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Abstract: Development in mathematical formulations of parameterizing the resonance structures
using the phase-shifted multichannel quantum defect theory (MQDT) and their use in analyzing the
effect of inter-series interactions on the autoionizing Rydberg spectra is reviewed. Reformulation of
the short-range scattering matrix into the form analogous to S = SBSR in scattering theory are the
crucial step in this development. Formulation adopts different directions and goals depending
on whether autoionizing series converge to the same limit (degenerate) or to different limits
(nondegenerate) because of the different nature of the perturbation. For the nondegenerate case,
finding the simplest form of profile index functions of the autoionizing spectra with the minimal
number of parameters is the main goal and some results are reviewed. For the degenerate case where
perturbation acts uniformly throughout the entire series, isolation of the overlapped autoionizing
series into the unperturbed autoionizing series is the key objective in research and some results in
that direction are reviewed.

Keywords: phase-shifted multichannel quantum defect theory (MQDT); inter-series interactions;
atomic autoionizing spectra

1. Introduction

The autoionization spectra of atoms frequently show complex overlapping resonances caused
by interlopers and are analyzed routinely by experimentalists with only a few parameters using
multichannel quantum defect theory (MQDT) [1]. However, this powerful MQDT in its nascent form
has one deficiency compared with another widely used resonance theory, the configuration-mixing
(CM) method of Fano [1]. The CM method assumes the presence of a discrete state from the outset
and utilizes the fact that resonance is caused by the discrete state embedded in the continuum part of
the spectrum. It has an advantage of treating the background and resonance contributions directly so
that resonance structures are exhibited transparently. MQDT, however, does not introduce a discrete
state explicitly but obtains the same effects rather indirectly by separately treating the inner and outer
regions, and then applying the condition of the closed-ness of some channels at the outer region. In
this way, the resonance autoionizing series originating from the same closed channels are obtained in a
single treatment and furthermore, the bound and continuum spectra are treated in a unified manner [2].
However, resonance structures are not transparently identified in its formulation. Extracting resonance
structures by Fano in his famous 1970 paper [3] was the tour de force. Giusti-Suzor and Fano [4]
diagnosed that the difficulty lies in the use of inadequate channel basis functions. Replaced by
a phase-shifted base pair, the coordinate systems are translated so that the Lu-Fano plot becomes
symmetrical in its extended plot, in which the formulas become greatly simplified and the resonance
structures are exhibited transparently. In the symmetrized Lu-Fano plot, the origin corresponds to the
resonance center in which phase shifts vary most rapidly. Translation of the resonance center to the
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origin corresponds to making the diagonal elements of the reactance matrix K zero. Cooke and Cromer
also separately developed this method [5]. This version of MQDT using phase-shifted base pairs will
be called the phase-shifted MQDT in this review [6]. Following the lead of Giusti-Suzor and Fano and
Cooke and Cromer, attempts had been made to nullify the diagonal blocks or diagonal elements of the
reaction matrix for systems involving more closed and open channels so that resonance structures are
parameterized in a more transparent and effective ways [7–11].

Since Cooke and Cromer initiated the use of the phase-shifted MQDT to analyze resonance
structures in autoionizing spectra perturbed by an interloper in alkaline-earth metal atoms, the system
of autoionizing series perturbed by an interloper played an important role of the non-trivial system
for deriving the explicit energy variations of resonance positions and widths due to the inter-series
interaction. In the context of the phase-shifted MQDT, this model system was studied extensively by
Giusti-Suzor and Lefebvre-Brion [12], Wintgen and Friedrich [10] and Ueda [8]. They examined the
phenomena in complex resonances, such as intensity borrowing, q reversals and truly bound states
in continuum. Cho and Lee studied the singular nature of the influence of an interloper on the shifts
of the resonance positions, the widths and the line shapes of the autoionizing Rydberg spectra [13].
The phase-shifted MQDT was further extended to systems involving more than one open channel to
determine the role of additional open channels on channel coupling and the spectra. Fano and Cooper
long ago showed that a discrete state can interact with only one type of continuum [14]. Mies developed
their theory further and proposed the use of an overlapping matrix to represent the extent of overlap
when a complete superimposition of overlapping resonances is no longer obtained when more than one
open channel is involved in the CM theory [15]. The CM theory of Mies was implemented into MQDT
for the treatment of the spectral width in isolated core excitation (ICE) spectra [16,17] by Lecomte [7].
Cohen challenged this problem of handling the channel coupling induced by additional open channels
in the MQDT formulation with the approximate analytic solution but was only partially successful [11].
Further development in mathematical formulations for nondegenerate systems involving many open
channels and/or more than two closed channels and for general degenerate systems has been done by
our group and its description is the main theme of this review.

There is no review solely for the phase-shifted MQDT so far. However, its use for the analysis
of Rydberg series using the empirically determined MQDT parameters is well documented in the
review written by Aymar, Greene and Luc-Koenig [1]. Thus, we will not give the review on its use to
fit the observed spectra with the minimal number of quantum defect theory (QDT) parameters and to
analyze the Rydberg series done by experimentalists. The scope of this review will be restricted to the
development in mathematical formulations of parameterizing the resonance structures and its use in
analyzing the effect of inter-series interactions on the autoionizing Rydberg spectra.

2. Resonance Structures in Phase-Shifted MQDT

The phase-shifted MQDT described so far assumes that resonance structures in the MQDT
formulation are easily identified when both reactance matrices Koo and diagonal elements or degenerate
blocks of Kcc are made zero by phase renormalization. In [18] it was shown how this assumption leads
to factorization of the physical scattering matrix S into the background and resonance part as S = SBSR

just like in conventional theory of resonance where SR is given by 1+ 2πiV
(

E− E− iπV†V
)−1

V† [19].
Unlike the conventional scattering theory of resonance, MQDT considers the short-range scattering
matrix [6,20] besides the physical scattering matrix S. The reason why another type of scattering matrix
is considered in MQDT is the following. In order to treat the energy-sensitive phenomena, MQDT
divides the space into the inner and outer regions and utilizes the fact that the energy sensitivity of
the observables only comes from the outer region where processes are decoupled and can be easily
handled with the known analytical solutions. Transfers in energy, momentum, angular momentum,
spin, or the formation of a transient complex occur in the inner region due to the presence of the strong
interaction between the ionizing electron and the core. The complex dynamics occurring in the inner
region affect the observables only through the short-range scattering matrix S defined for the incoming
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wave as Ψ(−)
k → ∑i Φi

