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Abstract:



We re-examine the series of resonances found earlier in atomic three-body systems by solving the Faddeev-Merkuriev integral equations. These resonances are rather broad and line up at each threshold with gradually increasing gaps. This lining up takes place in the same way for all thresholds and is irrespective of the spatial symmetry. We relate these resonances to the Gailitis mechanism, which is a consequence of the polarization potential.






Keywords:


resonances; three-body Coulomb systems; Faddeev-Merkuriev equations








1. Introduction


A couple of years ago we observed an accumulation of resonances above the thresholds [1,2]. Other independent calculations have not confirmed these findings, only a few narrow resonances have been independently calculated. This is understandable, since calculation of broad resonances, especially in a multi-body system, is very complicated. The wave function of narrow resonances behaves very much like a bound-state wave function, so they can be calculated by some slight modification of bound state techniques. The most common method is the complex rotation of coordinates. This technique renders the resonance state wave function to a square integrable one, and thus standard techniques like variational expansion of the wave function become applicable. These methods, however, run into technical difficulties for broad resonances. Here, to uncover the resonances, they need a large rotation angle and the rotated continuum becomes more and more scattered making the identification of resonances increasingly difficult.



Our method is different. We start with the Faddeev integral equations with the modification proposed by Merkuriev [3] and solve them by using the Coulomb-Sturmian potential separable expansion method [4,5]. Since the investigations of References [1,2] we improved the technique in Reference [6] making it more amenable to calculate broad resonances. Therefore, in Section 2 we outline our technique of solving the Faddeev-Merkuriev integral equations for resonant states while in Section 3 we show our results for [image: there is no content] resonances. Finally, we summarize our findings and provide an explanation for the formation of the series of broad resonances.




2. Calculation of Coulomb Three-Body Resonances


2.1. Faddeev-Merkuriev Integral Equations


The Hamiltonian of an atomic three-body system is given by


[image: there is no content]



(1)




where [image: there is no content] is the three-body kinetic energy operator and [image: there is no content] denotes the Coulomb interaction of each subsystem [image: there is no content]. We use the usual configuration-space Jacobi coordinates [image: there is no content] and [image: there is no content], where [image: there is no content] is the distance between the pair [image: there is no content] and [image: there is no content] is the distance between the center of mass of the pair [image: there is no content] and the particle α. The potential [image: there is no content], the interaction of the pair [image: there is no content], appears as [image: there is no content]. In an atomic three-body system, two particles always have the same sign of charge. Without loss of generality, we can assume that they are particles 1 and 2, and thus [image: there is no content] is a repulsive Coulomb potential.



The wave function of a three-particle system is very complicated. It exhibits different asymptotic behaviors reflecting the possible asymptotic fragmentations. In the Faddeev approach we split the wave function into components such that each component describes only one kind of asymptotic fragmentation [3]. The components satisfy a set of coupled equations, the Faddeev equations.



The Hamiltonian (1) is defined in the three-body Hilbert space. Therefore, the two-body potential operators are formally embedded in the three-body Hilbert space,


[image: there is no content]



(2)




where [image: there is no content] is a unit operator in the two-body Hilbert space associated with the [image: there is no content] coordinate.



The Coulomb potential is a long range potential as it modifies the motion even at asymptotic distances. On the other hand, it also possesses some features of a short-range potential as it correlates the particles strongly and supports two-body bound states. These two properties are contradictory and require different treatments. In Merkuriev’s approach the three-body configuration space is divided into different asymptotic regions [7]. The two-body asymptotic region [image: there is no content] is defined as a part of the three-body configuration space where the conditions


[image: there is no content]



(3)




with parameters [image: there is no content], [image: there is no content] and [image: there is no content] are satisfied. It has been shown that in [image: there is no content] the short-range character of the Coulomb potential prevails, while in the complementary region the long-range character of the Coulomb potential becomes dominant.



