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Abstract: The effect of Debye plasma on the 1s2s2 2S resonance states in the scattering of electron from
helium atom has been investigated within the framework of the stabilization method. The interactions
among the charged particles in Debye plasma have been modelled by Debye–Huckel potential.
The 1s2s excited state of the helium atom has been treated as consisting of a He+ ionic core plus
an electron moving around. The interaction between the core and the electron has then been modelled
by a model potential. It has been found that the background plasma environment significantly affects
the resonance states. To the best of our knowledge, such an investigation of 1s2s2 2S resonance
states of the electron–helium system embedded in Debye plasma environment is the first reported in
the literature.
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1. Introduction

The effect of screened Coulomb interactions among the charged particles in hot and dense
plasmas on the structural and collisional properties of atomic systems is a matter of great interest,
because it gives us fundamental information for the interpretation of various phenomena associated
with plasma physics, astrophysics, and experiments performed with charged particles [1–9]. In contrary
to a free atomic system, screened Coulomb interactions greatly affect the structural and collisional
properties, such as shift of the energy levels, spectral line broadening, change in line shapes, depression
of ionization potentials, change of transition properties compared to free systems, and line merging
phenomena [10]. Red-shifted spectral lines have been experimentally observed in a number of
laser-produced plasmas [9].

Screened Coulomb interactions in hot and dense plasmas is the result of the collective effects
of correlated many-particle interactions, and in the lowest order particle correlation, it reduces to
the Debye–Huckel model of screening, which depends on the temperature and the density of the
plasma. In the Debye–Huckel screening model, the interaction between an ion of positive charge Z
and an electron—separated by a distance r—is given by the Debye–Huckel potential or static screened
Coulomb potential (SSCP):

V(r) = −(Z/r)e−r/λD (in a.u.), (1)

where λD is the Debye screening length [1]. µ = 1/λD is called the plasma screening parameter.
It depends on the temperature and the density of the plasma: λD = 1/µ = [KTe/4πe2Ne]1/2 = vT/ωP,
where e is the electronic charge, Ne is the plasma-electron density, K is the Boltzmann constant,
Te is the electron temperature, vT is the thermal velocity, and ωp is the plasma frequency.
The interaction potential (1) is adequate only if the ratio of average Coulomb energy and kinetic
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energy of the plasma particles (called plasma coupling parameter Γ) is much less than unity.
Such conditions prevail in laser-produced plasmas, EUV, and X-ray laser developments, inertial
confinement fusion, astrophysics (stellar atmospheres and interiors), etc. These plasmas are
also called weakly coupled plasmas. The densities and temperatures in these plasmas lie in
the ranges Ne ∼ 1015–1018 cm−3, Te ∼ 0.5–5 eV (stellar atmospheres); Ne ∼ 1019–1021 cm−3,
Te ∼ 50–300 eV (laser produced plasmas); and Ne ∼ 1022–1026cm−3, Te ∼ 0.5–10 keV (inertial
confinement fusion plasmas) [9].

In the present work, we investigate the 1s2s2 2S resonances in He− in Debye plasmas. In particular,
the aim of our study is to reveal the plasma screening effects on the resonance parameters. In vacuum,
a great deal of experimental and theoretical investigations on 1s2s2 2S resonance in e− − He scattering
has appeared in the literature [11–27] (and further references therein). In fact, such a resonance
was the first resonance observed in electron–atom scattering [11]. To the best of our knowledge,
1s2s2 2S resonances in He− in Debye plasmas have not been investigated so far, though a great deal
of interest in electron scattering from helium in Debye plasma has been shown [28–32] (and further
references therein). In the present investigation, to determine resonance parameter, we used the method
of model potential within the framework of the stabilization method. Quantities will be expressed in
atomic units (a.u.) in the remaining part of this paper, unless explicitly indicated otherwise.

2. Method and Calculations

Electron–helium is a four-body system consisting of three electrons and a nucleus, and as
such, calculations of resonance parameters for this system are quite involved, even for the pure
Coulomb case when correlated wave functions are used [21]. For screened Coulomb cases, when
correlated wave functions are used, tackling the full four-body system represents a very challenging
effort, and to the best of our knowledge, no such attempt has been made so far. Therefore,
instead of solving four-body here, we first reduce it to a three-body problem by the method of
model potential. In this method, He(1s2s2 2S) is treated as a three-body system consisting of
a positive core (nucleus + inner shell electron) and the valence electron going around the core.
The interaction between the core and the electron is then modelled by a potential. This interaction
potential is constructed in such a manner that it takes care of the effects of both the passive
and active electron. Details of the determination of model potentials and their properties are
given in references [33–36]. In the literature, many modelled potentials have been presented
for the excited states of helium. In the present paper, we use the model potential presented by
Varshni [37,38]. Let~r1 and~r2 be the coordinates of the projectile and the valence electron relative
to the core (assumed to be at rest), and ~r12 (=~r1 − ~r2) be their relative coordinate. In vacuum,
Varshni proposed the following model potential:

