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Abstract: A double resonance two-photon spectroscopy scheme is discussed to probe jointly rotational
and rovibrational transitions of ensembles of trapped HD+ ions. The two-photon transition rates and
lightshifts are calculated with the two-photon tensor operator formalism. The rotational lines may be
observed with sub-Doppler linewidth at the hertz level and good signal-to-noise ratio, improving
the resolution in HD+ spectroscopy beyond the 10−12 level. The experimental accuracy, estimated
at the 10−12 level, is comparable with the accuracy of theoretical calculations of HD+ energy levels.
An adjustment of selected rotational and rovibrational HD+ lines may add clues to the proton radius
puzzle, may provide an independent determination of the Rydberg constant, and may improve
the values of proton-to-electron and deuteron-to-proton mass ratios beyond the 10−11 level.

Keywords: two-photon spectroscopy; hyperfine structure; two-photon lightshift; trapped ions;
Rydberg constant; proton-to-electron mass ratio; deuteron-to-proton mass ratio; proton radius;
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1. Introduction

Precision measurements with atoms and molecules improved our understanding of the structure
of matter and of its interaction with light. Predictions of the quantum electrodynamics (QED)
were compared with accurate experimental data to test the validity of the theory and to extract
the values of fundamental constants [1]. Precision spectroscopy of atomic hydrogen and deuterium
is used to extract the Rydberg constant, the proton radius, and the deuteron radius. Significant
discrepancies were noticed between the proton radius and the deuteron radius determined from
regular (electronic) hydrogen and deuterium and from exotic (muonic) hydrogen and deuterium,
respectively [2]. This problem, called “the proton radius puzzle”, motivated several works [3].
The agreement between independent determinations of physical constants may check the validity of
theoretical and experimental results. Moreover, space-time variations of fundamental constants are
allowed in theories beyond the Standard Model (see [4] for a review). Constraints on possible variation
of the proton-to-electron mass ratio were derived from astrophysical spectra or laboratory studies
(see for example [5]).

The hydrogen molecular ions are the simplest molecules. They have an important role in molecular
quantum mechanics [6]. High-resolution infrared spectroscopy associated with accurate ab-initio
calculations open the way to applications for the determination of fundamental constants and for
testing QED [7]. QED calculations of the energy levels of the hydrogen molecular ions were performed
including corrections up to the mα8 order [8–11] and reduced the relative uncertainty for fundamental
vibrational transitions to 7.6 × 10−12. Accurate experimental results were obtained using hydrogen
molecular ions stored in radiofrequency (r.f.) traps and sympathetically cooled by laser-cooled
Be+ ions. In addition, it is possible to efficiently prepare HD+ ions in the fundamental rotational
level [12,13]. Weak rovibrational overtone transitions are allowed by electrical-quadrupole coupling
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for H2
+ ions and by electrical-dipole coupling for HD+ ions. The natural linewidths of the rovibrational

transitions are at the 10 Hz level for HD+ and the 10−7 Hz level for H2
+ [14]. The systematic

frequency shifts were accurately calculated for hydrogen molecular ions [15,16]. The experimental
accuracy with a dipole-allowed rovibrational overtone transition of HD+ was 1.1 × 10−9 [17].
The agreement with theoretical results at 1.1× 10−9 allowed a test of QED, provided a determination of
the proton-to-electron mass ratio, as suggested by [18], and constrained the effect of “fifth forces” [19].
The experimental uncertainty of HD+ ion lines was limited by Doppler broadening. Doppler-free
two-photon spectroscopy of a rovibrational overtone transition of HD+ was proposed to improve
the uncertainty beyond the 1 × 10−12 level [20]. In this approach, efficient two-photon excitation in
HD+ is provided by driving a pair of dipole-allowed E1-E1 rovibrational transitions with lasers tuned
close to resonance with an intermediate energy level. The trapped HD+ ions are in the Lamb-Dicke
regime, as their oscillatory motion in the trap is confined over a distance smaller than the effective
laser wavelength, that allows to probe the two-photon transition virtually without Doppler and recoil
effects. The advantage of the two-photon spectroscopy approach is to suppress the first-order Doppler
effect even without strong spatial confinement. The observation of an electric-quadrupole allowed
E2 transition for homonuclear diatomic ions, demonstrated with N2

+ [21], may be an alternative to
increase the accuracy with Doppler-free spectroscopy in the Lamb-Dicke regime.

This contribution proposes to determine the Rydberg constant, the nuclear-to-electron mass ratios,
and the nuclear radii using Doppler-free spectroscopy of hydrogen molecular ions. A THz/infrared
double resonance two-photon spectroscopy study on trapped HD+ ions may allow joint measurements
of E1-E1 rotational transitions in the vibrational ground state and of E1-E1 rovibrational transitions
with different sensitivities on fundamental constants. The rotational levels in the vibrational ground
state have long (1 s level) radiative lifetimes, compared to 10 ms level lifetimes of excited rovibrational
levels, that may lead to an improvement of the resolution beyond the 10−12 level. Efficient detection of
molecular transitions may be provided by state-selective resonance-enhanced multiphoton dissociation
(REMPD) [20]. The double resonance spectroscopy scheme, proposed here, based on (v,L) = (0,1)→(0,3)
and (v,L) = (0,3)→(9,3) two-photon transitions, may provide complementary experimental data to
previous microwave/infrared double resonance studies on HD+ ion beams [6]. This article addresses
the hyperfine structure of the rovibrational energy levels to calculate two-photon transition rates
and lightshifts with the two-photon tensor operator formalism [22]. The lineshapes obtained in
the double resonance two-photon spectroscopy scheme are determined using a rate equation model
that describes the interaction with the blackbody radiation (BBR). The frequency stability, the Zeeman
shift, and the lightshift are evaluated for a molecular clock based on HD+ two-photon rotational lines.
Finally, the determination of fundamental constants is discussed.

2. Two-Photon Tensor Formalism Calculations

2.1. Hyperfine Structure of Rovibrational Energy Levels of HD+

The HD+ ion is formed with particles that have non-zero spins. The rovibrational energy levels,
calculated in the nonrelativistic approximation [23], have a hyperfine structure due to various spin-spin
and spin-orbit interactions. The spin coupling scheme is that used in [24]:

→
F =

→
S e +

→
I p;

→
S =

→
F +

→
I d;

→
J =

→
L +

→
S (1)

where the electron, proton, and deuteron spin operators are, respectively,
→
S e,

→
I p, and

→
I d,

→
L is

the rotational angular momentum operator, and
→
J is the total angular momentum operator.

