X(x,p−h̄k,τ2,τ3),P(x,p−h̄k,τ2,τ3)+h̄k,τ1,τ2)

P(X(x,p−h̄k,τ2,τ3),P(x,p−h̄k,τ2,τ3)+h̄k,τ1,τ2)−h̄k


−1

2

{
cos

[
k ·
(

x− 2X
(

x, p− h̄k
2

, τ2, τ3

)
+ ξ

)
+ φ̃Q

(
x, p− h̄k

2

)
−δ

(3)
12 τ3 + 2δ

(2)
12 τ2 − δ

(1)
12 τ1 − φ3 + 2φ2 − φ1

]
× f (X (ξ, π, 0, τ1) , P (ξ, π, 0, τ1))}ξ=X(x,p−h̄k/2,τ1,τ3),π=P(x,p−h̄k/2,τ1,τ3)−h̄k/2 (51)

This density matrix element can be used to calculate any physically-measured observable associated
with atoms in state e. For example, one could measure the state e population given as:

w =
∫

dxdpρee (x, p, τ3+) (52)

The first two terms in Eq. (51) are responsible for the background signal. When substituted into
Eq. (52), they yield a background contribution equal to 1/2, allowing us to write:

w =
1
2
(1− w̃) , (53)

where the interferometric term w̃ is given by:

w̃ =
∫

dxdp
{

cos
[
k ·
(

x− 2X
(

x, p− h̄k
2

, τ2, τ3

)
+ ξ

)
+ φ̃Q

(
x, p− h̄k

2

)
− δ

(3)
12 τ3 + 2δ

(2)
12 τ2 − δ

(1)
12 τ1 − φ3 + 2φ2 − φ1

]
× f (X (ξ, π, 0, τ1) , P (ξ, π, 0, τ1))}ξ=X(x,p−h̄k/2,τ1,τ3),π=P(x,p−h̄k/2,τ1,τ3)−h̄k/2

(54)

To carry out the integration, we express all position and momenta in terms of the position and
momentum variables at Time 0, denoted by:{

x′, p′
}
= {X (ξ, π, 0, τ1) , P (ξ, π, 0, τ1)} (55)

In terms of these variables,

{ξ, π} =
{

X
(
x′, p′, τ1, 0

)
, P
(
x′, p′, τ1, 0

)}
(56a)

{x, p} =
{

X
(
X
(
x′, p′, τ1, 0

)
, P
(
x′, p′, τ1, 0

)
+ h̄k/2, τ3, τ1

)
,

P
(
X
(
x′, p′, τ1, 0

)
, P
(
x′, p′, τ1, 0

)
+ h̄k/2, τ3, τ1

)
+ h̄k/2

}
(56b)∣∣∂ {x, p} /∂

{
x′, p′

}∣∣ = 1 (56c)

X (x, p− h̄k/2, τ2, τ3) = X
(
X
(
x′, p′, τ1, 0

)
, P
(
x′, p′, τ1, 0

)
+ h̄k/2, τ2, τ1

)
(56d)

After redefining {x′, p′} → {x, p}, one finds:

w̃ =
∫

dxdp cos
[
φ (x, p)− δ

(3)
12 τ3 + 2δ

(2)
12 τ2 − δ

(1)
12 τ1 − φ3 + 2φ2 − φ1

]
f (x, p) (57)

where the phase φ (x, p) of the AI is defined as:

φ (x, p) = φr (x, p) + φQ (x, p) (58a)

φr (x, p) = k · [X (ξ, π, τ3, τ1)− 2X (ξ, π, τ2, τ1) + ξ]{ξ=X(x,p,τ1,0),π=P(x,p,τ1,0)+h̄k/2} ; (58b)
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φQ (x, p) = φ̃Q [X (ξ, π, τ3, τ1) , P (ξ, π, τ3, τ1)]{ξ=X(x,p,τ1,0),π=P(x,p,τ1,0)+h̄k/2} (58c)

with φ̃Q given by Eq. (50c).

2.3.1. Atom Trajectories in the Presence of the Test Mass

To calculate the phases in Eqs. (58), we need expressions for the propagation functions
{X (x, p, t, t′) , P (x, p, t, t′)}, i.e., atomic position and momentum at time t subject to the initial value
{x, p} at time t′. These functions evolve as:

Ẋ
(
x, p, t, t′

)
=

P (x, p, t, t′)
Ma

(59a)

Ṗ
(
x, p, t, t′

)
= Ma

{
g + δg

[
X
(
x, p, t, t′

)
, t
]}

(59b)

We neglect in Eqs. (59) the gravity-gradient, centrifugal and Coriolis forces caused by the rotating
Earth. When δg (x, t) is a perturbation, the approximate solutions of Eqs. (59) are [34]:

X
(
x, p, t, t′

)
≈ X(0) (x, p, t, t′

)
+ δX

(
x, p, t, t′

)
(60a)

P
(
x, p, t, t′

)
≈ P(0) (x, p, t, t′

)
+ δP

(
x, p, t, t′

)
(60b)

X(0) (x, p, t, t′
)