(
eikirriζ − e−ikirr−iζ Sik

)
(see [6]) in the outer region and determined by the

match with the solution in the inner region at the boundary. Channel basis functions for the closed
channels are not diminished to zero but have comparable magnitudes to those for open channels in
the matching boundary so that:

S =

(
Soo Soc

Sco Scc

)
(1)

where c denotes closed channels and o open channels. Its relation with the physical scattering matrix
is well-known [20] and given by S = Soo − Soc(Scc − eiβ)−1Sco, which is consisted of two terms. The
second term is related to resonance because of its singular nature. Then, Soo may be identified with the
background part SB. However, Soo is not unitary, owing to the leakage into closed channels, and thus
cannot be identified as SB. It is found that σoo defined with reactance matrix K as (1− iKoo)(1 + iKoo)−1

corresponds to SB [18,21,22]. SR is subsequently identified as 1 + 2iξ(tan β + κcc)−1ξT where ξT =

(ξ1, ..., ξnc) with ξ i =
(
ξ1i, ...ξ ji, ...

)
(ξ ji≡Kji) and ξ i denotes the coupling strength vector between the

closed channel i with open channels in space P, β denoting πν where ν is the effective quantum number
defined by I − Z2Ry/ν2 with ionization energy I, κcc being the reactance matrix corresponding to
Scc. Note the similarity of this form with SR in the conventional scattering theory. The singularity in
SR suggests that it represents the resonance part and its phase, and may show the typical resonance
behavior. However, it is well known that each eigenphase shift is not only affected by the resonance
but also by the avoided crossing interaction between two eigenphase shift curves when they approach
each other [23,24]. The avoided crossings can be made cancelled out so that only the pure resonance
behavior remains by considering their sum, called the eigenphase sum δΣ (≡ ∑j δj). The eigenphase
sum is obtained from the determinant of the physical scattering matrix as follows:

det(S) = exp(−2iδΣ) = det(σoo)
det(tan β + κcc∗)

det(tan β + κcc)
= exp

[
−2i

(
δ0

Σ + δr

)]
(2)

where det(tan β + κcc) ≡ C exp(iδr) and δ0
Σ = ∑j δ0

j are used [25]. Equation (2) tells us that
det(tan β + κcc) contains all the information on the resonance structure for the given system.
This statement may be called the resonance theorem. Note the form analogy of (2) with
det(S) = det(SB)det

(
E− E + iπV†V

)
/det

(
E− E− iπV†V

)
in the conventional scattering theory

of resonance [26]. The role of the phase renormalization that makes Koo zero and diagonal elements or
degenerate blocks of Kcc zero in finding the resonance structures may be unraveled with the help of
the resonance theorem. The representation in which Koo = 0, Kcc

ii = 0 or null degenerate Kcc block will
be marked with a tilde. K̃oo = 0 corresponds to making δ̃0

Σ = 0 or det(σ̃oo) = 1 so that the phase shift
due to the background process is removed in the tilde representation. Additional process of making(

K̃cc
)

ii
= 0(i = 1, . . . ,nc) removes the real part of κcc, <(κ̃cc) = 0, so that the diagonal elements of

tan βi + κcc
ii becomes tan β̃i + i=

(
κ̃cc

ii
)
. Its role is, thus, to move the resonance center to the coordinate

origin. In the case of a single closed channel system, (2) can be rewritten as:

tan δ̃Σ tan β̃ = tan δ̃r tan β̃ = −ξ̃2 (3)

which shows the periodic nature in β of Rydberg series in the Lu-Fano plot.
The goal to be achieved by this phase renormalization is different depending on whether the series

converge to the same ionization threshold (degenerate) or to the different thresholds (nondegenerate).
In the degenerate case, the closed channels are degenerate and tan β + κcc can be made diagonalized
to exploit the periodic nature of inter-series channel coupling and its determinant can be written as a
product of single closed channel formulas (see Equation (21)). Then each eigen-channel acts as a single
autoionizing Rydberg series. Phase renormalization K̃cc

ii = 0 moves the resonance center of each eigen
series i to its respective origin.
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If there is more than one nondegenerate closed channel, it is meaningless to move the resonance
center of each eigen-series to its own origin because of the local, non-uniform and thus aperiodic
nature of inter-series channel coupling (see Figure 1) [27]. Instead, its utility is in the simplification
of the parameters for resonance structure. Consider the two closed channel case. Let their ionization
energies be I1 and I2 with I1 > I2. Then the autoionizing Rydberg series converging to I1 acts as an
interloper series and the other converging to I2 plays the role of the principal autoionizing Rydberg
series perturbed by the interloper. In this case, it is meaningless to consider the resonance center
since the energy variation of resonance structures is local, non-uniform and aperiodic. The resonance
structure is obtained as follows:∣∣∣tan β̃ + κ̃cc

∣∣∣ = W̃1(ε̃1 − i)W̃2eff(ε̃2eff − i) (4)

where ε̃1 denoting tan β̃1/ξ̃2
1 is the reduced energy parameter which vanishes at each resonance ν̃1 =

n− µ̃1 and runs from −∞ to ∞ between two successive resonances; W̃i = ξ̃2
i (i = 1,2), W̃2eff = W̃2w2eff

with the reduced width w̃2eff:

w̃2eff = sin2 θ + cos2 θ

(
ε̃1 − k̃12 sec θ

)2

ε̃2
1 + 1

(5)

where θ is the angle two coupling vectors ξ1 and ξ2 of closed channels 1 and 2 make in P space; k12 being
the ratio of direct to indirect couplings, and the reduced energy ε̃2eff is shifted as (ε̃2 − s2)/w̃2eff with:

s2 =

(
k̃2

12 − cos2 θ
)

ε̃1 + 2k̃12 cos θ

ε̃2
1 + 1

(6)

Let us consider the phase shifts δ̃r1 and δ̃r2eff defined by ε̃1 = − cot δ̃r1 and ε̃2eff = − cot δ̃r2eff,
respectively. They show typical resonance behaviors as their values increase by π as their correspondent
ε̃1 and ε̃2eff vary from −∞ to ∞ between successive resonances. From Equation (4), δ̃r is given by an
incoherent sum of δ̃r1 and δ̃r2eff: δ̃r = δ̃r1 + δ̃r2eff [28]. In other words, there is no interference term
between two resonance processes even though process 2 is greatly influenced by process 1.
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Figure 1. Different natures of the perturbation prevail depending on whether the autoionizing Rydberg
series converge to the same limit as in (a) or to the different limits as in (b). In contrast to the case of
(b) for which the perturbation shown by a wiggling line is local in energy, for case (a), the perturbations
shown with a wiggling line are not local and act uniformly throughout the entire series (from [29]).
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3. Nondegenerate System