Therefore, we split the Coulomb potential in the three-body configuration space into short-range and long-range parts


[image: there is no content]



(4)







The splitting is carried out with the help of a splitting function [image: there is no content],


[image: there is no content]



(5)






[image: there is no content]



(6)







The function [image: there is no content] vanishes asymptotically within the three-body sector, where [image: there is no content], and approaches 1 in the two-body asymptotic region [image: there is no content], where [image: there is no content]. As a result, in the three-body sector, the short-range potential [image: there is no content] vanishes and long-range potential [image: there is no content] approaches [image: there is no content]. In practice, the functional form


[image: there is no content]



(7)




is used. Typical shapes for [image: there is no content] and [image: there is no content] are shown in Figure 1 and Figure 2. In fact, these parameters were adopted in our [image: there is no content] calculations. We can see that [image: there is no content] is a valley which opens up as [image: there is no content] goes to infinity and becoming shallower and shallower. Finally, in the [image: there is no content] limit there is no two-body bound state in [image: there is no content].


Figure 1. Short range ([image: there is no content]) and long range ([image: there is no content]) parts of an attractive Coulomb potential. The parameters are [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content].



[image: Atoms 04 00017 g001 1024]





Figure 2. Short range ([image: there is no content]) and long range ([image: there is no content]) parts of an attractive Coulomb potential. The parameters are [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content].
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The Coulomb potential [image: there is no content] is repulsive. So, it does not support bound states and there are no two-body channels associated with this fragmentation. Consequently, the entire [image: there is no content] can be considered as a long-range potential. Then the long-range Hamiltonian is defined as


[image: there is no content]



(8)




and the three-body Hamiltonian looks like an ordinary three-body Hamiltonian with only two short range interactions


[image: there is no content]



(9)







So, we split the wave function into two components only


[image: there is no content]



(10)







Then for components, we have the set of Faddeev equations,


[image: there is no content]



(11)




where


[image: there is no content]



(12)







By adding these two equations we recover the original Schrödinger equation. So, the Faddeev procedure is a clever way of solving the quantum mechanical Schrödinger equation. We can write these differential equations into an integral equation form


[image: there is no content]



(13)




where [image: there is no content]. With Merkuriev’s procedure Faddeev’s aim is achieved for the Coulomb potential as well. Now each component describes only one kind of asymptotic fragmentation.



If particles 1 and 2 are identical particles, the Faddeev components [image: there is no content] and [image: there is no content], in their own natural Jacobi coordinates, must have the same functional forms


[image: there is no content]



(14)




On the other hand, by interchanging particles 1 and 2, we have


[image: there is no content]



(15)




where [image: there is no content], depending the total spin of the two identical particles. So, [image: there is no content] and [image: there is no content] are not independent, and to determine one of them we need only one equation


[image: there is no content]



(16)







As we can see, we can easily incorporate the identity of particles into the Faddeev formalism, and this even leads to a considerable simplification of the equations.




2.2. Solution Method


In order that we can solve the Faddeev-Merkuriev integral equations we represent them in Coulomb–Sturmian (CS) basis. The CS functions are given by


⟨r|nl;b⟩=n!(n+2l+1)!exp(−br)(2br)l+1Ln(2l+1)(2br)



(17)




where L denotes the Laguerre polynomials, l is angular momentum, n is the radial quantum number and b is a parameter. With [image: there is no content], the orthogonality and completeness relations take the forms


[image: there is no content]



(18)




and


1=limN→∞∑n=0N|nl;b˜⟩⟨nl;b|=limN→∞∑n=0N|nl;b⟩⟨nl;b˜|



(19)







The three-body Hilbert space is a direct product of two-body Hilbert spaces, so, as a basis, we may take the angular-momentum-coupled direct product of the two-body bases,


|nνlλ;b⟩α=|nl;b⟩α⊗|νλ;b⟩α,(n,ν=0,1,2,…)



(20)




where [image: there is no content] and [image: there is no content] are associated with the coordinates [image: there is no content] and [image: there is no content], respectively. With this basis, the completeness relation takes the form (with angular momentum summation implicitly included)