= x +
p

Ma

(
t− t′

)
+ g

(t− t′)2

2
(60c)

P(0) (x, p, t, t′
)

= p + Mag
(
t− t′

)
(60d)

δX
(
x, p, t, t′

)
=

∫ t

t′
dt′′
(
t− t′′

)
δg
[
X(0) (x, p, t′′, t′

)
, t′′
]

(60e)

δP
(
x, p, t, t′

)
= Ma

∫ t

t′
dt′′δg

[
X(0) (x, p, t′′, t′

)
, t′′
]

(60f)

Each of the functions
{

X(0), P(0), δX, δP
}

obeys the multiplication law (40):

{
X(0)

P(0)

}(
X(0) (x, p, t′, t′′

)
, P(0) (x, p, t′, t′′

)
, t, t′

)
=

{
X(0)

P(0)

} (
x, p, t, t′′

)
(61a){

δX
δP

} (
δX
(
x, p, t′, t′′

)
, δP

(
x, p, t′, t′′

)
, t, t′

)
=

{
δX
δP

} (
x, p, t, t′′

)
(61b)

2.3.2. Phases

It remains for us to calculate the phases φr (x, p) and φQ (x, p). In the following two subsections,
we obtain both exact integral and approximate integral and analytic expressions for these phases.
In Section 3, the exact expressions are evaluated numerically, and the range of validity of the
approximate expressions is established.

φr (x, p)

The phase φr includes a “classical” part (non-vanishing in the limit h̄→ 0), as well as a quantum
correction φq. The contributions to φr resulting from the Earth’s gravitational field and the rotation of
the Earth were calculated approximately in [17,29]. The classical component of these contributions to
φr has been calculated exactly [31]. In this paper, we concentrate on the additions to φr caused by the
test mass’ field. The “classical” part of this addition has been evaluated in [25]. Contributions to the
phase from the Earth’s rotation and Earth’s gravity-gradient terms are neglected in this paper.
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It is shown in the Appendix how approximate expressions for the propagators needed in Eq. (58b)
can be obtained from Eqs. (60). It then follows that the phase φr given in Eq. (58b) can be written as a
sum of three terms,

φr (x, p) = φ0 (x, p) + δφ (x, p) + φq (x, p) (62a)

φ0 (x, p) = k·
[
X(0) (x, p, τ3, 0)− 2X(0) (x, p, τ2, 0) + X(0) (x, p, τ1, 0)

]
= k · gT2 (62b)

δφ (x, p) = k ·ψ ≡ k · [δX (x, p, τ3, 0)− 2δX (x, p, τ2, 0) + δX (x, p, τ1, 0)] (62c)

φq (x, p) = k ·ψq (62d)

ψq =
∫ τ3

τ1

dt (τ3 − t)
{

δg
[

X(0) (x, p, t, 0) +
h̄k

2Ma
(t− τ1) , t

]
(62e)

−δg
[
X(0) (x, p, t, 0) , t

] }
−2

∫ τ2

τ1

dt (τ2 − t)
{

δg
[

X(0) (x, p, t, 0) +
h̄k

2Ma
(t− τ1) , t

]
(62f)

−δg
[
X(0) (x, p, t, 0) , t

] }
(62g)

The term φ0 (x, p) is the classical contribution from the Earth’s field; the term δφ (x, p) is the
classical contribution from the test mass’ field; and the term φq (x, p) is the quantum correction arising
from the test mass’ field.

To evaluate the classical contribution to the phase given by Eq. (62c), we use Eq. (60e) to arrive at:

ψ = τ3u20 − τ1u10 + u11 − u21 (63a)

uαβ =
∫ τα+T

τα

dt′′
(
t′′
)β

δg
[
X(0) (x, p, t′′, 0

)
, t′′
]

(63b)

Eqs. (62c) and (63) have been used in [25]. With the simple change of variables, t = τ2 + θ for u2β

and t = τ1 + θ for u1β, we find:

ψ =
∫ T

0
dθ
{
(T − θ) δg

[
X(0) (x, p, τ2 + θ, 0) , τ2 + θ

]
+ θδg

[
X(0) (x, p, τ1 + θ, 0) , τ1 + θ

]}
(64)

If the test mass moves without rotation and follows a trajectory denoted by xm (t), then:

δg (x,t) = δg [x− xm (t)] (65)

and:

ψ =
∫ T

0 dθ
{
(T − θ) δg

[
X(0) (x, p, τ2 + θ, 0)−xm (τ2 + θ)

]
+ θδg

[
X(0) (x, p, τ1 + θ, 0)−xm (τ1 + θ)

]}
(66)

This is the exact expression for ψ that is used in Section 3.
We can arrive at an approximate expression for ψ if we assume that the distance between the

atoms and the test mass is sufficiently large to keep only those terms that are linear in the field gradient.
In other words, we can evaluate the field of the test mass at some average displacement xC between
the test mass and the atoms’ trajectory. If we choose [51]:

xC =
1

T2

∫ T
0 dθ

{
(T − θ)