3.1. Autoionizing Rydberg Series Perturbed by an Interloper Series in Nondegenerate Systems

3.1.1. Two-Closed-Channel System Involving One Open Channel

Complex autoionization spectra involving two closed and one open channels were studied
by Giusti-Suzor and Lefebvre-Brion, Cook and Cromer, Wintgen and Friedrich and Ueda using
the phase-shifted MQDT. This system corresponds to θ = 0. In this case, reduced width (5) and
energy (6) become:

w̃2eff =
(ε̃1−k̃12)

2

ε̃2
1+1

ε̃2eff =
ε̃2(ε̃2

1+1)−(k̃2
12−1)ε̃1−2k̃12

(ε̃1−k̃12)
2

(7)

In terms of these resonance parameters, Ueda obtained the simple mathematical form of
autoionization cross section as follows:

σ = σI
(ε̃2eff + q̃2eff)

2

ε̃2
2eff + 1

(
σI = K

∣∣∣D̃1

∣∣∣2 (ε̃1 + q̃1)
2

ε̃2
1 + 1

)
(8)

where K denotes 4π2αω/3, α is the fine structure constant, ω the photon excitation frequency, q̃1 is
the profile index generally defined by q̃i = −D̃i/ξ̃iD̃o and D̃i and D̃o denote the transition dipole
moments to closed channel i and to the open channel, respectively. The profile index is obtained as a
slowly varying function of ε̃1 as:

q̃2eff =
q̃2 ε̃2

1 −
(

k̃12q̃1 + 1
)

ε̃1 + q̃2 − q̃1 + k̃12

(ε̃1 + q̃1)
(

ε̃1 − k̃12

) (9)

Because of the perturbation caused by an interloper, the spectral width Γ of the resonance peaks
of series 2 varies from peak to peak. It is obtained from the relation Γ = 4}/τ with Smith’s time delay
τ = 2}dδ̃r/dE. Using δ̃r = δ̃r1 + δ̃r2eff and ignoring the slowly varying interloper part compared with
the principal series part dδ̃r1/dE � dδ̃r2eff/dE, we have τ ≈ 2}dδ̃r2eff/dE. Since ε̃2eff = − cot δ̃r2eff,
differentiation of ε̃2eff in Equation (7) with respect to E yields dδ̃r2eff/dE and the width can be obtained.
For more details, see [13]. Similar work was done by Cooke and Cromer [5] and Lecomte to extract the
resonance widths from the experimental data [7].

The behavior of autoionization cross section is dominated by the pole structures of (6) and was
discussed in [13]. ε̃2eff has a second pole at ε̃1 = k̃12 and shows unexpected consequences on the
spectra. Equation (9) shows that q̃2eff have two simple poles at ε̃1 = k̃12 and −q̃1. At each simple pole,
q̃2eff changes sign (q-reversal), meaning that the profile of a resonance peak change its direction of
asymmetric shape. The singularity greatly affects the spectrum since photoionization cross section σ is
enhanced by a factor of 1 + q̃2

2eff from that of the interloper spectrum. The envelope σmax that connects
the maxima of resonance peaks is given by σmax = σI

(
1 + q̃2

2eff
)
. Tremendous intensity enhancement

in photoionization spectra often occurs around the pole as q̃2eff → ∞ at ε̃1 = q̃1 or k̃12.
Zeros of q̃2eff are also instrumental in understanding the behaviors of spectra besides the poles.

They are obtained as the zeros of the numerator of Equation (9):

q̃2 ε̃2
1 −

(
k̃12q̃1 + 1

)
ε̃1 + q̃2 − q̃1 + k̃12 = 0 (10)

Patterns of q-reversal at zero points are greatly different from those at the poles in that there is
no enhancement at the zero points because of the unity of 1 + q̃2

2eff. Maximum of two zeros of q̃2eff is
possible between two successive peaks of interloper series.
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Systematic studies on this spectrum as the values of coupling strength vary were carried out by
Lane et al. by the CM method and interesting results showing a variety of aspects of overlapping
resonances were demonstrated [30]. The same kind of systematic studies were carried out in the
context of MQDT in [13]. One is the effect of the variation of the widths of resonance peaks of
principal series on the spectra when the interloper spectra remain unaltered This case is effectively
a two-channel process as discussed by Giusti-Suzor and Fano [4], where they discussed about the
resonance narrowing effect described by Mies [15] which takes place when the width of resonance
peaks exceed the spacing.

Effect of the variation in spectral width of an interloper on the spectrum was examined in [13] by
varying the values of K̃13. This case shows another interesting aspect of the overlapping resonance:
the transition of an interloper spectrum from one peak among many peaks of the principal series to
a structured background. Figure 2 confirms this phenomenon. Figure 3 examines this phenomenon
using the time delay spectra. It shows that two peaks around the interloper resonance peak position
seen when the width of an interloper peak smaller than the line separation of a dense series disappear
when the width becomes equal to the line separation, and then reappears as a single peak when the
width becomes larger than the line separation.Atoms 2017, 5, 21  7 of 24 
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Figure 3 shows an another aspect of the time delay spectra in that they are not decomposed into
an interloper and perturbed principal Rydberg series. The time delays of the principal Rydberg series
and the enhancement factor are given, meaning that the overall behavior of the time delay spectra is
determined by the perturbed principal Rydberg spectra alone. This indicates that completely different
dynamics are involved for the time delay spectra and autoionization spectra. Overall behavior of the
time delay spectra is determined by the perturbed principal series while that of autoionization spectra
is determined by the interloper spectra. The difference in dynamics may be understood if we recall
that the absorption process is instant and the dominant process is determined by the magnitude of the
transition dipole moments, which refers to the transition to an interloper line from the well-known n
dependence of Rydberg lines [31]. Since the residence time or orbiting period is proportional to ν3, it is
short for the lower line of the Rydberg series, which is the case for an interloper. The excited electron
rapidly leaks into the principal series, which has a much longer orbiting period.Atoms 2017, 5, 21  8 of 24 
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Figure 3. Disappearance of the transition of an interloper line into the structured background when
examined by the time delay spectra (from [13]).