The basis vectors |vLFSJ> are expressed in terms of the vibrational quantum number v and

the eigenvalues of
→
L

2
,
→
F

2
,
→
S

2
, and

→
J

2
. In this pure basis, J is the only good quantum number, but L

is also used for labelling the levels as the hyperfine spacing is smaller than the rotational structure.
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An effective spin Hamiltonian is taken for the hyperfine structure of each rotational level. The spin
Hamiltonian is expressed in a simplified form [6]:

Heff = bH
→
I p ·

→
S e + cHIp,z · Se,z + bD

→
I d ·

→
S e + cDId,z · Se,z + γ

→
S ·
→
L (2)

accounting for the Fermi contact and magnetic dipolar hyperfine interactions for the proton and
the deuteron and for the spin-rotation interaction. The values for the parameters bH, cH, and γ have
been calculated in [24]. The other parameters are estimated as bD = (gd/gp)bH and cD = (gd/gp)cH

with the gyromagnetic factors of the proton and of the deuteron from CODATA 2014 recommended
values of the fundamental physical constants [1].

The eigenvectors |vLn> of the mixed basis are labelled with an integer n and expressed as a linear
combination of the pure basis eigenvectors:

|v, L, n〉 = ∑
F,S,J

βv,L,n
F,S,J |v, L, F, S, J〉 (3)

The diagonalisation of the effective spin Hamiltonian yields a set of coefficients βv,L,n
F,S,J and

eigenvalues ∆Ev,L,n relative to the hyperfine-free rotational level energy.
The L = 0,L = 1, and L ≥ 2 rotational levels have, respectively, 4, 10, and 12 hyperfine structure

levels with splittings < 1 GHz. The most important splitting, between (F,S) = (1,0) and (F,S) = (0,1)
levels, is determined by the proton-electron spin-spin interaction. The calculations with this simplified
Hamiltonian lead to hyperfine energy levels frequency shifted by ≤ 33 kHz to the hyperfine levels
calculated in [24]. The frequency shifts of the hyperfine-free rotational frequencies are expected to be
orders of magnitude smaller because of the differential effects of the hyperfine couplings.

In presence of a magnetic field, the hyperfine levels are split into sublevels |vLnJz> labelled

by the quantum number Jz of the projection of
→
J on the field axis. The Zeeman Hamiltonian can

be expressed with terms arising from the interaction of the magnetic field of the rotational angular
momentum with the decoupled spins [25]. At low-field, the energy sublevels can be approximated
with a quadratic dependence:⌊

∆Ev,L,n(B)− ∆Ev,L,n(B = 0)
⌋
≈ h

⌊
tv,L,nJzB +

(
qv,L,n + rv,L,nJ2

z

)
B2
⌋

(4)

with values of the parameters tv,L,n, qv,L,n, and rv,L,n calculated in [25].
This contribution addresses two-photon E1-E1 transitions between the initial |vLnJz> and the final

|v
′
L
′
n′J

′
z> hyperfine structure energy levels. The HD+ ion has a permanent electric dipole that is

oriented along the internuclear axis. The electric dipole operator
→
µ is quantized in the molecule-fixed

system. The interaction with an electric field
→
E(t) =

→
εE0(t) with the polarisation state

→
ε and

the temporal dependence E0(t) adds a new term to the Hamiltonian that is expressed in the electric
dipole approximation. The expression is derived with the spherical tensor formalism by rotating
the molecule-fixed dipole operator into the space-fixed system [26]:

Hd = −T1
(→

E
)
· T1
(→
µ
)
= −∑

p
(−1)pT1

p

(→
E
)

D(1)
−p,0(ω)∗T1

0

(→
µ
)

(5)

using the rotation matrix D(1)
−p,0(ω)∗ about the set of Euler angles ω and the standard components

T1
p

(→
E
)

and T1
0

(→
µ
)

of the spherical tensors associated to the vectors
→
E and

→
µ , respectively. The matrix

elements in absence of a magnetic field are expressed by projection on the pure basis vectors
|a> = |v,L,F,S,J,Jz> and |a

′
> = |v

′
,L
′
,F
′
,S
′
,J
′
,J
′
z>:
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〈v, L, n, Jz|Hd
∣∣v′, L′, n′, J′z

〉
= ∑

F,S,J;F′ ,S′ ,J′

βv′ ,L′ ,n′
F′ ,S′ ,J′ β

v,L,n∗
F,S,J√

(2J′+1)(2J+1)
〈a|Hd|a′〉

〈a| − T1
p

(→
E
)

D(1)
−p,0(ω)∗T1

0

(→
µ
)
|a′〉 =

(
−E0(t)µvL,v′L′

)
(−1)J−Jz

(
J 1 J′

−Jz −p J′z

)
δS,S′

×(−1)J′+S+1
√(

2J′ + 1
)
(2J + 1)

(
2L′ + 1

)
(2L + 1)

{
L′ J′ S
J L 1

}(
L 1 L′

0 0 0

) (6)

The second line of the previous equation gives the matrix elements in the pure basis using
the Wigner-Eckart theorem, the expression of the reduced matrix elements of the rotation matrix,

and the fact that the projection of
→
L on the internuclear axis is 0. The transition dipole momentsµvL,v′L′ are

the matrix elements of the HD+ ion electric dipole function of the internuclear distance. The calculations
in this article use µvL,v′L′ real values from [27] numerically evaluated with high-accuracy nonrelativistic

variational wavefunctions of HD+ and the relation µvL,v′L′ = (−1)L′−Lµ∗v′L′,vL. The calculations are
limited to terms that obey to the selection rule L’ = L ± 1.

2.2. Two-Photon Transition Rates

Let us consider an HD+ ion irradiated by two counterpropagating laser beams with the same
angular frequencyω and directed along the x-axis in a Doppler-free configuration with wavevectors

such as
→
k 1 +

→
k 2 = 0. The electric field amplitudes are E01,02 and the polarisation states are

→
ε 1,2.

The lasers are tuned by the two-photon resonance between the ground level |g> and the excited
level |e> through an intermediate energy level |r> such as 2ω ~ ωgr + ωre, where the splittings
between the energy levels Ei,j define the angular frequencies ωij = (Ej − Ei)/}. When the typical

relaxation rate Γ and the Doppler shift
→
k 1
→
v are negligible compared to the one-photon transition

detuning ∆ω =ω−ωgr >> Γ,
→
k 1
→
v , the interaction of a molecule with the electric field is described by

a two-photon transition operator [22]:

QS
→
ε1
→
ε2

=
Q→
ε1
→
ε2

+ Q→
ε2
→
ε1

2
; Q→
ε1
→
ε2

=

(→
D
→
ε 1

)
1

}ω−H0

(→
D
→
ε 2

)
(7)

in function of the dipole operator rotated in the space-fixed system D and the total Hamiltonian H0.
The transition probability per unit time due to the two-photon transition is derived using

the second-order time-dependent perturbation theory:

Γ(2)
ge =

P1P2

(S}ε0c)2

∣∣∣〈g|QS
→
ε1
→
ε2
|e〉
∣∣∣2 Γe

4δω2 + Γ2
e/4

(8)

where the powers of the waves are P1,2 = 2ε0ScE2
01,02 (amplitudes of the electric fields are 2E01,02), S is

the section of the beam, Γe is the lifetime of the excited state, and δω = ω − ωge/2 is the detuning
of the two-photon transition. All ions contribute to the two-photon absorption independent of their
velocities. The transition probability has a Lorentzian lineshape that is centred on the two-photon
resonance frequency, with a width determined by the lifetime of the excited state.