[
X(0) (x, p, τ2 + θ, 0)− xm (τ2 + θ)

]
+ θ

[
X(0) (x, p, τ1 + θ, 0)− xm (τ1 + θ)

]}
(67)

expand:
δgi (x) ≈ δgi (xC) + γ (x) (x− xC) (68)
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where γ (x) is the gravity-gradient tensor having matrix elements:

γij (x) =
∂δgi (x)

∂xj
(69)

and substitute the result back into Eq. (66), we find that the term proportional to γ (x) vanishes (xC
was chosen to ensure this). We then obtain an approximate expression δφa for the classical contribution
to the phase φr given by:

δφ ≈ δφa = k ·ψa (70a)

ψa = δg (xC) T2 (70b)

We now turn our attention to the quantum correction. The vector ψq given in Eq. (62g) can be
rewritten as:

ψq =
∫ τ3

τ2

dt (τ3 − t)
{

δg
[

X(0) (x, p, t, 0) +
h̄k

2Ma
(t− τ1) , t

]
− δg

[
X(0) (x, p, t, 0) , t

]}
+
∫ τ2

τ1

dt (t− τ1)

{
δg
[

X(0) (x, p, t, 0) +
h̄k

2Ma
(t− τ1) , t

]
− δg

[
X(0) (x, p, t, 0) , t

]}
(71)

Substituting t = τ2 + θ in the first term of Eq. (71) and t = τ1 + θ in the second term,
we obtain:

ψq =
∫ T

0
dθ
{
(T − θ)

[
δg
(

X(0) (x, p, τ2 + θ, 0) +
h̄k

2Ma
(T + θ) , τ2 + θ

)
− δg

(
X(0) (x, p, τ2 + θ, 0) , τ2 + θ

)]
+θ

[
δg
(

X(0) (x, p, τ1 + θ, 0) +
h̄k

2Ma
θ, τ1 + θ

)
− δg

(
X(0) (x, p, τ1 + θ, 0) , τ1 + θ

)] }
(72)

For translational motion, when the gravitational field of the test mass is given by Eq. (65),

ψq =
∫ T

0
dθ

{
(T − θ)

[
δg
(

X(0) (x, p, τ2 + θ, 0) +
h̄k

2Ma
(T + θ)−xm (τ2 + θ)

)
− δg

(
X(0) (x, p, τ2 + θ, 0)−xm (τ2 + θ)

)]
+ θ

[
δg
(

X(0) (x, p, τ1 + θ, 0) +
h̄k

2Ma
θ−xm (τ1 + θ)

)
− δg

(
X(0) (x, p, τ1 + θ, 0)−xm (τ1 + θ)

)]}
(73)

This is the exact expression for ψq that is used in Section 3.
There are two approximate expressions we will derive for ψ. When the recoil effect is small,

h̄k
2Ma

T � X(0) (x, p, T, 0) (74)

we can expand the arguments in Eq. (73) to obtain a first approximation φq ≈ φqn given by:

φq ≈ φqn = k ·ψqn (75a)

ψqn =
∫ T

0
dθ
{(

T2 − θ2
)

γ
[
X(0) (x, p, τ2 + θ, 0) , τ2 + θ

]
+ θ2γ

[
X(0) (x, p, τ1 + θ, 0) , τ1 + θ

]} h̄k
2Ma

, (75b)

where:

γij (x, t) =
∂gi (x, t)

∂xj
(76)

For translational motion of the test mass, γ (x, t) = γ [x− xm (t)], and Eq. (75b) reduces to:

ψqn =
∫ T

0 dθ
{(

T2 − θ2) γ
[
X(0) (x, p, τ2 + θ, 0)−xm (τ2 + θ)

]
+ θ2γ

[
X(0) (x, p, τ1 + θ, 0)−xm (τ1 + θ)

]} h̄k
2Ma

(77)
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The second approximate expression we obtain for ψq is the limit of Eq. (77) when the distance
between the atoms and the test mass is sufficiently large to keep only those terms that are linear in the
field gradient. If we choose:

xqC =
1

T3

∫ T
0 dθ

{(
T2 − θ2) [X(0) (x, p, τ2 + θ, 0)− xm (τ2 + θ)

]
+ θ2

[
X(0) (x, p, τ1 + θ, 0)− xm (τ1 + θ)

]}
(78)

and expand:
γij (x) ≈ γij

(
xqC
)
+ χijl

(
xqC
) (

x− xqC
)

l (79)

where:
χijl (x) = ∂xl γij (x) (80)

is an element of the gravity curvature tensor, then the contribution from the second term in Eq. (79)
vanishes, and we find an approximate expression φqa for the phase given by:

φq (x, p) ≈ φqa (x, p) = k ·ψqa (81a)

ψqa = γ
(
xqC
) h̄k

2Ma
T3 (81b)

φQ (x, p)

We now consider Q-term quantum corrections to the phase given by Eqs. (58c) and (50c).
We first replace {x, p} by {X (ξ, π, τ3, τ1) , P (ξ, π, τ3, τ1)} in Eq. (50c) to obtain:{