The behavior of the spectral shape in Figure 2 can be easily understood with the q̃2eff graph.
The great changes in line shape in Figure 2 as K̃13 increases are related to the change of the patterns
of the q̃2eff graphs from ε̃1r1 < k̃12 < ε̃1r2 in (a) and (b) to ε̃1r1 < ε̃1r2 < k̃12 in (c) and (d) where
ε̃1r1 and ε̃1r2 denote the two roots of Equation (10). The huge envelope that consisted of several
peaks approximately 4040 cm−1 to the left-hand side of the dotted interloper resonance peak in (a)
was frequently wrongly interpreted as the shifted resonance peaks of the interloper. The q̃2eff graph
shows that this huge envelope is not the shifted one but a huge enhancement of the lines of the
perturbed series by the pole at ε̃1 = k̃12. This huge enhancement is no longer a dominant feature in
(c) and (d) as the pole no longer lies in between two roots. The condition that k̃12 lies in between two
roots ε̃1r1 and ε̃1r2 of Equation (10) can be found by considering the sign of

(
ε̃1r1 − k̃12

)(
ε̃1r2 − k̃12

)
which is equal to (q̃2 − q̃1)

(
1 + k̃2

12

)
/q̃2. If (q̃2 − q̃1)/q̃2 < 0, then the pole lies in between two roots.

Therefore, the test is quite simple. Another aspect of the spectra in Figure 2 that plays the critical role
in shaping the profiles of spectra is that one root lies close to the resonance position of the interloper,
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i.e., ε̃1 = 0. Let ε̃1r1 be close to zero. Then ε̃1r1 ε̃1r2/(ε̃1r1 + ε̃1r2) ≈ 0. This condition is obtained
when

(
q̃2 − q̃1 + k̃12

)
/
(

1 + q̃1k̃12

)
≈ 0 according to Equation (10). In Figure 2, this is satisfied by∣∣∣q̃1k̃12

∣∣∣� |qi|,
∣∣∣k̃12

∣∣∣.
Let us summarize the guiding principle of the analysis based on the formula decoupled into

those of interloper and the principal autoionizing spectra. The overall shape of the auto-ionization
cross section is determined by the spectrum of an interloper. The principal Rydberg series chops the
interloper spectrum. The interloper spectrum serves as a structured background. The q reversals of
the profile indices of perturbed principal Rydberg series are determined by the roots of the quadratic
equations of q̃2eff= 0 and poles of ε̃2eff at k̃12 and −q̃1. The huge spectral enhancement from the
interloper background, given by q̃2

2eff + 1, occurs when the peak of the principal Rydberg series lies
close to the poles ε̃3 = k̃12 and −q̃1 of q̃2eff and is characterized by the sharp peak. Near the zeros of
q̃2eff, no spectral enhancement takes place and is characterized by the smooth change in the spectra.

3.1.2. A Two-Closed-Channel System Involving More than One Open Channel

Extension of the formulation to systems involving more than one open channel was done by
Cohen [11] and Lee [32]. As already seen, the resonance structures themselves are irrelevant to the
number of open channels. Thus, the same resonance parameters can be used regardless of the number
of open channels. If more than one open channels are involved, total autoionization cross sections are
given by a sum over eigenchannels ρ of the physical reactance matrix K as follows:

σ = ∑
ρ

σρ = K∑
ρ

∣∣∣D̃(e)
ρ

∣∣∣2 (11)

Numerical study reveals that naive use of Equation (11) is troubled by the presence of poles.
However, as noted by Cohen [11], using the most trouble free formula for the eigenchannels,
troublesome poles can be sequestered into unimportant “non-resonance” eigenchannels leaving
only kinks in the dominant “resonance” eigenchannels [32]: σ = σr + σnr with σnr = Σρ 6=rσρ. Though
poles are removed, remaining kinks in the resonant eigenchannel are artifacts spoiling the formula
and thus hampering the analysis. It should be removed in contrast to the poles present in the
decomposed form of (8) which are real and play an important role. The removal of kinks was achieved
by taking Z̃o

k = ξ̃k1/ξ̃1 (k ∈ P) as solutions [32]. The solution thus obtained corresponds to the
effective continuum [5,7] or Fano’s a state in CM theory [14] and corresponds to taking the solution
parallel to the coupling vector of an interloper series to open channels. Substituting this solution into
Equation (11),

σ ≈ σr = K
(

D(e)
r

)2 (ε̃1 + q̃1r)
2

ε̃2
1 + 1

(
ε̃2eff + q̃r

2eff
)2

ε̃2
2eff + 1

(12)

where the profile index q̃r
2eff is obtained as:

q̃r
2eff =

(
ε̃1 − k̃12 sec θ

)[ q̃2r ε̃2
1 − ε̃1

(
1 + k̃12 sec θq̃1r

)
cos2 θ

+q̃2r + k̃12 cos θ − q̃1r cos2 θ

]

(ε̃1 + q̃1r)

[
sin2 θ

(
ε̃2

1 + 1
)
+ cos2 θ

(
ε̃1 − k̃12 sec θ

)2
] (13)

Note that formula (13) becomes the formula (9) in the three-channel case when θ is zero which is
always true in the three-channel case [28]: q̃r

2eff
θ=0→ q̃2eff(2c1o). This supports the choice of Z̃o

k = ξ̃k1/ξ̃1

as a means to get rid of kinks in the resonance eigenchannel. If many open channels become reduced
to a single channel, the non-resonance eigenchannel disappears and only the resonance eigenchannel
survives. In the single open-channel case, only a single process contributes to the spectral widths
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whereby the root, ε̃1 = k̃12 sec θ, of the q̃r
2eff = 0 surface in many open channel cases is converted to the

simple pole, producing a huge enhancement to the spectra. This was discussed in [28,32].
The case of the null transition to open channels frequently encountered in spectra was studied

in [28,32]. One of the wide classes of experiments such null transitions to open channels hold is
the ICE spectra. In this case, q̃ir → ∞ (i = 1,2), but its product with D̃e

r is finite. Taking the limit of
q̃ir → ∞ yields:

q̃r
2eff = r2 cos θ

(ε̃1 − u)
(
ε̃2

1 − ε̃1tu + 1− t
)

sin2 θ
(
ε̃2

1 + 1
)
+ cos2 θ(ε̃1 − u)2 (14)

where r2 = D̃2ξ̃1/D̃1ξ̃2, t = cos θ/r2 and u = k̃12 sec θ. Equation (14) tells us that there are three
zero surfaces of q̃r

2eff. One is ε̃1 = u and the other two are root surfaces of the quadratic equation
ε̃2

1 − ε̃1tu + 1− t = 0 (see Figure 4). Among three zero surfaces, two zero surfaces meet in two cases.
The first case takes place when ε̃1 − u = 0 and ε̃2

1 − ε̃1tu + 1− t = 0 meet at t = 1. The other case
corresponds to the double root lines of the quadratic equation ε̃2

1 − ε̃1tu + 1− t = 0. If D denotes the
discriminant, the double root lines are the roots of D = 0 and can be expressed as parametric equations
of t: u = ±2t−1

√
1− t and ε̃1 = ±

√
1− t. They are defined at t ≤ 1. In other words, if t > 1, there are

always three zero surfaces of q̃r
2eff.