1=limN→∞∑n,ν=0N|nνlλ;b˜⟩αα⟨nνlλ;b|=limN→∞1αN



(21)







We insert a unit operator into the Faddeev Equations (13)


[image: there is no content]



(22)




and keep N finite. This amounts to approximating [image: there is no content] in the three-body Hilbert space by a separable form


vα(s)=limN→∞1αNvα(s)1βN≈1αNvα(s)1βN≈∑n,ν,n′,ν′=0N|nνlλ,b˜⟩αv̲αβ(s)β⟨n′ν′l′λ′;b˜|



(23)




where v̲αβ(s)=α⟨nνlλ;b|vα(s)|n′ν′l′λ′;b⟩β. In general, we can calculate these matrix elements numerically. The completeness of the CS basis guarantees the convergence of the expansion with increasing N and angular momentum channels.



This approximation turns the homogeneous Faddeev-Merkuriev equation into a matrix equation for the component vector


[image: there is no content]



(24)




where


G̲α(l)=α⟨nνlλ;b˜|Gα(l)|n′ν′l′λ′;b˜⟩α



(25)







The Green’s operator [image: there is no content] is too complicated for a direct evaluation. However, in the Faddeev-Merkuriev equation it generates only α-type asymptotic configurations where particles β and γ form bound or scattering states. Therefore, in this region of the three-body configuration space [image: there is no content] can be linked to a simpler Green’s operator


[image: there is no content]



(26)




where [image: there is no content] and [image: there is no content] with


[image: there is no content]



(27)







Here [image: there is no content]. This way [image: there is no content] is of short range type, and can be approximated on the CS basis as before.



In our Jacobi coordinates, the three-particle kinetic energy can be written as a sum of two-particle free Hamiltonians


[image: there is no content]



(28)







Thus the Hamiltonian [image: there is no content] of Equation (27) appears as a sum of two two-body Hamiltonians acting on different coordinates


[image: there is no content]



(29)




where [image: there is no content] and [image: there is no content]. So, [image: there is no content] is a resolvent of the sum of two commuting Hamiltonians [image: there is no content] and [image: there is no content]. Such resolvents can be expressed as a convolution integral of two-body Green’s operators


G˜α(z)=(z−hyα−hxα)−1=12πi∮Cdz′(z−hyα−z′)−1(z′−hxα)−1=12πi∮Cdz′gyα(z−z′)gxα(z′)



(30)




where [image: there is no content] and [image: there is no content]. The contour [image: there is no content] should be taken in a counterclockwise direction around the singularities of [image: there is no content] such that [image: there is no content] is analytic on the domain encircled by [image: there is no content]. So, to calculate the matrix elements [image: there is no content], we need to calculate a contour integral of the two-body Green’s matrices [image: there is no content] and [image: there is no content]. Those two-body Coulomb Green’s matrix elements can be calculated analytically for complex energies by continued fractions [8]. This is an exact representation of [image: there is no content] and [image: there is no content], consequently the thresholds are at the exact locations with the proper Coulomb degeneracy.



In this work, we calculate the negative energy resonances of the [image: there is no content] three-body system. We need to solve (16) such that in [image: there is no content] we have the [image: there is no content] pair. So, [image: there is no content] is a Coulomb Green’s operator with a branch-cut on the [image: there is no content] interval and accumulation of infinitely many bound states at zero energy. On the other hand [image: there is no content] is absent and [image: there is no content] is a free Green’s operator with branch-cut singularity on the [image: there is no content] interval. The resonances are at [image: there is no content]. First, we need to formulate [image: there is no content], with [image: there is no content], then we need continue analytically to [image: there is no content]. For this purpose we take the contour of Figure 3. With [image: there is no content] the singularities of [image: there is no content] and [image: there is no content] are well separated and the contour encircles the spectrum of [image: there is no content] without touching the singularities of [image: there is no content]. Then we change the contour analytically as shown in Figure 4. The contour encircles some low-lying singularities of [image: there is no content] resulting in its residue, while the other part of the contour is deformed to an integration along a straight line parallel to the imaginary axis. Now, we can take the [image: there is no content] transition. By doing so, the poles of [image: there is no content] submerge into the second Riemann sheet of [image: there is no content] but the contour stays away from the singularities of [image: there is no content] (Figure 5).