V(e−)
m (~r2) = −

1
r2

[
1− (1 + βr2)e−2βr2

]
(in a.u.), (2)

where β is a parameter. For β = 2.601 and β = 0.9156, it respectively represents the He(1s2s 1S) and

He(1s2s 3S) configurations. Thus, in Debye plasma, V(e−)
m (~r2) can be taken as (in a.u.):

V(e−)
m (~r2) = −

e−r2/λD

r2

[
1− (1 + βr2)e−2βr2

]
. (3)

In view of Equation (3), the Hamiltonian of the e− − He(1s2s) system embedded in Debye plasma
characterized by the Debye–Huckel potential (1) is given by

H = −1
2
∇2

1 −
1
2
∇2

2 + V(e−)
m (~r1) + V(e−)

m (~r2) +
e−r12/λD

r12
. (4)
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We determine the resonance parameters by employing stabilization method. This method has
been described in detail in previous works [39–42] (and further references therein). So, here we
present the implementation only. In order to obtain a stabilization diagram, we choose the following
wave function:

Ψ(~r1, ~r2) =
N

∑
i=1

Ciψi =
N

∑
i=1

Ci(1 + P12)e−α(r1+r2)rli
1 rmi

2 rni
12,

li, mi, ni = 0, 1, 2, · · · , li ≥ mi, (5)

where Ci(i = 1, 2, 3, · · · , N) are linear expansion coefficients, 0 < α < 1 is a scaling parameter,
and P12 is the exchange operator such that P12 f (~r1,~r2) = f (~r2,~r1) for arbitrary function f . We expand
the summation in the wave function (5) by raising the powers of r1, r2, and r12 in such a fashion
that the terms corresponding to li + mi + ni = ω = 0(N = 1) come first, then ω ≤ 1(N = 3),
ω ≤ 2(N = 7), and so on. For a particular value of the Debye length λD, employing the wave
function (5) in HΨ = EΨ, we obtain the energy levels or stabilization diagram E(α) (0 < α < 1)
(as shown in Figure 1a). The emergence of a stabilized or slowly decreasing energy level appears
at E = Er in the stabilization plateau ensures the existence of a resonance at the energy E = Er.
Now, to extract the resonance energy Er and the resonance width Γ, we must calculate the
density of resonance states of the energy levels near the “avoided crossings” with the help of the
following formula:

ρn(E) =
[

αi+1 − αi−1

En(αi+1)− En(αi−1)

]
En(αi)=E

, (6)

where the index i is the ith value for α, and the index n is for the nth resonance. Having calculated the
density of resonance states ρn(E) by the above formula, it is fitted to the following Lorentzian form:

ρn(E) = y0 +
4
π

Γ
2

(E− Er)2 +
(

Γ
2

)2 , (7)

where y0 is the baseline offset, 4 is the total area under the curve from the base line, Er is the
centre of the peak, and Γ denotes the full width of the peak of the curve at half height (as shown in
Figure 1b). The Lorentzian fitting (7) gives the resonance energy Er and resonance width Γ. In the
present work, we calculate the densities for each energy level near the avoided crossing and fit with
the Lorentzian form (7). Out of all those fittings, the one that gives the best fit (with the least χ-square)
to the Lorentzian form is considered as the desired results for that particular resonance.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.200
-0.195
-0.190
-0.185
-0.180
-0.175
-0.170
-0.165
-0.160
-0.155
-0.150
-0.145
-0.140
-0.135
-0.130
-0.125
-0.120

(a)

(15) (12)

E
 (a

.u
.)

 (a
0
-1)

-0.180 -0.175 -0.170 -0.165 -0.160 -0.155
0

10

20

30

40

50

60

70

(b)

D
en

si
ty

E (a.u.)