Let us consider the case of t ≥ 1. We denote two roots of the quadratic equation as ε̃1r1 and
ε̃1r2 and let ε̃1r1 ≤ ε̃1r2. Then, three roots of q̃r

2eff = 0 satisfy the inequality ε̃1r1 ≤ u ≤ ε̃1r2 where
equality holds when t = 1. It is derived from (ε̃1r1 − u)(ε̃1r2 − u) = (1− t)

(
1 + u2) ≤ 0. Note also

that ε̃1r1 ε̃1r2 = 1− t ≤ 0 meaning that two roots are of opposite sign and three roots meet at one point
when u = 0 and t = 1.
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Figure 4. The path Martins and Zimmermann took shown on the q̃r
2eff = 0 surfaces. D denotes the

discriminant of the quadratic equation on the numerator of Equation (17). Lines satisfying D = 0 are
double root lines, satisfying u = ±2t−1√1− t and ε̃1 = ±

√
1− t (t ≤ 1 ) (from [32]).

This theory was applied to two spectra: Martins and Zimmermann’s photoionization spectra
of the Rydberg series Cu I 3d94s(1D2) nd 2G9/2 perturbed by the interloper 3d94p2 4F9/2 [33] and the
narrow 6p1/2,3/2np J = 1 autoionizing Rydberg series in barium perturbed by 6p3/2nf states obtained
by de Graaff et al. [34]. The former Cu case corresponds to cos θ ≈ 1 while cos θ = 0 holds in the latter
case. In the latter case, there is no indirect coupling between two closed channels and the influence of
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the interloper on the width function of the principal Rydberg series is only through the direct coupling
as w̃2eff = 1 + k̃2

12/
(
1 + ε̃2

1
)
. However, Equation (6) is valid for both cases as both correspond to the

case of null transition to open channels.
Martins and Zimmermann reported how satisfactorily the simulated spectrum evolves from a

three-channel spectrum by turning progressively the coupling strength K̃14 between closed channel 2
with another open channel 4 on and then the coupling K̃24 progressively on. However, their study did
not explain why such a scheme works. Let us answer this question using the theory described here.
The path they choose is shown in Figure 4. The values of parameters are in the caption of Figure 5.
It starts from three channels: channel 1 for an interloper, channel 2 for the principal closed channel and
channel 3 is an open one. In this system, two coupling vectors ξ̃1 and ξ̃2 are parallel and the value of t
starts from 2

(
= D̃1K̃23/D̃2K̃13

)
. With K̃24 being turned off, progressive turning of from K̃14 = 0 to 0.3

does not change the value of the scalar product of ξ̃1 · ξ̃2, meaning that the value of u remains constant
as 1.67 since u = K̃12/ξ̃1 · ξ̃2. Only the length of ξ̃1 varies so that the value of t decreases from 2 to 1 as
t =

(
ξ̃1 · ξ̃2/ξ̃2

1

)(
D̃1/D̃2

)
. Note the abrupt change of ε̃1 = u from a simple pole to a zero point as the

system evolves from the three-channel to the four-channel system. The increase stops at K̃14 = 0.3
where t = 1 and the upper two surfaces in Figure 4 meet. Now with the value of K̃14 fixed at 0.3, the
value of K̃24 is turned on from 0 to 0.5, causing the increase of the value of ξ̃1 · ξ̃2 and subsequent
increase of t from 1 to 3.5 and decrease of u from 1.67 to 0.48. The product tu remains constant. The
change follows the hyperbola u = 1.67/t in the map in Figure 4. Note that the middle of two roots
does not change but the interval between them increases as t increases since ε̃1r1 + ε̃1r2 = tu = constant
and (ε̃1r1 − ε̃1r2)

2 = D. In this analysis, we first note that the value of t is taken as ≥ 1. This means
that the range of the variations of K̃14 and K̃24 remains in the region where the profile function q̃r

2eff has
always three roots except at t = 1 where ε̃1 = u and one of the roots of the quadratic equation meet.
The next point we note is that the purpose of choosing the second path is in the change of profile shape
from the type of leaning toward the central peak to the one of leaning outward the central peak by
moving the second root toward the center of the interloper peak by reducing the value of from 1.67 to
0.48 (remind that ε̃1 = 0 is the center of the interloper peak).Atoms 2017, 5, 21  12 of 24 
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Figure 5. Photoionization cross section and q̃r
2eff spectra calculated modeled for the Cu I Rydberg series

3d94s(1D2)nd 2G9/2 perturbed by the interloper 3d94 p2 4F9/2 (K̃12 = 0.1, K̃13 = 0.3, K̃23 = 0.2, D̃1 = 9.0,
D̃2 = 3.0, D̃3 = 0 a.u.). (a) the three-channel quantum defect theory (QDT), (b) K̃24 = 0, K̃14 = 0.1,
(c) K̃24 = 0, K̃14 = 0.3, (d) K̃24 = 0.3, K̃14 = 0.3 (from [32]).
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3.2. Inter-Series Interactions between Two Autoionizing Principal Series Perturbed by an Interloper

So far, the strongly coupled two-closed channel systems have been considered. Let us now
review the extension of this mathematical formulation to a three-closed channel system involving two
interacting autoionizing Rydberg series perturbed by an interloper. Two formulations tailored for two
kinds of experimental spectra have been done. One formulation designed for the system shown in
Figure 6b was tailored for the spectrum reported by Kalyar et al. [35]. The formulation, which can be
called a merged one, was found when the channel coupling of the two autoionizing series with the
remaining channels was limited to equal strength. A more general formulation that can handle an
unequal coupling strength with emphasis on the resonance structures due to the inter-series interaction
between two interacting autoionization Rydberg series in the presence of an interloper was designed
in [36]. The formulation was done for the system shown in Figure 6a which is a schematized diagram
for the barium system composed of two degenerate interacting 6pnp1/2 and 6pnp3/2 autoionizing
series perturbed by an interloper series 6pnf for which the experimental dataset was obtained by de
Graaff et al. [34].Atoms 2017, 5, 21  13 of 24 
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For this system,
∣∣∣tan β̃ + κ̃cc