ξ′

π′

}
=

{
X

P

}
(X (ξ, π, τ3, τ1) , P (ξ, π, τ3, τ1) , t, τ3) =

{
X

P

}
(ξ, π, t, τ1) (82)

allowing us to write φQ (x, p) as:

φQ (x, p) = − h̄2

24
kukvkw

{∫ τ2

τ1

dtχ′ijl (ξ, t) ∂πi Xu (ξ, π, τ1, t) ∂π j Xv (ξ, π, τ1, t) ∂π l Xw (ξ, π, τ1, t)

+
∫ τ3

τ2

dtχ′ijl (ξ, t)
[

∂Xu (ξ, π, τ1, t)
∂πi

− 2
∂Xu (ξ, π, τ2, t)

∂πi

] [
∂Xv (ξ, π, τ1, t)

∂π j
− 2

∂Xv (ξ, π, τ2, t)
∂π j

]

×
[

∂Xw (ξ, π, τ1, t)
∂πl

− 2
∂Xw (ξ, π, τ2, t)

∂πl

]} ξ

π

=

 X,

P

(X(x,p,τ1,0),P(x,p,τ1,0)+h̄k/2,t,τ1)

(83)

When atoms move between the Raman pulses under the action of the homogeneous gravitational
field g of the Earth and the inhomogeneous perturbation δg(x, t) caused by the test mass, the only
contribution to χ′ikl (ξ, t) (defined in Eq. (19)) results from the presence of the test mass,

χ′ijl (x, t) = Maχijl (x, t) (84a)

where:
χijl (x, t) = ∂xl γij (x, t) (85)

Since we calculate the AI phase to first order in δg, it is sufficient to calculate the atom trajectory
in Eq. (83) to zeroth order in δg, i.e., to set:{

X
P

} (
x, p, t, t′

)
=

{
X(0)

P(0)

} (
x, p, t, t′

)
(86)
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which results in:

∂pi X
(0)
j
(
x, p, t, t′

)
=

δij

Ma

(
t− t′

)
(87)

where δij is a Kronecker delta. Moreover, since we are interested in calculating φQ (x, p) to second
order in the recoil momentum h̄k, we can neglect the contribution of the recoil term in the braces of Eq.
(83). We then apply the multiplication law (40) and obtain:

φQ (x, p) =
h̄2

24M2
a

kik jkl

{∫ τ2
τ1

dtχijl

[
X(0) (x, p, t, 0) , t

]
(t− τ1)

3 +
∫ τ3

τ2
dtχijl

[
X(0) (x, p, t, 0) , t

]
(τ3 − t)3

}
(88)

As before, we transform the integral to one from zero to T,

φQ (x, p) =
h̄2

24M2
a

kik jkl
∫ T

0 dθ
{

θ3χijl

[
X(0) (x, p, τ1 + θ, 0) , τ1 + θ

]
+ (T − θ)3 χijl

[
X(0) (x, p, τ2 + θ, 0) , τ2 + θ

]}
(89)

If the test mass moves without rotation, then:

χijl (x, t) = χijl [x− xm (t)] (90)

and:

φQ (x, p) =
h̄2

24M2
a

kik jkl

∫ T

0
dθ

 θ3χijl

[
X(0) (x, p, τ1 + θ, 0)− xm (τ1 + θ)

]
+ (T − θ)3 χijl

[
X(0) (x, p, τ2 + θ, 0)− xm (τ2 + θ)

]  (91)

This is the exact expression for ψq that is used in Section 3.
We can obtain an approximate expression for φQ (x, p) when the distance between the atoms

and the test mass is sufficiently large to keep only those terms that are linear in the field curvature.
If we choose:

xQC = 2
T4

∫ T
0 dθ

{
θ3
[
X(0) (x, p, τ1 + θ, 0)− xm (τ1 + θ)

]
+ (T − θ)3

[
X(0) (x, p, τ2 + θ, 0)− xm (τ2 + θ)

]}
(92)

and expand:
χijl (x) ≈ χijl

(
xQC

)
+ (∂xC )m χijl

(
xQC

) (
x− xQC

)
m (93)

the contribution to the Q-term from the second term in Eq. (93) vanishes, and we find an approximate
expression φQa for the phase given by:

φQ (x, p) ≈ φQa (x, p) =
h̄2

48M2
a

kik jklχijl
(
xQC

)
T4. (94)

3. Point Source Test Mass

For a point source test mass M moving along the trajectory xm (t), the gravitational field,
gravity-gradient tensor and gravity curvature tensor are given by:

δg (x, t) = δg [x− xm (t)] ; δg (x) = −GM
x
x3 (95a)

γjl (x, t) = γjl [x− xm (t)] ; γjl (x) = −GM
(

δjl

x3 − 3
xjxl

x5

)
(95b)

χijl (x, t) = χijl [x− xm (t)] (95c)

χijl (x) = GM
[

3
x5

(
δjl xi + δil xj + δijxl

)
− 15

xixjxl

x7

]
, (95d)

where G = 6.67428× 10−11 m3/kg·s2 is the Newtonian gravitational constant.
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We numerically calculated the classical part of the phase given by Eqs. (62c) and (66) (for δφ) and
the quantum corrections given by Eqs. (62d) and (73) (for φq) and (91) (for φQ) and determined when
these terms become measurable in the presence of phase noise given by Eq. (7). Moreover, we checked
the validity of the approximate expressions given in Eqs. [(70), (67)], (77), [(81),(78)], and [(94),(92)].
The results vary with the test mass’ weight, shape, trajectory, as well as with the operating parameters
of the atom interferometer.