Figure 3. The analytic structure of [image: there is no content] as a function of [image: there is no content] with [image: there is no content]. The operator [image: there is no content] has a branch-cut on the [image: there is no content] interval and accumulation of infinitely many bound states at zero energy, while [image: there is no content] has a branch-cut on the [image: there is no content] interval. The contour C encircles the spectrum of [image: there is no content] and avoids the singularities of [image: there is no content].



[image: Atoms 04 00017 g003 1024]





Figure 4. The contour of Figure 3 is deformed analytically such that it encircles the low-lying bound-state poles of [image: there is no content] and the other part is taken along an imaginary direction.



[image: Atoms 04 00017 g004 1024]





Figure 5. Analytic continuation to [image: there is no content]. The low-lying poles of [image: there is no content] submerge onto the second Riemann sheet of [image: there is no content], and they are denoted by dotted contour.



[image: Atoms 04 00017 g005 1024]






In calculating the three-body Coulomb Green’s matrix [image: there is no content] the mathematical condition for the integral in Equation (30) is that the contour [image: there is no content] should encircle the spectrum of one of the two-body Green’s operators without incorporating the spectrum of the other. In References [1,2] the contour was taken such a way that it encircled the singularities of [image: there is no content]. However, for resonant-state energies, the bound-state poles of [image: there is no content] penetrate into the continuous spectrum of [image: there is no content]. Then to meet the requirement for the contour [image: there is no content], the path around the spectrum of [image: there is no content] had to be taken in such a way that it descends down into the unphysical Riemann sheet. However, the integration on the unphysical sheet is rough, the Green’s matrix exhibits violent changes, and this is getting even worse for broader resonances as the contour dives deeper into the second sheet. A singularity is always very prominent, so this numerical inaccuracy does not eliminate the resonance poles and does not mask the whole phenomenon, but it makes the identification of individual resonances, especially the broad ones, less trustworthy. The contour adopted here avoids this pitfall. No integration goes on the unphysical sheet, the path of integration is far away from any singularities, so we get very reliable results with just a few integration points.





3. Results


We calculate the [image: there is no content] resonances of the [image: there is no content] system. We used atomic units throughout. We have to select l and λ such that [image: there is no content]. The two electrons are identical and the two spins can be coupled either to [image: there is no content] or [image: there is no content]. The [image: there is no content] state is antisymmetric with respect to the exchange of the spin coordinates, and consequently it should be symmetric with respect to exchange the electron spatial coordinates. So, if [image: there is no content] we have [image: there is no content] in Equation (16), while if [image: there is no content] we have [image: there is no content].



We have two parameters to vary in the calculations. One is the scale parameter b. We found a good stability in our results with [image: there is no content]. The other parameter is N, the maximal radial quantum number in the expansion of the potentials in each angular momentum channel and in x and y coordinates. We can see that while the narrow resonances are very stable with increasing N, the broad resonances are not so. This is understandable since the broad resonances are always hard to calculate. However, this inaccuracy does not change the whole picture. Individual resonances may vary a little bit with increasing N and with changing the parameters [image: there is no content] and [image: there is no content], but the series of resonances originating from the threshold are there. We found [image: there is no content] big enough for stable results.



Figure 6 and Figure 7 show the resonances between various thresholds using three cut-off parameters. False resonances may occur in the Faddeev-Merkuriev method. They are associated with the possible bound states of [image: there is no content]. However, by taking [image: there is no content] about the same size as the two-body subsystem in x, and varying [image: there is no content], we can avoid them. We can see that the broad resonances line up along a straight line with increasing spacings. It seems that at higher thresholds we have more lines.