∣∣∣ yields:

det
(

tan β̃ + κ̃cc
)
= W̃1W̃2W̃3(ε̃1 − i)

[
w3eff ε̃2 + w2eff ε̃3 − cI

23

]
(ε̃23eff − i) (15)

where cI
23 is a slowly varying function of ε̃1 (see [36] for its definition), and wieff(i = 2, 3) is the effective

reduced width. Because I2 = I3 � I1, ε̃2 and ε̃3 are rapidly varying functions of energy, whereas ε̃1 is
a slowly varying function of energy. The reduced energy ε̃23eff for the coupled process is obtained as:

ε̃23eff =
ε̃2 ε̃3 − (ε̃2s3 + ε̃3s2) + cR

23

w3eff ε̃2 + w2eff ε̃3 − cI
23

(16)

with another slowly varying function cR
23(ε̃1) (see [36] for its definition) and shifts si (i =2, 3).

Equation (15) indicates that resonance scattering processes for the three-closed-channel systems
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are decoupled whereby the resonance phase shifts δ̃r are given by an incoherent sum δ̃r = δ̃r1 + δ̃r23eff
with ε̃1 = − cot δ̃r1 and ε̃23eff = − cot δ̃r23eff. With ε̃23eff, the cross section is obtained as:

σr = K
(

D̃(e)
r

)2 (ε̃1 + q̃1r)
2

ε̃2
1 + 1

(
ε̃23eff + q̃r

23eff
)2

ε̃2
23eff + 1

(17)

Then σis approximated with σr. By taking the solution vector parallel to the coupling vector of an
interloper series to open channels and by averaging out over one cycle of ν2 yields:

〈q̃r
23eff〉ν2

= f2q̃r
2eff + f3q̃r

3eff + qc. (18)

with,

f2 =
W̃2eff(W̃2eff+W̃3eff)

(W̃2eff+W̃3eff)
2
+(W̃2W̃3cI

23)
2

f3 =
W̃3eff(W̃2eff+W̃3eff)

(W̃2eff+W̃3eff)
2
+(W̃2W̃3cI

23)
2

. (19)

As a special case, systems involving only a single open channel may be considered. In that
case, cos θ12 = cos θ13 = 1 always hold and by further restricting to the system with equal coupling
strength of two autoionizing series with other channels, cI

23 term and qc become zero. In addition,
since W̃2eff = W̃3eff, f2 = f3 = 1/2 from (19) and we have

〈
q̃r

23eff
〉

ν2
=
(
q̃r

2eff + q̃r
3eff
)
/2. In this

case, [37] showed that two coupled autoionizing Rydberg series perturbed by a common interloper
are merged into a single autoionizing series and become equivalent to a single autoionizing system
with a reduced energy and line profile index given by ε̃1 and q̃1, respectively, for the interloper and
with an unperturbed reduced energy and line profile index given by ε̃23 and (q̃2 + q̃3)/2, respectively,
for the perturbed principal series. This allows the spectrum of a four-channel system to be treated
in a similar manner to that of a three-channel system. Since

〈
q̃r

23eff
〉

ν2
is given as an average of and

q̃r
2eff and q̃r

3eff, its value does not depend on the inter-series coupling strength K̃23. This means that the
spectral line profile is basically independent of the strength of the direct coupling K̃23. The effect of the
coupling strength k̃23 is completely encapsulated into the reduced energy ε̃23 and has no effect on the
basic spectral profiles

〈
q̃r

23eff
〉

ν2
. Because k̃23 only changes the positions and widths of the resonance

peaks, its effect is purely topological as demonstrated in Figure 7. For more details, see [37].
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(a) K̃23 = −0.15, (b) K̃23 = 0.05, (c) K̃23 = 0.6 (from [37]).
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The theory described above applied to the barium system composed of two interacting 6pnp1/2
and 6pnp3/2 autoionizing series perturbed by an interloper series 6pnf spectrum obtained by de
Graaff et al. [34]. Although seven channels were included in their MQDT calculation, only five
channels are retained without too much change in the spectrum. The five channels are 6p3/2nf5/2,
6p1/2np1/2, 6p1/2np3/2, 6sεl and 5dεl′ indexed 1 to 5 in that order. In this system, autoionizing series 2
and 3 have null indirect couplings with the interloper (cos θ12 = cos θ13 = 0) but are completely
superimposable on each other (cos θ23 = 1). Detailed analysis showed that the contribution of the
coupling term can be safely ignored and the spectral line shape of the coupled series is determined by
the average of spectral line shapes of the two series so that fi is simplified to W̃ieff/

(
W̃2eff + W̃3eff

)
.

In this system, Equation (18) is further simplified as:

〈q̃r
23eff〉ν2

' const
(

ε̃2
1 − pε̃1 + 1

)
. (20)

The roots of
〈
q̃r

23eff
〉

ν2
(ε̃1) = 0 are determined by one parameter p (see Figure 8).
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Figure 8. Root map of
〈
q̃r

23eff
〉

ν2
(ε̃1) = 0 for the three-closed-channel system consisting of one acting as

an interloper and the other two degenerate lower-lying ones (from [36]).

The map in Figure 8 shows the whole scope of the possible patterns that photoionization cross
section form can take. With the map, one can determine in what parameter region one should look at
in order to obtain the desirable photoionization spectra. As a simple application of the map, consider
the case in which autoionization spectrum has no q reversal. According to Figure 8, this case occurs
when |p| ≤ 2. Figure 9c corresponding to p = 1.16 corresponds to this case, which is also marked
in Figure 8.
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4. Degenerate System

4.1. Resonance Structures in Degenerate Autoionizing RYDBERG Series

If the Rydberg series has the same ionization threshold so that closed channels are degenerate
(see Figure 1), perturbation is not local in energy and acts uniformly throughout the entire series.
From the expected constancy of the energy dependency of the spectral parameters, overlapping
resonances might be expected to be isolated. There were three directions in the previous research for
this degenerate system. One approach is to use a phase-shifted MQDT formula based on the neglect of
direct and indirect closed channel coupling [8,38–40]. The other approach is to use Shore’s formula,
which is based on Feshbach’s resonance theory [41–44]. The former MQDT approach has a defect in
contrast to the latter due to the severe approximations. Therefore, a better MQDT theory is needed to
complement the former MQDT approach.