The calculations are carried out for a test mass moving with constant velocity vm,

xm (t) = xm0 + vmt (96)

where:
xm0 = (xm0, ym0, zm0) (97)

is the location of the test mass at time t = 0.
We assume that, at t = 0, the atoms are launched from the origin of the north-east-down frame

in the vertical direction. That is, it is assumed that g is in the positive z-direction and that the cloud
position is given by:

z(t) = v0t +
1
2

gt2 (98a)

x(t) = y(t) = 0 (98b)

where v0 = v0uz is the launch velocity, taken to be along the z-axis. In this case, one finds from
Eqs. (60c), (67), (78) and (92) that:

xC = −xm0 + [v0 − vm] (τ1 + T) +
1
2

g
(

τ2
1 + 2τ1T +

7
6

T2
)

(99a)

xqC = −xm0 + [v0 − vm]

(
τ1 +

7
6

T
)
+

1
2

g
(

τ2
1 +

7
3

τ1T +
3
2

T2
)

(99b)

xQC = −xm0 + [v0 − vm] (τ1 + T) + g

(
τ2

1
2

+ τ1T +
8

15
T2

)
(99c)

Recall that these values were chosen to ensure that the first order terms vanish in the expansions
given in Eqs. (68), (79) and (93). As such, by expanding the expressions for ψ about these points,
we obtained approximate expressions with corrections of order |x− xC|2 times derivatives of the
gravity gradient tensor, derivatives of the gravity-curvature tensor and second derivatives of the
gravity-curvature tensor for δφ, φq and φQ, respectively. As such, these choices improve the accuracy
of the approximations.

The launch velocity is chosen as:

v0 = −g (τ1 + T) (100)

corresponding to a symmetric fountain geometry in which the atomic cloud reaches its highest point
at time τ2, when the second pulse is applied. Calculations have been performed for a stationary test
mass having:

x(1)m (t) = xm0 = (0, ym0, zm0) (101)

and a test mass moving with constant velocity vm = (5 m/s,0,0) along the x-axis,

x(2)m (t) = xm0 + vmt = (xm0, ym0, zm0) + (5 m/s,0,0) t (102)

The parameters characterizing the atom interferometer, the test mass and the Earth’s field are
summarized in Table 1. Since the cloud trajectory and the effective wave vectors are vertical, ym0 can
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be considered as an “impact parameter” for the test mass relative to the cloud trajectory along the
z-axis.

Table 1. Parameters of the atom interferometer and gravitational sources.

Earth’s gravitational field g =
{

0, 0, 9.8 m/s2
}

Multiple-h̄k beam splitter factor nk = 25
Effective wave vector k = {0, 0,−k} , k = 4.0275× 108 m−1

Time between launch and first Raman pulse τ1 = 10 ms
Time between Raman pulses T = 200 ms
Launch velocity v0 = −g (τ1 + T)
Error of atom interferometer phase measurement φerr = 10−3 rad
Test mass M = 50 kg
Atomic mass 87

Equations (95) can be used either for a point mass or a spherical mass having constant density ρ

and radius:

ymin =

[
3M
4πρ

]1/3
(103)

For the highest density in nature, ρ = 22,600 kg/m3, corresponding to osmium [52],

ymin ≈ 0.0808 m (104)

For impact parameters ym0 < ymin Eqs. (95) are valid only for those values of zm0 for which atom
trajectory does not intersect the spherical test mass. In the case of a stationary sphere, this requirement
translates into one in which the distance between the cloud and the sphere is always greater than ymin;
that is, for any t > 0:

y2
m0 + [z(t)− zm0]

2 > y2
min (105)

With z(t) given by Eq. (98a) and v0 given by Eq. (100), we can show that this inequality is satisfied
if:

−
√

y2
min − y2

m0 −
1
2

g (τ1 + T)2 > zm0, or zm0 >
√

y2
min − y2

m0 (106)

For the moving sphere, the range of allowed initial positions (xm0, ym0, zm0) for the center of the
sphere is more difficult to calculate. For this reason, in Case 2, we consider only impact parameters
larger than the sphere’s radius, ym0 > ymin, for which, evidently, any values of (xm0, zm0) are allowed.

For each impact parameter ym0 and for the parameters given in Table 1, we explore various test
mass positions and trajectories. The results of the calculations are illustrated graphically in Figure 2
for a stationary mass and in Figure 3 for a mass moving at constant velocity. Although the various
plots may be difficult to read at standard magnification, they can be read easily using the zoom feature
when read online in PDF format.