If the excitation polarisations are chosen between the standard polarisations π, σ+ , σ−,
the two-photon transition operator QS

p1p2 can be expressed in function of the standard components

of the dipole operator in the space-fixed coordinate system Dpi = T1
pi

(→
µ
)

with pi = {−1,0,1}.
The two-photon transition operator is a tensor of rank 2 that is defined as the composition of two dipole

operators
→
D and a scalar operator 1/(}ω − H0). Using a scalar and a quadrupolar spherical tensors:



Atoms 2017, 5, 38 5 of 18

Q(k)
p = ∑

p1,p2

〈11p1p2|kp〉Dp1

1
}ω−H0

Dp2
, k = {0, 2} (9)

the two-photon operator can be expanded as:

QS
p1p2

=
2

∑
p=−2

〈11p1p2|2p〉Q(2)
p + 〈11p1p2|00〉Q(0)

0 (10)

Note that there is no tensor of rank 1 in the expansion of the two-photon operator because of
its symmetry.

Consider first a two-photon transition between pure hyperfine levels |g,J,Jz> = |v,L,F,S,J,Jz> and
|e,J

′
,J
′
z> = |v

′
,L
′
,F
′
,S
′
,J
′
,J
′
z> that is driven by electric fields with standard polarisations p1 and p2.

If the ground state is not polarized, and in absence of a magnetic field, the two-photon transition
probability at the two-photon resonance is expressed as the average of the squared two-photon matrix
elements between the magnetic sublevels over the 2J + 1 states:

Γ(2)
ge =

4P1P2

Γe(S}ε0c)2
1

2J + 1 ∑
Jz,J′z

∣∣∣〈g, J, Jz|QS
p1p2

∣∣e, J′, J′z
〉∣∣∣2 (11)

Using Equation (10) and the orthogonality properties of the Clebsch-Gordan coefficients,
this probability is expressed with the Wigner-Eckart theorem in terms of the reduced matrix elements
of the two-photon operator:

Γ(2)
ge =

4P1P2

Γe(S}ε0c)2
1

2J + 1 ∑
k=0,2

∣∣∣〈g, J‖Q(k) ‖e, J′
〉∣∣∣2

2k + 1

(
∑
p
|〈11p1p2|kp〉|2

)
(12)

The transition probability may be expressed in terms of the reduced matrix elements of
the two-photon operator between the spatial parts of the hyperfine wavefunctions:

〈g, J‖Q(k) ‖e, J′
〉
= (−1)J′+L+k+SδS,S′

√
(2J + 1)

(
2J′ + 1

){ L′ J′ S
J L k

}
〈v, L‖Q(k) ‖v′, L′

〉
(13)

The reduced matrix elements of the two-photon operator are expanded using the expression of
the tensor product of dipole operators with the reduced matrix elements of the dipole operator with
intermediate energy levels |r> = |v”,L”,F”,S”,J”> and the detunings of the one-photon transitions
from the ground level:

〈v,L‖Q(k) ‖v′ ,L′〉√
2k+1

= (−1)k+L+L′ ∑
r(v′′ ,L′′ )

{
1 1 k
L′ L L′′

}
〈v,L‖D ‖r(v′′ ,L′′ )〉〈r(v′′ ,L′′ )‖D ‖v′ ,L′〉

}(ω−ωgr)

= (−1)k+2L+L′
√
(2L + 1)

(
2L′ + 1

)
∑

r(v′′ ,L′′ )


{

1 1 k
L′ L L′′

}
µvL,v′′ L′′ µv′′ L′′ ,v′L′

}(ω−ωgr)

×(−1)L′′ (2L′′ + 1)

(
L 1 L′′

0 0 0

)(
L′′ 1 L′

0 0 0

)


(14)

For different intermediate levels, the hyperfine structure is assumed to be small compared to
the one-photon detuning, and the operator 1/(}ω−H0) has the same eigenvalues which are calculated
with the two-photon hyperfine-free transition frequency. The second line of the last equation expressed
the reduced matrix elements of the dipole operator in the space-fixed system. The contributions to
the reduced matrix elements are given by terms from an intermediate state with an angular momentum
quantum number of L − 1, L, or L + 1.
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The two-photon rotational transition (v,L)→(v,L + 2) involves only the two-photon operator of
rank 2. The reduced matrix elements for the transitions (v = 0,L)→(v’ = 0,L’ = L + 2) with 0 ≤ L ≤ 3
are given in Table 1. The relative intensities of various hyperfine components of the two-photon
absorption line may be calculated as the product between the transition probability and the population
of the lower level, which is proportional to 2J + 1.

Table 1. Reduced matrix elements of the operator Q(2) for the transitions (v = 0,L)→(v
′

= 0,L
′

= L + 2)
with 0 ≤ L ≤ 3, in atomic units.

v L v
′

L
′ Frequency (THz) Q(2) (a.u.)

0 0 0 2 1.968 1367.669
0 1 0 3 3.268 −3228.723
0 2 0 4 4.548 5589.249
0 3 0 5 5.801 −8478.534

The previous results can be generalized to the coupling of the two-photon operator between
the mixed hyperfine eigenvectors by expressing them as a linear combination of the pure basis
eigenvectors with coefficients βv,L,n

F,S,J and βv′ ,L′ ,n′

F′ ,S′ ,J′ , respectively. Equation (13) now reads:

〈v, L, n‖Q(k) ‖v′, L′, n′
〉
= ∑

FSJ
∑

F′S′J′


βv,L,n∗

F,S,J β
v′ ,L′ ,n′

F′ ,S′ ,J′ (−1)J′+L+k+SδS,S′

×
√
(2J + 1)(2J′+ 1)

{
L′ J′ S
J L k

} × 〈v, L‖Q(k) ‖v′, L′
〉

(15)

In the case of the two-photon coupling between pure hyperfine levels, non-zero 3-J Wigner
symbols in the expansion of the matrix elements of the two-photon operator arise if |L − L

′
| = 2,

|J − J
′
| ≤ 2 and Jz − J

′
z = −(p1 + p2). There is a strict selection rule on the total coupled spin S

′
– S = 0

as the two-photon operator acts on the spatial part of the eigenvectors. In the case of the two-photon
coupling between mixed hyperfine levels, these selection rules may be overridden leading to weakly
allowed transitions.