In [27], a diagonalization of det(tan β + κcc) is used to isolate overlapping resonances. This
diagonalization requires that two conditions be met. The first condition involves the simultaneous
diagonalization of tan π(ν + µ) and κcc, which is achieved by removing µ with phase renormalization.
The second condition requires that κcc be a normal matrix that is not met in general. Instead of usual
use of the biorthogonal base sets for the diagonalization of such a non-normal matrix [44,45], another
diagonalization called condiagonalization was adopted in [45]. Then, one obtains:

det(tan β + κcc) ≈ ∏
j∈Q

(
tan β + tan ∆c

j

)
= C exp

(
i ∑
j∈Q

δrj

)
, (21)

where C denotes the modulus of the determinant, and Q is the subspace composed of closed channels.
The resonance eigenchannels obtained by con-diagonalization still contain background scattering that
can be removed by the phase renormalization of β into β + πµc

j . The “pure” resonance representation
with background scattering removed by this phase renormalization is termed an “intrinsic resonance”
representation [29]. With the intrinsic resonance representation obtained, we can now tell the resonance
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position of each resonance eigenchannel as corresponding to β̃ j = π
(

νj + µc
j

)
= nπ or νj = n− µc

j .
Figure 10 shows the resonance positions at the autoionization spectrum of Kr for the J = 1 states at the
lowest ionization thresholds 2Po

3/2 and 2Po
1/2 [45].
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4.2. Degenerate Autoionizing Rydberg Series Involving One Open Channel

Let us consider cross sections and first restrict the number of open channels to one. With
diagonalization, the photoionization cross section is obtained as:

σ = K

∣∣∣∣∣D̃0 cos δ̃r − ∑
k∈Q

D̃c
k

ξ̃k

tan β̃k + iξ̃2
k

exp
(
−iδ̃r

)∣∣∣∣∣
2

. (22)

Considering that the eigenphase shifts δ̃r can be isolated into the incoherent sum of Σj∈Q δ̃rj in this
intrinsic resonance representation, (22) was then transformed to:

σ = K
∣∣∣D̃o

∣∣∣2
∣∣∣∣∣∣∣∣∣∣
∑
j∈Q

ε̃ j + q̃j

ε̃ j + i
+i

(
∑

k∈Q

∂
∂ε̃k
−=

)
∏

j∈Q

(
ε̃ j + i

)
∏

j∈Q

(
ε̃ j + i

) − (nc − 1)

∣∣∣∣∣∣∣∣∣∣

2

, (23)
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where nc denotes the number of closed channels (Equation (23) corrects error in Equation (27) of [27]).
Equation (23) tells us that the transition amplitude to the autoionizing state is given as a sum of
Beutler-Fano amplitudes contributed from each resonance eigenchannel. Contribution of interference
terms among resonance eigenchannels may not be neglected in general and should be addressed in
the analysis of degenerate autoionization spectra. The form (23) is different from the usual fitting
form of ∑k∈Q σak(εk + qk)

2/
(
1 + ε2

k
)
+ σb [8,38–40] of autoionizing spectra in that all the Beutler-Fano

term has the same weight. The absence of σb in (23) is due to the restriction of the number of open
channels to one.

The theory is applied to three experimental dataset observed by Baig and his colleagues: the
2p53s(1P1) ns and 2p53s(1P1) nd autoionization series of sodium [46], the 5d96s2

(
2D5/2

)
np, n f (J =

1) autoionizing resonances of mercury [47] and the 4d95s
(3D2

)
np[2]3/2, np[1]1/2,3/2, n f [1]1/2,3/2,

n f [2]3/2 autoionizing resonances of silver [48]. There are two issues to be addressed in the analysis of
the degenerate autoionization spectra. One is how good the isolation of the overlapping resonances is.
The other is the importance of the interference term. The spectrum of Na is the case where the isolation
is very good and the interference term is safely ignored, the spectra of Hg and Ag show the deviation
from the isolability and nonnegligence of the contribution of the interference and the difference is
bigger in the Ag spectrum as shown in Figure 11.
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Figure 11. The decomposition of the autoionizing spectra (a), (c), and (e) into the incoherent sum of
isolated resonance spectra (b), (d) and (f), respectively. The sum of isolated spectra are drawn with
solid lines and the exact σ with dotted lines in (a), (c) and (e). The differences are the cross terms.
Isolated spectra are ns and nd series of Na in (b), np3/2, nf 1/2, and nf 3/2 series of Hg in (d), np[2]3/2,
np[1]1/2, np[1]3/2, nf [1]1/2.3/2, and nf [2]3/2 of Ag in (f). See the text for the description of the systems
in Na, Hg and Ag (from [27]).
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4.3. Degenerate Autoionizing Rydberg Series Involving Many Open Channels

Let us review the research on the degenerate autoionization spectra when more than one open
channel are involved. In this case, the total photoionization cross section σ is obtained as a sum of the
partial cross section σρ over the eigenchannel ρ:

σ = K∑
ρ

∣∣∣∣∣D̃(o)
ρ cos δ̃r]ρ − ∑

k∈Q
D̃c

k

K̃co
kρ

tan β̃k + iξ̃2
k

exp
(
−iδ̃rρ

)∣∣∣∣∣
2

. (24)

From the consideration of the resonance structures in Section 4.1, the phase shift due to resonance
can be considered either a sum over eigenphase shifts of physical scattering matrix or over intrinsic
eigenphase shifts in the closed channel space Q: ∑ρ∈P δ̃rρ = ∑j∈Q δ̃rj.

Two limiting behaviors of the eigenphase shifts are frequently observed in the autoionization
spectra. One limiting behavior frequently observed is that only one eigenphase shift contains most
of the resonance contributions and the remaining eigenphase shifts contains mostly background
ones. This case is frequently observed in systems involving non-degenerate closed channels but
not in systems involving degenerate closed channels in which case another limiting behavior was
found to hold.