In the first two columns of Figure 2, we plot:

(1) maximum of the magnitude of the phase |δφ|max obtained from Eqs. (62c) and (66), Plots a1,a2;
(2) maximum of the magnitude of the phase difference |δφ− δφa|max obtained from Eqs. (62c), (66),

(70), (99a), Plots b1,b2;
(3) maximum of the magnitude of the quantum correction

∣∣φq
∣∣
max obtained from Eqs. (62d) and (73),

Plots c1,c2;
(4) maximum of the magnitude of the phase difference

∣∣φq − φqn
∣∣
max obtained from Eqs. (62d), (73),

(75a) and (77), Plots d1,d2;
(5) maximum of the magnitude of the phase difference

∣∣φq − φqa
∣∣
max obtained from Eqs. (62d), (73),

(81) and (99b), Plots e1,e2;
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(6) maximum of the magnitude of the quantum correction
∣∣φQ

∣∣
max obtained from Eq. (91),

Plots f1,f2;
(7) maximum of the magnitude of the phase difference

∣∣φQ − φQa
∣∣
max obtained from Eqs. (91), (94),

and (99c), Plots g1,g2.

In effect, Column 2 is a blow-up of Column 1 for values of ym0 < ymin. Values of ym0 < ymin are
allowed provided inequality (106) holds. For the stationary test mass, the maximum values of the
various phases and phase differences occur if the mass is positioned as close as possible to the top
of the cloud trajectory, without touching it. For the parameters given in Table 1 and the trajectory
determined by Eqs. (98a) and (100), the top of the cloud trajectory occurs for zmin = −0.22 m. As
a consequence, the maximum phases occur for ym0 = 0, zm0 = zmin − ymin = −0.30 m. That the
maximum phases occur for ym0 = 0 is evident in Column 2. The plots in Column 1 of Figure 3 mirror
those of Column 1 of Figure 2, except that Figure 3 is drawn for a test mass moving with constant
velocity in Figure 3. The maximum phases in this case occur for ym0 ≈ ymin.

Phases δφ, φq and φQ that lie above the dashed lines in these plots are measurable, since they
exceed the noise level. On the other hand, phase differences between the exact and approximate results
must lie below the dashed lines for the approximations to be good. For example, in Plot a1, we see
that the signal exceeds the noise only if ym0 < 4.55 m, and in Plot b1, we see that the difference
between the exact and approximate expressions is below the noise level only if ym0 > 0.525 m.
By examining the plots in Column 1 of Figures 2 and 3, we are able to determine the regions in which
the interferometric signal rises above the noise and also to determine the range of validity of the
various approximation expressions that we derived. The results are summarized below for the regions
of ym0 listed in Table 2 that were obtained from Column 1 of Figures 2 and 3.
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Figure 2. Stationary source. Plot a1, maximum of the phase magnitude given in Eqs. (62c) and (66)
versus the impact parameter ym0; Plot a2, the same as Plot a1, but for ym0 < ymin; Plot a3, dependence
of the exact (black curve) and approximate (red curve) phases as a function of the initial z-coordinate
(zm0) for {xm0, ym0} = {0, 0}, where the phase achieves its maximum magnitude; Plot a4, the same as
Plot a3, but for {xm0, ym0} = {0, 4.55 m}, where the phase passes below the noise threshold φerr; Plots
{b1, b2}, the same as Plot {a1, a2}, but for the maximum magnitude of the difference between exact
and approximate phases given in Eqs. (62c), (66), (70) and (99a); Plot b3, the same as Plot a3, but for
{xm0, ym0} = {0, 0.525 m}, where the magnitude of phase difference shown on Plot b1 passes below
φerr; Plot b4, the difference between black and red curves in Plot b3; Plots {c1 − c4}, the same as Plots
{a1 − a4}, but for the magnitude of the quantum correction given in Eqs. (62d) and (73); the values of
{xm0, ym0} are {0, 0} for c3 and {0, 1.16 m} for c4, where the magnitude of the phase difference shown
on Plot c1 passes below φerr; exact quantum correction φq, approximations φqn and φqa are shown in
black, red and blue, respectively. Plots {d1 − d4}, the same as Plots {b1 − b4}, but for the maximum
magnitude of the difference between exact and approximate quantum corrections given in Eqs. (62d),
(73), (75a) and (77); {xm0, ym0} = {0, 0.473 m} in Plot d3 where the magnitude of the phase difference
shown on Plot d1 passes below φerr. Plots {e1 − e4}, the same as Plots {d1 − d4}, but for the maximum
magnitude of the difference between exact and approximate quantum corrections given in Eqs. (62d),
(73), (81) and (99b); {xm0, ym0} = {0, 0.488 m} in Plot e3, where the magnitude of the phase difference
shown on Plot e1 passes below φerr. Plots { f1 − f4}, the same as Plots {a1 − a4}, but for the magnitude
of the Q-term given in Eq. (91); values of {xm0, ym0} are {0, 0} for f3 and {xm0, ym0} = {0, 0.292 m} for
f4, where the magnitude of the phase shown on Plot f1 passes below φerr. Plots {g1 − g4}, the same
as Plots {b1 − b4}, but for the maximum magnitude of the difference between exact and approximate
Q-terms given in Eqs. (91), (94) and (99c); {xm0, ym0} = {0, 0.166 m} in Plot g3, where the magnitude
of the difference shown on Plot g1 passes below φerr.
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Figure 3. Test mass moving with constant velocity 5 m/s. Columns 1, 2 and 3 mirror
Columns 1,3 and 4 of Figure 2. Values of {xm0, ym0} are {−1.05 m, ymin} for Plots a2, f2,
{−1.05 m, 4.53 m} for Plot a3, {−1.05, 1.34} for Plots b2, {−1.13 m, ymin} for Plot c2, {−1.22 m, 1.11 m}
for Plot c3, {−1.33 m, 0.407 m} for Plot d2, {−1.21 m, 0.732 m} for Plot e2, {−1.05 m, 0.249 m} for
Plot f3 and {−1.05 m, 0.250 m} for Plot g2.
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Table 2. Locations of regions of validity of the exact and approximate expressions for the stationary
and moving test mass. The regions refer to Regions 1–7 given in the text.