The two-photon matrix elements for the transition (v,L) = (0,1)→(0,3) are calculated using
Equations (12)–(15), the reduced matrix elements of the two-photon operator from the Table 1,
and the mixing coefficients from the diagonalisation of the Hamiltonian. The corresponding spectrum
for standard linear-linear polarisations is shown in Figure 1.
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2.3. Two-Photon Transition Lightshifts

The AC-Stark effect shifts an energy level by a quantity that can be calculated as the time average of
the interaction potential between the electric field of the electromagnetic wave and the induced dipole
moment. The lightshift for the energy level |n,J,Jz> = |v,L,F,S,J,Jz> is expressed for the interaction with
identical counterpropagating beams with total intensity I (power in the standing-wave 2SI) as:

δEn = −αn(ω)

2
I
c

(16)

The dynamical polarisability αn(ω) of the level |n,J,Jz> can be calculated in the dressed molecule
approach formalism at the second-order perturbation theory [22]:

αn(ω) = −
[
〈n, J, Jz|QS

εε∗(En + }ω)|n, J, Jz〉+ 〈n, J, Jz|QS
εε∗(En − }ω)|n, J, Jz〉

]
〈n, J, Jz|QS

εε∗(En ± }ω)|n, J, Jz〉 = ∑
r,J′′ ,J′′ z

〈n,J,Jz|D−p|r,J′′ ,J′′ z〉〈r,J′′ ,J′′ z|Dp|n,J,Jz〉
En±}ω−Er

(17)

The matrix element of the two-photon operator is defined on the second line as a function of
the matrix elements of the dipole operator, the photon energy, and the molecular energy levels.

The calculation of the dynamical polarisability for the pure hyperfine basis may follow
the approach shown in the previous section. The dynamical polarisability of a hyperfine level
has contributions from the matrix elements of the scalar and the quadrupolar tensor, which are
expressed as:

〈v, L, F, S, J, Jz|Q
(k)
0 (EvL ± }ω)|v, L, F, S, J, Jz〉 = (−1)2J−Jz+L+k+S

(
J k J
−Jz 0 Jz

)

×(2J + 1)

{
L J S
J L k

}
〈v, L‖Q(k)(EvL ± }ω)‖v, L〉

(18)

The reduced matrix element of the two-photon operator is determined in function of the reduced
matrix elements of the dipole operator as in Equation (14):

〈v,L‖Q(k)(EvL±}ω) ‖v,L〉√
2k+1

= (−1)k+3L(2L + 1)

× ∑
v′′ ,L′′

{
1 1 k
L L L′′

}
µ2

vL,v′′ L′′
(EvL±}ω)−Ev′′ L′′

(−1)L′′ (2L′′ + 1)

(
L 1 L′′

0 0 0

)(
L′′ 1 L
0 0 0

)
(19)

The lightshift depends on the optimal laser intensity that is required to probe the two-photon
transition. The quantity of interest for reaching the regime of two-photon Rabi oscillation is
the two-photon Rabi pulsation, defined as Ω = <g|QS

p1p2|e>I/(ε0}c). For example, the value of
the Rabi pulsation for the transition (v,L) = (0,1)→(0,3), calculated with the reduced matrix element of
the two-photon operator, is 190.172 rad/s for an intensity of 1 mW/mm2. The value of the lightshift
for a specific hyperfine level can be calculated with Equations (16)–(19). The reduced matrix elements
of the two-photon operator are given in Table 2 for the transitions (v = 0,L)→(v

′
= 0,L

′
= L + 2) with

0 ≤ L ≤ 3 when the laser is tuned at two-photon resonance.
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Table 2. Reduced matrix elements of the two-photon operator Q(k)(EvL±}ω) for the transitions
(v = 0,L)→(v

′
= 0,L

′
= L + 2) with 0 ≤ L ≤ 3, in atomic units.

v L v
′

L
′

Q(0)(Ev,L + h̄ω)(a.u.) Q(2)(Ev,L + h̄ω)(a.u.) Q(0)(Ev
′
,L
′ + h̄ω)(a.u.) Q(2)(Ev

′
,L
′ + h̄ω)(a.u.)

0 0 0 2 682.990 0 −756.843 −121.457
0 1 0 3 1656.527 483.476 −1218.221 −420.161
0 2 0 4 2965.652 1226.224 −1785.156 −780.275
0 3 0 5 4578.742 2190.257 −2470.049 −1216.183

v L v
′

L
′

Q(0)(Ev,L − }ω)(a.u.) Q(2)(Ev,L − }ω)(a.u.) Q(0)(Ev
′
,L
′ − }ω)(a.u.) Q(2)(Ev

′
,L
′ − }ω)(a.u.)

0 0 0 2 −136.031 0 916.768 1503.824
0 1 0 3 −307.656 −334.504 2044.727 2447.167
0 2 0 4 −630.082 −631.130 3459.700 3597.655
0 3 0 5 −1060.515 −1002.231 5184.501 4973.626

3. Two-Photon Spectroscopy Scheme

The two-photon rovibrational transition (v,L) = (0,3)→(9,3) of HD+ may be addressed by
Doppler-free laser spectroscopy at 1.44 µm and detected by REMPD using a 532 nm laser [20].
The experiment proposed in this contribution is to probe also a two-photon rotational transition
in the vibrational ground state, that is here (v,L) = (0,1)→(0,3). Doppler-free rotational spectroscopy
may be performed with two counterpropagating THz-waves tuned around the rotational transition.
That induces a change of the population in the rotational levels that can be detected on the REMPD
signal. In addition, there is the effect of the blackbody radiation that recycles continuously the HD+

ions between the rotational levels of the vibrational ground state. The closed set of energy levels
coupled by the two-photon spectroscopy scheme is shown in Figure 2. The rovibrational levels have
small radiative decay widths, for example Γ3/(2π) = 0.037 Hz and Γ5/(2π) = 13.1 Hz [28].
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crystal. Secular motion of HD+ ions in the trap may be excited and the fluorescence at 313 nm from 
the laser-cooled Be+ ions can be used to monitor the number of trapped HD+ ions. The spectroscopy 
scheme uses conjointly 1.44 µm, 532 nm, and 313 nm lasers and the THz-wave. The trap displays 
~100 s storage time that allows a typical interrogation time of the HD+ ions of 10 s. The number of 
HD+ ions lost by REMPD is measured by exciting the secular motion and monitoring the 
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The linewidths of the laser sources and of the THz-waves are assumed negligible in this 
modelisation. The hyperfine structure of the levels is neglected in this section. The transition rate for 
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Figure 2. The closed set of energy levels addressed by the THz/infrared double resonance two-photon
spectroscopy scheme mediated by the blackbody radiation.