In another limiting behavior of the eigenphase shifts, each δ̃rj has a one-to-one correspondence
with δ̃rρ. If the number of involved open channels is larger than the number of involved closed
channels, the eigenchannels in the physical eigenframe, which have no correspondence in the intrinsic
resonance, are of a background nature. Let ρ = ρ(k) denote the one-to-one correspondence between
the index ρ in the physical eigenframe and index k in the intrinsic resonance eigenframe. The total
cross section can then be approximated as follows:

σ = ∑
ρ∈ r

σaρ(k)

∣∣∣ε̃k + q̃ρ(k)

∣∣∣2
1 + ε̃2

k
+ K∑

ρ/∈r

∣∣∣D̃(e)
rρ

∣∣∣2 (25)

This case is observed in the autoionizing spectra of rare gas atoms from the ground states
with excitation energies between the two lowest ionization thresholds, 2Po

3/2 and 2Po
1/2. In this

dipole-allowed excitation leading to the J = 1 odd-parity levels, in addition to the two closed
channels, 2P1/2ns′[1/2]o1 and 2P1/2nd′[3/2]o1, three more open channels, 2P3/2ns[3/2]o1, 2P3/2nd[1/2]o1
and 2P3/2nd[3/2]o1, are involved. Figure 12 shows the isolation of ns′ and nd′ autoionizing Rydberg
series by Equation (25).
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On the other hand, if the number of closed channels is larger than the number of open
channels, a many-to-one correspondence between δ̃rj and δ̃rρ occurs so that several intrinsic resonance
eigenchannels can correspond to a single physical eigenchannel. Let k = k(ρ) denote the many-to-one
correspondence between the index k in the intrinsic resonance eigenframe and the index ρ in the
physical eigenframe. In this case, interference between the intrinsic resonance eigenchannels belonging
to a single physical eigenchannel ρ occurs. In accordance with this change, two modifications to (25)
should be performed. One is that the same σaρ should be used for the intrinsic resonance eigenchannel
k(ρ) belonging to the same physical eigenchannel ρ, the other modification is that interference terms
should be added as follows:

σ = ∑
ρ∈r

σaρ ∑
k∈ρ

∣∣∣ε̃k + q̃k(ρ)

∣∣∣2
1 + ε̃2

k
+ interference(ρ)

+ K∑
ρ/∈r

∣∣∣D̃e
rρ

∣∣∣2 (26)

This case is observed in the dipole-allowed J = 1◦ autoionization spectra from the p2 3P◦ ground
states of group IV elements, Ge, Sn and Pb, involving five Rydberg series associated with P1/2nd3/2,
P1/2ns1/2, P3/2nd5/2, P3/2nd3/2 and P3/2ns1/2 [49,50]. In the excitation energy lying between two
lowest ionization thresholds I1/2 and I3/2, the autoionizing systems involve two open channels
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associated with the first two series, whereas the remaining three series belong to the closed cannels.
Figure 13 shows the isolation of nd3/2, nd5/2 a ndns1/2 autoionizing Rydberg series by Equation (26).
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Figure 14 shows a comparison of the exact cross section with the sum of the isolated series
(Beutler-Fano terms) without including an interference terms between the two nd closed channels.
For these spectra, the contribution of interference to the cross section is significant.

Atoms 2017, 5, 21  21 of 24 

associated with the first two series, whereas the remaining three series belong to the closed cannels. 
Figure 13 shows the isolation of 3/ 2nd , 5/ 2nd  a nd 1/ 2ns autoionizing Rydberg series by Equation (26). 

 
Figure 13. Isolated autoionizing Rydberg series for Ge, Sn and Pb: nd5/2 drawn with solid, nd3/2 with 
dash-dotted and ns1/2 with dotted lines.(from [29]). 

Figure 14 shows a comparison of the exact cross section with the sum of the isolated series 
(Beutler-Fano terms) without including an interference terms between the two nd closed channels. 
For these spectra, the contribution of interference to the cross section is significant. 

 

Figure 14. Comparison of the cross sections calculated without any approximation using the 
experimentally obtained multichannel quantum defect theory (MQDT) parameters plotted as a 
dotted line and the one obtained from the sum of the Beutler-Fano terms without including 
interference terms plotted as a solid line. Therefore, the difference between the two curves in each 
spectrum is due mainly to interference (from [29]). 

Figure 14. Comparison of the cross sections calculated without any approximation using the
experimentally obtained multichannel quantum defect theory (MQDT) parameters plotted as a dotted
line and the one obtained from the sum of the Beutler-Fano terms without including interference terms
plotted as a solid line. Therefore, the difference between the two curves in each spectrum is due mainly
to interference (from [29]).
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5. Conclusions

Development in mathematical formulations of parameterizing the resonance structures using the
phase-shifted multichannel quantum defect theory (MQDT) and their use in analyzing the effect of
inter-series interactions on the autoionizing Rydberg spectra is reviewed.

Two different directions with different goals have been taken in formulation depending on
whether autoionizing series converge to the different limits or to the same limit because of the different
nature of the perturbation. For the former nondegenerate system, perturbation is local and shows
the strong energy dependency. For the latter degenerate system, perturbations are not local and act
uniformly throughout the entire series.

For the nondegenerate system, viewing the autoionizing spectra as the principal autoionizing
Rydberg series perturbed by an interloper was used by various groups to treat the disparity in
resonance structures. In this case, the linear combination of open channel basis functions corresponding
to Fano’s a state or Cooke and Cromer’s effective continuum is obtained by taking the combination
parallel to the coupling vector of an interloper series to open channels. Applications to the Martins and
Zimmermann’s photoionization spectra of the Rydberg series 3d94s(1D2) nd 2G9/2 perturbed by the
interloper 3d94p2 4F9/2 [36] and to the narrow 6p1/2,3/2np J = 1 autoionizing Rydberg series in barium
perturbed by 6p3/2nf states obtained by de Graaff et al. [38] are reviewed. For both cases, the profile
index function is described just with two parameters, allowing one to draw its map. With the map, the
whole scope of the possible patterns that photoionization cross section can take is obtained. One can
determine in what parameter region one should look at in order to obtain the target spectra.

If more than one principal series is perturbed by an interloper, the effect of inter-series interaction
between two principal series on profile index functions is described by the average of coupling with
weights given by the spectral weight functions. The theory describes the barium system composed
of two interacting 6pnp1/2 and 6pnp3/2 autoionizing series perturbed by an interloper series 6pnf
spectrum obtained by de Graaff et al. with just one parameter [38]. The merged case was found when
the channel coupling of the two autoionizing series with the remaining channels was limited to equal
strength and was applied to the analysis of the spectrum reported by Kalyar et al. [39].

On the other hand, there is no disparity in resonance structures in the degenerate system so that
the condiagonalization method is used to isolate the resonance eigen-series. For the degenerate case,
two issues are addressed and answered. One is the degree of isolation of overlapping autoionizing
Rydberg series and the other issue is how to access the effect of interference among the autoionizing
Rydberg series.
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