Figure 1. (a) Stabilization diagram for µ = 0.0 obtained by using 525 terms in the wave function (5).
The number in parentheses to the right of the solid line indicates the order of appearance of the
eigenvalues (energy levels). The arrow shows the position of resonance, and the circles show the
point of avoided crossing; (b) The density of resonance states fitted to the Lorentzian form for µ = 0.
The circles are the calculated values, and the solid line is the fit function. The resonance parameters are
determined to be Er = −0.16855 a.u. and Γ = 0.00113 a.u. using the 13th eigenvalue.
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3. Results and Discussion

The model potential (2) is quite satisfactory for the description of He(1s2s 1S) and He(1s2s 3S)
configurations. We have computed the eigen energies of He(1s2s 1S) and He(1s2s 3S) by solving the
corresponding Schrödinger equation within the framework of Ritz’s variational principle by employing
a wave function of the form:

φ(~r2) = ∑
i

Cie−air2 rli
2 , li = 0, 1, 2, · · · , (8)

where Ci is the expansion coefficient and ai is a nonlinear variational parameter. For the unscreened
case, taking 30 terms in the wave function (8), we have obtained the convergent eigen energies for
He(1s2s 1S) and He(1s2s 3S) as −2.145946 a.u. and −2.175213 a.u., which are in close agreement with
the high precision calculations of G. W. F. Drake [43], −2.14597404605442 a.u. and −2.17522937823679
a.u., respectively.

In Figure 1a, we present stabilization plot E(α) for µ = 0. This diagram has been made using
N = 525 (ω = 16) in the wave function (5), and varying the scaling parameter α within [0.2–0.8]
by giving it an increment of 0.0005. From this figure, we see that a stabilized plateau appears in
the diagram around −0.168 a.u. of energy. The positions of avoided crossing are marked with
red circles in Figure 1a. We have calculated the density of resonance states near avoided crossings
corresponding to each eigenvalue appearing in the stabilization diagram. Those have then been
fitted with Lorentzian form. The one for which we obtained the best fit (with the least χ square) to
the Lorentzian form has been considered as the desired result for that particular resonance. In the
present case, fitting corresponding to the 13th eigenvalue gives us the best result, which is
shown in Figure 1b. The resonance energy and width are determined as Er = −0.16855 a.u. and
Γ = 0.00113 a.u., respectively. It should be mentioned here that we did not consider the energy of the
core (−2 a.u.) in our calculation. So, to obtain total resonance energy, we must add the energy of the
core. Thus, our calculated resonance energy for µ = 0 comes out to be −2.16855 a.u.

In Table 1, we show the convergence of our computed results with the increase of the number
of terms in the wave function (5) for µ = 0. From this table, we note that a convergent result—up
to six decimal places—can be obtained by using 525 terms in the wave function. The uncertainty
in our results lies on the sixth decimal place. Table 2 also includes the results obtained by using
some of the most accurate calculations [15,16,21,22,27]. Comparison indicates that our computed
resonance energy is close to the value reported by others, but resonance width differs considerably.
For the real three-electron system with final 2S configuration, the wave function should have
three components—the (1s)(2s2) 2S, (1s2s) 1S(2s) 2S, and (1s2s) 3S(2s) 2S [21]. In our present
approximation, we have only used the (1s)(2s2) 2S, and most likely that is the reason for the difference.
To include the other two components in our three-body model is not straightforward, and may be an
issue of future investigation. Nevertheless, we think that it is still worthwhile to extend our present
calculation to the screened environment to see the behaviours of resonance position and width when
the screening parameter is changed. We also believe that meaningful values for energy positions
and widths of the resonance for the screened cases can be found by considering the ratio—for the
unscreened case—between our present results (with three-body wave function) and the earlier results
(with four-body wave function) [21].

In Table 2, we present resonance energy and corresponding width for various plasma screening
strengths. The same is also presented graphically in Figure 2. From Table 2 and Figure 2, we
note that with increasing plasma screening strength, the resonance energy increases, and that the
increase is almost linear. However, the width increases slightly at first and starts decreasing steadily.
The reason for the decrease of resonance width can be understood if we look at the interaction potential.
We note that interaction potentials become weaker with increasing screening strength; as a result,
movements of the electrons slow down. This, in turn, makes the lifetime of the resonance process
prolonged, and leads to the narrowing of the resonance width, as a consequence of the uncertainty
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principle [39]. Furthermore, from Figure 3a, we note that as the screening strength increases, resonance
energy approaches toward a bound state of He(1s2s 3S). So, the occurrence of pressure ionization
might lead (at the limit) to a bound state with zero width [39].

Table 1. Resonance energy Er (in a.u.) and width Γ (in a.u.) in He−(1s2s2 2S) for µ = 0. (a) Method
of complex coordinate rotation [21]; (b) R-matrix method [22]; (c) complex stabilization method [27];
(d) experimental results [15]; (e): experimental results [16].