The parameters used for modelisation are taken from the experimental setups with HD+ ions
(see for example [17]). A number of ~100 HD+ ions in linear r.f.-traps are cooled sympathetically
at ~10 mK with Be+ ions which are laser-cooled at 313 nm. The two-species solidify in a Coulomb
crystal. Secular motion of HD+ ions in the trap may be excited and the fluorescence at 313 nm from
the laser-cooled Be+ ions can be used to monitor the number of trapped HD+ ions. The spectroscopy
scheme uses conjointly 1.44 µm, 532 nm, and 313 nm lasers and the THz-wave. The trap displays
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~100 s storage time that allows a typical interrogation time of the HD+ ions of 10 s. The number of HD+

ions lost by REMPD is measured by exciting the secular motion and monitoring the fluorescence signal.
The linewidths of the laser sources and of the THz-waves are assumed negligible in this modelisation.

The hyperfine structure of the levels is neglected in this section. The transition rate for the two-photon
rovibrational transition (at the angular frequency ωv) that is taken here at Γ2ph,v = 10 s−1 may be
easily reached with a laser intensity by 5 mW/mm2 [20]. The hyperfine-free rotational transition
(at the angular frequency ωr) has a two-photon operator squared matrix element of ~105 a.u. [29].
That allows to reach a transition rate estimated at Γ2ph,r = 2 × 103 s−1 for a THz-wave intensity of
1 mW/mm2. The 532 nm laser drives dissociation at a rate assumed here at Γdiss = 200 s−1 reached
with a laser intensity by 56 mW/mm2 [20].

Interaction of HD+ ions with the blackbody radiation is described by rate equations driven by
Einstein coefficients for the spontaneous emission Ai

f from an upper state i = (v,L) to a lower state
f = (v

′
,L
′
), respectively, for the stimulated absorption Bf

i and for stimulated emission Bi
f that are

expressed as:

Av,L
v′ ,L′ =

ω3
v′L′ ,vL

3πε0}c3
S(vL;v′L′)

2L+1

Bv,L
v′ ,L′ =

π
3ε0}2

S(vL;v′L′)
2L+1 ; Bv′ ,L′

v,L = 2L+1
2L′+1 Bv,L

v′ ,L′

S
(
vL; v′L′

)
= 3 ∑

M,M′

∣∣∣〈v, L, M|D(1)
0,0 (ω)∗T1

0

(→
µ
)∣∣v′, L′, M′

〉∣∣∣2
= (2L + 1)

(
2L′ + 1

)( L 1 L′

0 0 0

)2∣∣µvL,v′L′
∣∣2

(20)

The angular frequency of the transition is ωfi. The line strength factor S(i;f) is expressed with
the matrix elements of the dipole operator between the rovibrational wavefunctions, and its value
is given on the last line in function of the reduced matrix elements of the dipole operator µvL,v

′
L
′ .

The ions are distributed initially among the (v = 0,L = 0, . . . , 5) levels. These levels are coupled
with BBR-driven transitions. Upon application of THz-waves and infrared and visible lasers, time
dependences of the populations in the rovibrational levels ρv,L(t) and in the dissociated state ρ2pσ(t)
can be calculated with a set of rate equations using the two-photon transition rates at resonance Γ2ph,r,v
and the two-photon transition detunings δωr,v =ωr,v−ω13,35/2:

dρv=0,L
dt = −

(
Av=0,L

v=0,L−1 + Bv=0,L
v=0,L−1WT(ωv=0;L−1,L) + Bv=0,L

v=0,L+1WT(ωv=0;L,L+1)
)
ρv=0,L

+
(

Av=0,L+1
v=0,L + Bv=0,L+1

v=0,L WT(ωv=0;L,L+1)
)
ρv=0,L+1

+Bv=0,L−1
v=0,L WT(ωv=0;L−1,L)ρv=0,L−1

+δv,0δL,1
−Γ2ph,r×Γ2

3/4

4δδ2
r+Γ2

3/4

(
ρv=0,L=1 − ρv=0,L=3

)
+δv,0δL,3

[
Γ2ph,r×Γ2

3/4

4δδ2
r+Γ2

3/4

(
ρv=0,L=1 − ρv=0,L=3

)
− Γ2ph,v×Γ2

5/4

4δδ2
v+Γ2

5/4
ρv=0,L=3

]
;

dρv=9,L=3
dt =

Γ2ph,v×Γ2
5/4

4δδ2
v+Γ2

5/4
ρv=0,L=3 − (Γdiss + Γ5)ρv=9,L=3;

dρ2pσ
dt = Γdissρv=9,L=3

(21)

The BBR spectral energy for a temperature T at an angular frequencyω is denoted WT(ω). Optical
pumping is considered fast enough to neglect the spontaneous emission from excited vibrational levels.

Equation (21) is numerically integrated by assuming Σv,Lρv,L(t) + ρ2pσ(t) = 1 and an initial
distribution of populations ρv,L(t = 0) given by a thermal distribution with a temperature for the BBR
of 300 K. The temporal dependences of the populations are shown in Figure 3. The populations in
the (v,J) = (0,1) and (0,3) levels equalize at the 1/Γ2ph,r timescale and decline further at the 1/Γ2ph,v
timescale. The HD+ ions in the other (v = 0,J) levels are dissociated at slower timescales determined
by the rates of BBR-driven transitions. The (v = 0,J = 0) level acts as a dark state, and its population
is slowly modified by interaction with the BBR. The result is an increase of its relative proportion
(shown on the right-axis).
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Figure 3. Time dependences of the populations in selected rovibrational levels (continuous lines,
left-axis) upon two-photon rotational excitation (v,L) = (0,1)→(0,3), two-photon rovibrational excitation
(v,L) = (0,3)→(9,3), and dissociation (v,L) = (9,3)→2pσ. Time dependence of the fractional population
in the (v,L) = (0,0) level (red dotted curve, right-axis). Values assumed for the transition rates
when the lasers are tuned at resonance: Γ2ph,r = 2000 s−1 (ITHz = 1 mW/mm2), Γ2ph,r = 10 s−1

(IIR ~ 5 mW/mm2), Γdiss = 200 s−1 (Ivis = 56 mW/mm2).