Region Stationary Test Mass Test Mass Moving With Constant Velocity

1 ym0 < 0.166 m ym0 < 0.250 m
2 ym0 > 0.292 m ym0 > 0.249 m
3 ym0 < 0.473 m ym0 < 0.407 m
4 ym0 > 0.488 m ym0 > 0.732 m
5 ym0 < 0.525 m ym0 < 1.34 m
6 ym0 > 1.16 m ym0 > 1.11 m
7 ym0 > 4.55 m ym0 > 4.53 m

Region 1. One should use the exact expression, Eq. (91), for φQ in this region; only outside this region
are the approximate expressions given by Eqs. (94) and (99c) valid (see Plots g1 in the figures);

Region 2. The phase φQ is negligible in this region (see Plots f1 in the figures);
Region 3. One should use the exact expressions, Eqs. (62d) and (73), for the quantum correction φq in

this region; only outside this region does the approximate expression given by Eqs. (75a)
and (77) become valid (see Plots d1 in the figures);

Region 4. One can use the approximate expressions for φqa given by Eqs. (81) and (99b) in this region
(see Plots e1 in the figures);

Region 5. One should use the exact expressions, Eqs. (62c) and (66), for the classical part of the phase
δφ; only outside this region does the approximate expression given by Eqs. (70) and (99a)
become valid (see Plots b1 in the figures);

Region 6. The phase φq is negligible in this region (see Plots c1 in the figures);
Region 7. The phase δφ produced by the test mass falls below the phase noise φerr, so the effect of the

test mass cannot be measured in this region (see Plots a1 in the figures).

Column 3 and 4 of Figure 2 and column 2 and 3 of Figure 3 give the dependence of the
various phases and phase corrections as a function of the initial test mass z-coordinate, zm0, for
fixed ym0. The value of ym0 is chosen either at a value that gives the maximum phase or at
a value where the phase crosses the noise threshold, with the value of ym0 chosen that gives
rise to the largest phase or phase difference. For example, in Plots a 3, c3 and f3, drawn for
ym0 = 0, we see that the maximum phases δφ, φq and φQ occur zm0 = −0.30, when the test
mass is just above the zenith of the trajectory. Moreover, if ym0 = 0, it follows from Inequality
(106) that zm0 < −0.30 m and zm0 > .08 m. All of these features are seen in Plots a3, c3,
and f3. Similar considerations apply for all of the other plots in Columns 3 and 4 of Figure 2 and
column 2 and 3 of Figure 3.

4. Conclusion

These numerical calculations show that the approximate expressions that were obtained based on
assumptions about the approximate homogeneity of the field in [51] for the classical contributions to
the phase or on the approximate homogeneity of the field gradient and curvature for the quantum
corrections to the phase become valid only in regions where the phases are smaller by 1–2 orders of
magnitude of the maximum values for the phases that occur in regions where the field inhomogeneity
plays an important role.

By using an effective wave vector that is 25-times larger than the wave vector of a two-field
Raman pulse, we reach a limit where the quantum correction φq is comparable to the classical part
of the phase, while the Q-term is still small. Further increase of the effective wave vector or time
interval T between the pulses could bring us to a situation when quantum correction dominates over
the classical part of the phase.
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Appendix

In this Appendix, we show how we arrive at Eqs. (62) from Eqs. (58b) and (60).
To calculate the phase φr (x, p), we need an approximate expression for the propagator

X
(

X (x, p, τ1, 0) , P (x, p, τ1, 0) +
h̄k
2

, τs, τ1

)
. Using Eqs. (60) and (61), we find:

X
(

X (x, p, τ1, 0) , P (x, p, τ1, 0) +
h̄k
2

, τs, τ1

)
≈ X(0)