Results of Present Investigation Results of Other Investigations

N = 252 N = 308 n = 444 N = 525 (a) (b) (c) (d) (e)
(ω = 12) (ω = 13) (ω = 15) (ω = 16)

−Er 2.16852 2.16854 2.16855 2.16855 2.19194 2.19171 2.19127 2.19208 2.19204
Γ 0.001097 0.001129 0.001130 0.001131 0.00041 0.00043 0.00044 0.00041 0.00040

Table 2. Resonance energy Er (in a.u.) and width Γ (a.u.) in He−(1s2s2 2S) for various values of the
screening parameter µ (in a−1

0 ) corresponding to kT = 4.0 eV obtained by using the wave function (5).

E(e)
r and Γ(e) denote our estimation as mentioned in the text. The notation x[y] means x× 10y.

Ne (cm−3) µ −Er Γ −E(e)
r Γ(e)

0 0.00 2.16855 0.001131 2.19194 0.0004052
7.82[18] 0.01 2.15858 0.001131 2.18186 0.0004055
3.13[19] 0.02 2.14882 0.001128 2.17200 0.0004043
7.04[19] 0.03 2.13931 0.001120 2.16238 0.0004015
1.25[20] 0.04 2.13006 0.001107 2.15303 0.0003967
1.96[20] 0.05 2.12110 0.001088 2.14398 0.0003901
2.82[20] 0.06 2.11244 0.001064 2.13522 0.0003814
3.83[20] 0.07 2.10409 0.001034 2.12678 0.0003707
5.01[20] 0.08 2.09607 0.000999 2.11868 0.0003581
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Figure 2. (a) Resonance energies Er in e− − He(1s2s2) system for different values of the screening
parameter µ; (b) Resonance width Γ corresponding to the resonance energies in (a) for different values
of the screening parameter µ corresponding to kT = 4.0 eV and Ne in the range (0, 5.01× 1020) cm−3.

We have already noticed that our calculated resonance width for the unscreened case differed
considerably from the accurate results available in the literature, and that was due to the absence of
two other components in the wave function which we employed here. However, as we said earlier,
very accurate results (positions and widths of the resonance) for the screened cases can likely be
found by considering the ratio (for the unscreened case) between our present results and the earlier
results (with four-body wave function) [21]. For the position, this ratio is 2.191938/2.16855, and
for the width it is 0.0004052/0.0011306. We multiply our calculated positions and widths for the
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screened case by these two ratios to obtain an estimation of positions and widths, respectively, for
a screened environment. In Figure 3, we present our estimation of resonance energy E(e)

r and width
Γ(e) with increasing screening effect. Figure 3a also includes the bound state energies of He(1s2s 1S)
and He(1s2s 3S) with increasing screening effect. Numerical values of the estimation of resonance
parameters are also presented in the fifth and sixth columns of Table 2 for the sake of future works
relating to this issue. We have calculated those energies using the model potential (3).
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Figure 3. (a) Estimated resonance energies (as discussed in the text) E(e)
r in e− − He(1s2s2) system for

different values of the screening parameter µ. Shaded circles and hollow circles denote the present
calculation of the bound state energies of He(1s2s 1S) and He(1s2s 3S), respectively; (b) Estimated
resonance width Γ(e) corresponding to the resonance energies in (a) for different values of the screening
parameter µ corresponding to kT = 4.0 eV and Ne in the range (0, 5.01× 1020) cm−3.

It should be mentioned that while we have used the stabilization method for resonance
calculations in the present work, an alternate method—the complex-scaling (CS) method—has also
been used to determine resonance parameters for other systems. The CS method can be easily
implemented if the two-body interacting potential is Coulombic; that is, in the form of 1/r. However,
the situation becomes more complicated if the two-body interacting potential is a function of r (instead
of just 1/r), like the model potential we are using here. CS calculations for pure Coulomb cases on
model potentials for a positron–Na system and a positron–K system with some approximations have
been reported in the literature [44,45]. CS calculations were carried out on a positron–H system with
screened Coulomb potentials, where no model potentials are needed [46–48]. However, CS calculations
on model potentials in screened Coulomb environments present some challenging problems, and
to the best of our knowledge, such calculations have not been reported in the literature. It is worth
pursuing this issue further in the future.

4. Conclusions

We have conducted an investigation to determine the effect of Debye plasma on the 1s2s2 2S
resonance states in an electron–helium system by employing the stabilization method. The four-body
electron–helium system was reduced to a three-body problem by the method of model potential.
This is an added incentive to our present investigation, because otherwise, the determination of the
resonance of a four-body system is a tedious and complicated task. Though our present results for the
unscreened case do not exactly match with the most accurate results available in the literature due
to absence of two components in the wave function, our present investigation—believed to the first
reported in the literature—provides a clear insight into the behaviour of resonance states due to the
effect of background plasma. Furthermore, we have presented an estimation of resonance parameters
under a plasma environment. We hope that the present investigation will provide fruitful information
to research in astrophysics and plasma physics.
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