Figure 4a displays the spectral profile of the photodissociated fraction in function of
the two-photon rovibrational detuning δωv/(2π) with or without coupling on the two-photon
rotational resonance. Figure 4b displays the spectral profile of the photodissociated fraction at
two-photon rovibrational resonance in function of the two-photon rotational detuning δωr/(2π).
The two-photon rovibrational spectra are sensibly broader than the two-photon rotational spectrum.
The rotational lineshape is well adjusted by a Lorentzian with 2.09 Hz full width at half maximum
(FWHM) linewidth. The two-photon rotational line with an amplitude of 0.17 is superposed on a flat
baseline with an offset of 0.6 that corresponds to the on-resonance two-photon rovibrational signal.
The fractional resolution of 6 × 10−13 reached with the two-photon rotational transition improves by
two orders of magnitude the resolution of the two-photon rovibrational spectroscopy scheme [20].
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Figure 4. (a) Spectra of the two-photon rovibrational transition calculated with (green continuous line)
or without (blue dotted line) THz-wave tuned at the two-photon rotational resonance. (b) Spectrum of
the two-photon rotational transition (red continuous line) at the two-photon rovibrational resonance.
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The linewidth of the two-photon rotational line is determined by power broadening. Figure 5
displays the dependence of the broadening in function of the THz-wave power (left-axis).
The calculated linewidth decreases linearly with the THz-wave power before stabilizing at a level
determined by the natural linewidth of the transition. The dependence of the contrast of the two-photon
rotational line is shown on the right-axis. The offset remains stable when the THz-wave power varies.
A lower THz-wave power may be used to increase the resolution of the two-photon line at the expense
of the reduction of its contrast.
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This two-photon spectroscopy scheme may be extended to other vibrational energy levels. Some
two-photon rovibrational transitions have been identified between v = 0 and v

′
= 2 and between v = 0

and v
′

= 4 for L, L
′ ≤ 5, respectively [30]. The HD+ ions in the v = 2 level require excitation to another

vibrational level before dissociation. The HD+ ions in the v = 4 level can be efficiently dissociated with
a 266 nm laser.

4. Perspectives in Stability and Accuracy from Two-Photon Rotational Transitions

The stability of a molecular clock based on the transitions of HD+ constrains the integration time
required to determine the fundamental constants at a given level of statistical uncertainty. When
the quantum projection noise dominates among other sources of noise, the stability is given by [31]:

σy(τ) =
1

πQ
√

Nion
×
√

Tc

τ
(22)

The quality factor of the two-photon transition Q = ω2ph/∆ωHWHM is expressed in terms of
the half-linewidth determined ultimately by the natural lifetimes of the molecular levels. The cycle
time Tc is associated to a single measurement with Nion ions at two-photon resonance and successive
measurements are averaged during an interrogation time τ > Tc. The two-photon transitions between
the rotational levels with L < 5 in the vibrational ground state are more interesting because they
display lifetimes which are ~102–103 greater than those of the two-photon rovibrational transitions to
v > 4 levels [28]. Using the two-photon transition rate lineshape and supposing that the same number
of ions are detected during the same measurement times, it appears that a molecular clock based
on the fundamental two-photon rotational transition (v,L) = (0,0)→(0,2) may improve the stability
by an order of magnitude compared to the stability reached by using the two-photon rovibrational
transition (v,L) = (0,3)→(9,3) [20]. For example, using a cycle time of Tc = 2 s, the stability of a single-ion
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HD+ clock based on the rotational transition (v,L) = (0,1)→(0,3) is estimated at σy(τ) = 1.4× 10−15τ−1/2,
which is comparable with the stability of the optical atomic clocks based on trapped ions [31].

The higher resolution allowed by two-photon rotational spectroscopy opens the way to address
individual Zeeman components of hyperfine structure energy levels. For the levels in the vibrational
ground state with the same (F,S,J), the increase of L is associated generally to a decrease of Zeeman
shift coefficients [25]. For metrological applications, it is interesting to select transitions with minimal
Zeeman shifts as was suggested in [25,32]:

- Transitions ππ between Jz = 0→J
′
z = 0 states that have only quadratic Zeeman shift.

- Transitions σ±σ± between “stretched states”, that are pure eigenvectors of the angular
momentum coupling with maximum total angular momentum and projection on the quantisation
axis |v,L,F = 1,S = 2,J = L + 2,Jz = ±(L + 2)>, for which the Zeeman shifts depend linearly with
the magnetic field, have the same magnitude but opposite values.

Zeeman shift coefficients are calculated for hyperfine components of rotational transitions using
the polynomial expansion of the Zeeman shift of the energy levels from [25]. Transitions with small
Zeeman shifts are shown in Table 3. The transition (v = 0,L = 1,F = 0,S = 1,J = 1,Jz = 0)→(v’ = 0,L’ = 3,
F’ = 0,S’ = 1,J’ = 3,J’z = 0) benefits from a strong cancellation of the quadratic Zeeman shifts of
the upper and lower levels. Assuming conservatively that the uncertainty is given by the Zeeman
shift, estimated at 71.2 mHz for a value of the magnetic field of B = 0.02 G, the accuracy is 2.2 × 10−14.
The Zeeman shift coefficients for two-photon rotational transitions between stretched states increase
with L. The transition (v = 0,L = 0,F = 1,S = 2,J = 2,Jz = 2)→(v’ = 0,L’ = 2,F’ = 1,S’ = 2,J’ = 4,J’z = 4)
benefits from the compensation between the linear Zeeman coefficients in the upper and lower levels.
The Zeeman shift, estimated at −11.12 Hz for a value of the magnetic field of B = 0.02 G, leads to
an accuracy of 5.6 × 10−12.

Table 3. Selected hyperfine components of two-photon rotational transitions and estimations of
systematic effects. Zeeman shift coefficients ∆ηB2, ∆ηB for transitions between (a) Jz = J

′
z = 0 states,

(b) stretched states. Polarisabilities α, α′ in atomic units and lightshift coefficients ∆ηLS.

(a)

v,L,F,S,J;Jz v
′
,L
′
,F
′
,S
′
,J
′
;J
′
z ∆ηB2 (Hz/G2) α (a.u.) α′ (a.u.) ∆ηLS (Hz/(W/cm2))

0,0,0,1,1;0 0,2,0,1,3;0 −1062 315.787 257.141 1.374
0,0,1,0,0;0 0,2,1,0,2;0 3100 315.787 311.103 0.110
0,1,0,1,0;0 0,3,0,1,2;0 −841.5 449.624 457.242 −0.179
0,1,0,1,1;0 0,3,0,1,3;0 178 427.416 422.632 0.112
0,1,0,1,2;0 0,3,0,1,4;0 641.5 471.831 468.779 0.072
0,1,1,0,1;0 0,3,1,0,3;0 1356 494.038 503.390 −0.219
0,1,1,1,2;0 0,3,1,1,4;0 −1426.5 471.831 468.779 0.072
0,1,1,2,1;0 0,3,1,2,3;0 2019 454.065 282.652 4.017

(b)

v,L,F,S,J;Jz v
′
,L
′
,F
′
,S
′
,J
′
;J
′
z ∆ηB (Hz/G) α (a.u.) α′ (a.u.) ∆ηLS (Hz/(W/cm2))

0,0,1,2,2;2 0,2,1,2,4;4 −556 −315.787 −176.198 −3.271
0,1,1,2,3;3 0,3,1,2,5;5 −2278 −460.727 −382.253 −1.839
0,2,1,2,4;4 0,4,1,2,6,6 −24,747 −661.117 −595.822 −1.530

A cancellation procedure was proposed for the linear Zeeman shift with pairs of transitions
Jz→Jz and −Jz→−Jz [16] or for the Zeeman shift with pairs of transitions between stretched states
Jz = ±(L + 2)→J’z = ±(L