 X(0) (x, p, τ1, 0) + δX (x, p, τ1, 0) ,

P(0) (x, p, τ1, 0) + δP (x, p, τ1, 0) +
h̄k
2

, τs, τ1


+δX

(
X(0) (x, p, τ1, 0) , P(0) (x, p, τ1, 0) +

h̄k
2

, τs, τ1

)
= X(0) (x, p, τ1, 0) + δX (x, p, τ1, 0) +

1
Ma

[
P(0) (x, p, τ1, 0) + Ma

∫ τ1

0
dtδg

[
X(0) (x, p, t, 0) , t

]
+

h̄k
2

]
(τs − τ1) +

1
2

g (τs − τ1)
2

+
∫ τs

τ1

dt (τs − t) δg
[

X(0)
(

X(0) (x, p, τ1, 0) , P(0) (x, p, τ1, 0) +
h̄k
2

, t, τ1

)
, t
]

(A1)

From Eqs. (60c) and (61), it follows that:

X(0) (x, p, τs, 0) = X(0)
(

X(0) (x, p, τ1, 0) , P(0) (x, p, τ1, 0) , τs, τ1

)
= X(0) (x, p, τ1, 0) +

1
Ma

P(0) (x, p, τ1, 0) (τs − τ1) +
1
2

g (τs − τ1)
2 (A2)

allowing us to rewrite:

X
(

X (x, p, τ1, 0) , P (x, p, τ1, 0) +
h̄k
2

, τs, τ1

)
≈ X(0) (x, p, τs, 0) +

h̄k
2Ma

(τs − τ1)

+ (τs − τ1)
∫ τ1

0
dtδg

[
X(0) (x, p, t, 0) , t

]
+
∫ τ1

0
dt (τ1 − t) δg

[
X(0) (x, p, t, 0) , t

]
+
∫ τs

τ1

dt (τs − t) δg
[

X(0)
(

X(0) (x, p, τ1, 0) , P(0) (x, p, τ1, 0) +
h̄k
2

, t, τ1

)
, t
]

(A3)

Using the relationship:

X(0)
(

X(0) (x, p, τ1, 0) , P(0) (x, p, τ1, 0) +
h̄k
2

, t, τ1

)
=

h̄k
2Ma

(t− τ1)

+X(0)
(

X(0) (x, p, τ1, 0) , P(0) (x, p, τ1, 0) , t, τ1

)
= X(0) (x, p, t, 0) +

h̄k
2Ma

(t− τ1) (A4)
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we can write:

X
(

X (x, p, τ1, 0) , P (x, p, τ1, 0) +
h̄k
2

, τs, τ1

)
≈ X(0) (x, p, τs, 0) +

h̄k
2Ma

(τs − τ1)

+ (τs − τ1)
∫ τ1

0
dtδg

[
X(0) (x, p, t, 0) , t

]
+
∫ τ1

0
dt (τ1 − t) δg

[
X(0) (x, p, t, 0) , t

]
+
∫ τs

τ1

dt (τs − t) δg
[
X(0) (x, p, t, 0) , t

]
+
∫ τs

τ1

dt (τs − t)
{

δg
[

X(0) (x, p, t, 0) +
h̄k

2Ma
(t− τ1) , t

]
− δg

[
X(0) (x, p, t, 0) , t

]}
(A5)

The propagator (60e) can be expressed as:

δX (x, p, τs, 0) ≡
∫ τs

0
dt (τs − t) δg

[
X(0) (x, p, t, 0) , t

]
=
∫ τs

τ1

dt (τs − t) δg
[
X(0) (x, p, t, 0) , t

]
+
∫ τ1

0
dt (τs − t) δg

[
X(0) (x, p, t, 0) , t

]
=
∫ τs

τ1

dt (τs − t) δg
[
X(0) (x, p, t, 0) , t

]
+
∫ τ1

0
dt (τ1 − t) δg

[
X(0) (x, p, t, 0) , t

]
+ (τs − τ1)

∫ τ1

0
dtδg

[
X(0) (x, p, t, 0) , t

]
(A6)

which coincides with the sum of the third, fourth and fifth terms on the right-hand side (rhs) of Eq. (A5)
and reduces to:

X
(

X (x, p, τ1, 0) , P (x, p, τ1, 0) +
h̄k
2

, τs, τ1

)
≈ X(0) (x, p, τs, 0) +

h̄k
2Ma

(τs − τ1) + δX (x, p, τs, 0)

+
∫ τs

τ1

dt (τs − t)
{

δg
[

X(0) (x, p, t, 0) +
h̄k

2Ma
(t− τ1) , t

]
− δg

[
X(0) (x, p, t, 0) , t

]}
(A7)

The first term on the right-hand side of this equation is responsible for the phase produced by
the Earth’s gravitational field. The second term corresponds to the recoil correction to the first term,
but this contribution vanishes when Eq. (A7) is substituted into Eq. (58b); there is no quantum
correction in a homogeneous field. The third term is responsible for the classical part of the phase
produced by the test mass, while the fourth term is the recoil correction to the third term.

Substituting this result in the brackets of Eq. (58b) for the first (s = 3) and second (s = 2) terms,
we arrive at Eq. (62).
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