Figure 6. 1S and 3S resonances of the [image: there is no content] system between the [image: there is no content] and [image: there is no content] thresholds. Black circles indicate data using cut-off parameters [image: there is no content], [image: there is no content], red dots indicate data using cut-off parameters [image: there is no content], [image: there is no content], and blue + symbols indicate data using cut-off parameters [image: there is no content], [image: there is no content]. Thresholds indicated with vertical bars.



[image: Atoms 04 00017 g006 1024]





Figure 7. 1S and 3S resonances of the [image: there is no content] system between the [image: there is no content] and [image: there is no content] thresholds. Black circles indicate data using cut-off parameters [image: there is no content], [image: there is no content], red dots indicate data using cut-off parameters [image: there is no content], [image: there is no content], and blue + symbols indicate data using cut-off parameters [image: there is no content], [image: there is no content]. Thresholds indicated with vertical bars.
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4. Summary and Interpretation


In this work, we re-examined the broad resonances lining up around thresholds. We solved the Faddeev-Merkuriev integral equations by adopting a Coulomb-Sturmian based separable expansion approach on the potential in the three-body configuration space. This method approximates only the asymptotically irrelevant short range potentials. The asymptotically relevant parts are kept in the Green’s operator [image: there is no content], and its CS matrix elements have been evaluated as a complex convolution integral of the two-body Green’s matrices. The adopted contour makes the calculation of [image: there is no content] numerically exact, even for very broad resonances, and ensures that all the thresholds are at the right location. The only real approximation is that the basis in each of the coordinates is truncated to a finite N, but we found [image: there is no content] to be big enough for very reliable results.



We found that some of those resonances lie along a straight line. From Figure 6 we can see that for those resonances the ratio [image: there is no content], where ϵ is the center of mass energy measured form the thresholds. They must have a common origin.



It appears that these series of resonances have not been reproduced by other methods. Careful examination and comparison with previous resonance calculations revealed that long-lived resonances were calculated previously along with Feshbach resonances. They are called shape resonances in the atomic physics community. As early as 1962-1963 in the work of Gailitis and Damburg [9] their presence as T-matrix oscillations above thresholds were calculated.



Hu and Caballero [10] carried out a six open-channel high precision calculation of the e++H(n=2) scattering system using the Faddeev-Merkuriev differential equations. The calculation involves no intermediate approximations nor truncation of any kind. The numerical method solved a half million coupled linear equations. All scattering properties were calculated in the range of energy just above the Ps(n=2) formation threshold. The results display singularities of the K-matrix ([image: there is no content]) (the phase shift jumps by π), the cross section maxima and the six channel wave amplitudes. All display three resonances within a cutoff distance of [image: there is no content], where [image: there is no content] is the Bohr radius, in channels p+Ps(n=2,l=0) and p+Ps(n=2,l=1). These calculations revealed a previously unknown, but relatively simple formation mechanism for these kind of resonances.



For the Ps(n=2) target, the Coulomb degeneracy allows the incoming proton to induce a first order constant electric dipole moment [image: there is no content] on the target, known as the first order Stark effect. By analyzing the channel wave functions in resonance channels p+Ps(n=2,l=0) and p+Ps(n=2,l=1) Hu and Caballero [10] found that the resonant conditions arise when the center-of-mass energy of the proton satisfy the simple relations


ϵm=mμ1/ym2,ϵm/Δϵm=constant



(31)




where [image: there is no content] integer, and [image: there is no content] is the location (Jacobi coordinate) of the proton at the resonance.



The Stark effect is a universal phenomenon. Furthermore, if the target is not degenerate the second order Stark effect takes place. The induced electric dipole moment is [image: there is no content], where α is the second order polarizability. Then the resonant condition becomes


ϵm=mμ1/ym2=mα/ym4,m=1,2,⋯



(32)







These explain our observations that the resonances are lining up from the thresholds with increasing spacing. Also, in the energy region between [image: there is no content] and [image: there is no content] thresholds the induced electric dipole moment μ is different for [image: there is no content] and [image: there is no content], so we observe some splitting of the lines as well.
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