′
+ 2) [16,25]. The idea was to calculate the mean frequency of such a pair of

Zeeman-shifted hyperfine components. Consider here that each linecenter is determined within 1% of
an experimental linewidth that is taken at 1 Hz. The uncertainty of the determination of the average
frequency is 0.01 ×

√
2 Hz, that may be improved by a factor of 10 by doing the linear regression of
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the dependence of the frequency splitting on the magnetic field. The estimated accuracy is 4.3 × 10−16

for hyperfine components of the (v,L) = (0,1)→(0,3) two-photon rotational transition.
The dynamic polarisabilities for the selected hyperfine levels coupled by two-photon rotational

transitions are determined with Equations (17)–(19) and displayed in Table 3. The polarisabilities in
the upper and lower levels are efficiently compensated for many hyperfine components of Jz = 0→J

′
z = 0

transitions. The lightshifts are estimated for a THz-wave intensity of 1 mW/mm2. The accuracies are
≤ 2 × 10−13 and a value of 4 × 10−15 is reached for the (v = 0,L = 1,F = 0,S = 1,J = 2,Jz = 0)→(v’ = 0,
L’ = 3,F’ = 0,S’ = 1,J’ = 4,J’z = 0) transition.

A method for the reduction of the lightshift, suggested in [20], exploits two lasers with suitable
power to probe the two-photon transition in the Lamb-Dicke regime. Alternatively, the interaction with
sequences of suitably tailored laser pulses may provide a dramatic reduction of the lightshifts, as was
suggested in a generalisation of the Ramsey spectroscopy method [33]. A hyper-Ramsey scheme was
successfully implemented on the octupole clock transition of a single trapped 171Yb+ ion leading to
the reduction of the lightshift by orders of magnitude below to the 10−16 level [34]. An approach was
recently proposed for Doppler-free optical stimulated Raman transitions [35].

5. Determination of Fundamental Constants

The comparison of experimental frequencies of HD+ ions transitions with accurate theoretical
predictions is used here to determine independent values for fundamental constants. This section
follows the approach of CODATA least-squares adjustment [36] that has been exploited with hydrogen
molecular ion rovibrational transitions [37].

The energy levels of HD+ ions may be calculated in the frameworks of QED and quantum
chromodynamics (QCD) as a series expansion:

E = R∞

[
Enr

(
µpe,µdp

)
+ α2FQED

(
α,µpe,µdp

)
+
(

Afs
p
(
rp/a0

)2
+ Afs

d (rd/a0)
2
)]

(23)

in function of the Rydberg constant R∞, the proton-to-electron mass ratio µpe = Mp/me,
the deuteron-to-proton mass ratio µdp = Md/Mp, the fine-structure constant α, the proton radius
rp, the deuteron radius rd, and the Bohr radius a0 = α/4πR∞. The first term Enr is the non-relativistic
energy given by the Schrödinger equation. The next term is a series expansion of corrections to
the energy levels in terms of α (QED corrections), Zp,dα (relativistic corrections), and me/Mp,d (recoil
corrections). The last term is a correction from QCD associated to the finite-size of the proton and
the deuteron. Corrections of orders up to meα

8 to HD+ energy levels were calculated in [8–11,38,39].
The sensitivity coefficient of a transition to a constant c is expressed as:

Kc =
c0

f0

(
df
dc

)
c0

(24)

Here, f0 is the HD+ ion transition frequency calculated with the set of the recommended values of
fundamental constants {c0} given by CODATA 2014 [1]. Sensitivity coefficients for selected two-photon
HD+ ion transitions are calculated and presented in Table 4. The contribution from the non-relativistic
energy is accounted for with the values of ∂E/∂ln(µpe,dp) calculated in [23]. The recoil corrections
bring a negligible fractional contribution to the sensitivity coefficients to the nuclear-to-electron mass
ratios. Sensitivity to α is not addressed here and the sensitivity coefficients to R∞ may be taken as 1 for
simplicity. The rotational transitions have sensitivity coefficients to the relevant constants by a factor
of two higher than the corresponding sensitivity coefficients of the vibrational transitions.
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Table 4. Selected rotational and rovibrational two-photon transitions of HD+ and H2
+: frequencies and

sensitivity coefficients to constants used in adjustments. Data for H2
+ is taken from [37].

Label v L v
′

L
′ Freq. (THz) Kµpe Kµdp 109 × Krp 109 × Krd

HD[1] 0 0 0 2 1.9685 −0.9848 −0.3284 −1.0581 −6.3355
HD[2] 0 1 0 3 3.2677 −0.9808 −0.3271 −1.0547 −6.3151
HD[3] 0 2 0 4 4.5477 −0.9749 −0.3251 −1.0497 −6.2848
HD[4] 0 1 2 1 55.8500 −0.4601 −0.1534 −0.6192 −3.7012
HD[5] 0 2 2 0 53.9407 −0.4421 −0.1474 −0.6039 −3.6095
HD[6] 0 3 2 1 52.5823 −0.4277 −0.1427 −0.5922 −3.5388
HD[7] 0 4 2 2 51.1844 −0.4120 −0.1374 −0.5795 −3.4626
HD[8] 0 4 4 4 105.0777 −0.4235 −0.1412 −0.6040 −3.6073
HD[9] 0 5 4 5 104.5129 −0.4179 −0.1394 −0.6010 −3.5870
HD[10] 0 3 9 3 207.6343 −0.3522 −0.1175 −0.5880 −3.5000
H2[1] 0 2 1 2 32.7293 −0.4657 0 −1.2400 0
H2[2] 3 2 4 2 27.1961 −0.3652 0 −1.1730 0
H2[3] 5 2 6 2 23.7417 −0.2801 0 −1.1330 0
H2[4] 6 2 7 2 22.0540 −0.2279 0 −1.1140 0

Fundamental constants are extracted with an uncertainty that depends on the accuracy of
the experimental frequencies and the accuracy of the predictions. The experimental accuracy for
all two-photon rovibrational transitions is assumed here to be 10−12 as in [20]. The estimation is based
on linewidths ~500 Hz, determined by the spectral purity of the laser and power broadening and by
the signal-to-noise ratio of an rovibrational signal of an experiment [17]. The estimated uncertainty
is, therefore, one tenth of the linewidth. It is assumed here that all two-photon rotational transitions
may be observed with the same noise and with linewidths ~1 Hz determined by power broadening.
Each two-photon rotational transition requires an extremely narrow THz source and provides a signal
smaller than the signal from the corresponding two-photon rovibrational transition. The uncertainty for
all two-photon rotational transitions is conservatively estimated here at one half of the linewidth and
the accuracy is assumed at 5 × 10−13. The uncertainties of the experimental frequencies due to various
systematic effects are supposed to be below the estimated experimental accuracies. Calculations with
corrections to order meα

7 predicted HD+ ion frequencies with an accuracy estimated at 3–4× 10−11 [10].
The inclusion of other corrections may improve the value of the theoretical uncertainty [37] that
is assumed here at 3 × 10−12 for all transitions. In the least squares method, the dependence of
the transition frequencies on the adjusted constants is linearized using a Taylor expansion around
the starting values of the constants. The dependence is expressed with the matrix relation Y = AX,
where Y = {y1,y2, . . . ,yN1}, with yi = (fi− fi,0)/fi,0, and X = {x1,x2, . . . ,xN2}, with xj = (cj− cj,0)/cj,0,
are columns with N1,2 elements respectively. The sensitivity matrix A is a N1 × N2 matrix with
elements aij = d(lnf0,i)/d(lnc0,j). The covariance matrix of the solution X is expressed in terms of
the covariance matrix of the input data V and the sensitivity matrix as:

G =
(

ATV−1A
)−1

(25)

The uncertainty of the input data is taken as the root-mean-square sum of the experimental
and theoretical uncertainties. The covariances of the input data are given by the covariances of
the predictions, by assuming that experimental frequencies are not correlated. Non-zero covariance
arises from the uncalculated terms in the energy levels that are expressed as a particular constant
multiplied by the common factor arising, for example, from the overlapping of the electron
wavefunction with the extended nuclear charge distribution. A value of 1 for all correlation coefficients
is taken here.

It is interesting to estimate the contributions to the theoretical uncertainty arising from the uncertainty
of each fundamental constant. Using CODATA 2014 values and uncertainties of fundamental
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constants [1], the uncertainty propagation law yields for the transition (v,L) = (0,1)→(0,3) of
HD+ the following values: [∆y(R∞),∆y(µpe),∆y(µdp),∆y(rp),∆y(rd)] = [0.59,9.4,3.1,0.74,0.76] × 10−11

(correlations between fundamental constants are not taken in account in this estimation). CODATA
value of the proton-to-electron mass ratio is the main source of uncertainty. Discrepancies were
noticed between CODATA values of rp and rd and the values inferred from muonic hydrogen [40]
and from muonic deuterium [41]. The main disagreement concerns rp, and it may be judicious
here to account for it by using an increased uncertainty ∆x(rp) = 3.9 × 10−2 that is equal to
the difference between the rp values from the CODATA 2014 adjustment and the muonic hydrogen
spectroscopy. The uncertainties for R∞ and rd have to be increased in proportion because of high
correlation coefficients r(R∞,rp) = 0.9891 and r(rp,rd) = 0.9994, respectively [42]. The uncertainties for
the rotational transition are now: [∆y(R∞),∆y(µpe),∆y(µdp),∆y(rp),∆y(rd)] = [3.3,9.4,3.1,4.1,4.2]× 10−11.
The proton-to-electron mass ratio remains the main source of uncertainty, and the other constants
bring contributions that are two or three times less.

Different combinations of transitions of H2
+ and HD+ are tested in the least squares method

and the uncertainties of the determination of fundamental constants are calculated. The results are
displayed in Table 5. The values of five constants (R∞, µpe, µdp, rp, rd) may be derived independently
of previous results from an adjustment of eight transitions (line B in Table 5). The accuracy of
the proton-to-electron mass ratio is improved by one order of magnitude compared to the CODATA
2014 value, and the accuracy of the deuteron-to-proton mass ratio is improved by nearly a factor
of 20. The accuracies of R∞, rp, and rd are comparable with the relevant values given by CODATA
2014. This adjustment may add clues to the proton radius puzzle, as the uncertainties for rp and rd
are smaller than the corresponding discrepancies [2]. If the proton radius puzzle is solved and rp,
rd can be precisely determined by atomic spectroscopy of muonic hydrogen and muonic deuterium,
respectively, three constants (R∞, µpe, µdp) can be determined using an adjustment of four transitions
(line C in Table 5). The accuracies are improved by factors of (1.8, 25, 11) compared to the relevant
CODATA 2014 values. Finally, if R∞, rp, and rd may be determined accurately by atomic spectroscopy,
one could address again the starting point of hydrogen molecular ions spectroscopy that is accurate
nuclear-to-electron mass ratio determination. Using an adjustment of three transitions (line D in
Table 5), the proton-to-electron mass ratio and the deuteron-to-proton mass ratio may be determined
with accuracies improved by factors of 26 and 12 compared to the relevant values given by CODATA
2014. Note that using in addition a two-photon rotational transition in the adjustment improves
the accuracy by more than a factor of 1.5 compared to the result from [37] with solely rovibrational
data. Moreover, accurate values of the mass ratios µrp and µdp may be associated with the new value
of the electron mass [43], determined with an accuracy of 3× 10−11 from a measurement of the g-factor,
to improve the determination of the proton and the deuteron relative masses.

Table 5. Estimation of the accuracy of the determination of fundamental constants from an adjustment
of two-photon transitions of hydrogen molecular ions, that are referenced in Table 4. Line A gives
the uncertainties of relevant fundamental constants from the CODATA 2014 adjustment. Lines B, C,
and D give the uncertainties for the determination of the fundamental constants with the adjustments
discussed in the text.

Adjustment ∆x(R∞)× 1011 ∆x(µpe)× 1011 ∆x(µdp)× 1011 ∆x(rp)× 103 ∆x(rd)× 103

A: CODATA 0.59 9.5 9.3 7.0 1.2

B: HD[1], HD[2], HD[4],
HD[10], H2[1], H2[2],
H2[3], H2[4]

0.84 0.78 0.55 8.2 3.3

C: HD[2], HD[10], H2[1],
H2[4] 0.33 0.38 0.83

D: HD[2], HD[10], H2[1] 0.37 0.80
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6. Conclusions

This contribution demonstrates the potential of two-photon rotational and rovibrational transitions
probed on trapped HD+ for the determination of fundamental constants. The approach may provide
an independent and accurate determination of the Rydberg constant and of the nuclear-to-electron
mass ratios and may add new results to the efforts made to measure the size of the proton and of
the deuteron. Measurements may be performed using a double resonance two-photon spectroscopy
scheme. The lightshifts and the Zeeman shifts, calculated for several hyperfine components of
the rotational transition, are beyond the 10−12 level. The experimental accuracy is estimated at
the 10−12 level for the Doppler-free rotational and rovibrational transitions, while the theoretical
calculations have the same level of accuracy. Depending on possible issues of the proton radius
puzzle in atomic spectroscopy, HD+ ion two-photon spectroscopy may improve the determination of
the proton-to-electron and deuteron-to-proton mass ratios beyond the 10−11 level. The comparison
between the values of fundamental constants determined from HD+ ion spectroscopy and from
CODATA adjustment may allow a test of consistency of QED calculations and precision measurements
for different physical systems.

Conflicts of Interest: The author declares no conflict of interest.
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