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Abstract: We present the ZEST code, dedicated to the calculation of line shapes broadened by
Zeeman and Stark effects. As concerns the Stark effect, the model is based on the Standard Lineshape
Theory in which ions are treated in the quasi-static approximation, whereas the effects of electrons
are represented by weak collisions in the framework of a binary collision relaxation theory. A static
magnetic field may be taken into account in the radiator Hamiltonian in the dipole approximation,
which leads to additional Zeeman splitting patterns. Ion dynamics effects are implemented using the
fast Frequency-Fluctuation Model. For fast calculations, the static ion microfield distribution in the
plasma is evaluated using analytic fits of Monte-Carlo simulations, which depend only on the ion-ion
coupling parameter and the electron-ion screening factor.

Keywords: line shapes; Stark broadening; Zeeman pattern; quasi-static approximation; impact
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1. Introduction

Line shapes are key ingredients of opacity and emissivity codes, as they often serve as a diagnostics
of laboratory or astrophysical plasmas. Indeed, profiles contain information on local electric fields
produced by electron and ion perturbers (leading to Stark splitting), on the magnetized environment
(yielding Zeeman patterns), on macroscopic variables of the plasma (density and temperature of
particles), on collective phenomena, etc. When considering radiative transport in optically-thick
plasmas, it well known that the Rosseland mean opacities may be sensitive to the line shapes,
in particular due to the tails of these functions [1]. More generally, there is a close connection between
line profiles, radiative transfer and the atomic populations which describe the microscopic states of the
plasma [2]. Such a relationship is shown for instance by the escape factors formalism [3], which is often
used in non-local-thermodynamical-equilibrium (non-LTE) collisional-radiative models to account
for opacity effects on the population of states. Based on the fact that photons in the tail of lines can
escape the plasma more easily than photons close to the center of lines, an effective reduction factor is
introduced in the calculation of radiative transitions, which are then used in the rate equations to obtain
the population of states. These escape factors depend closely on line-shape profiles Iν, with integrals of
the type

∫
dνIνe−τ0 Iν/I0 where τ0 is the optical depth at the center of the line. It is often important to

include Stark broadening in the calculation of these factors, though it is not an easy task [4].
The calculation of line shapes broadened by Zeeman-Stark effects is an old and complex subject [5,6]

that is still debated today [7,8]. The ZEST code (short name for ZEeman-STark), which is the object
of this paper, was developed recently to improve the calculation of line shapes in our spectroscopic
models in LTE [9] or non-LTE [10]. The code was presented and used, for the first time, in the 4th
Spectral Line Shapes in Plasmas code comparison Workshop (20–24 March 2017, Baden, Austria).
The code is based on the Standard Line-Shape Theory where the ions are quasi-static during the time
emission process, whereas electrons are treated in the framework of a binary collision relaxation
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theory. This simplification allows one to perform very fast calculations, while keeping a reasonable
accuracy. A general description of the model can be found in Section 2, where we give details on
the different assumptions made on the dipole auto-correlation function, the broadening operator,
the implementation of Zeeman effect, the calculation of the static-ion microfield distribution and the
treatment of ion dynamics effects using the fast Frequency-Fluctuation Model (FFM) [11]. In Section 3,
we show various numerical applications of the model. Conclusions and future developments will be
discussed in Section 4.

2. Presentation of the Code

2.1. Quasi-Static and Binary Collision Approximations for Stark Effect

In general, microfields generated by ion and electron perturbers evolve on different time scales
because of their relative mass. Since the typical fluctuation rate of the electron field is greater than
for ions by at least two orders of magnitude, one can often separate the contribution of both species:
ions are considered as quasi-static during the emission process, whereas electrons are dynamic and
treated as fast binary interactions with ions. The impact approximation for electrons assumes that the
collisions are complete during the time of interest and is thus valid only near the center of the profile.
This approximation may be softened by using a binary collision relaxation theory which can account for
incomplete collisions, resulting in a frequency-dependent electron broadening operator (see Section 2.2)
which preserves the static limit in the far wings. Moreover, the quasi-static approximation being valid
only in the wings of the profile (large frequency detuning or small time interval), corrections due to
ion-dynamics effects must be taken into account near the center of the line since this corresponds to
radiation over time long enough for the ions to move (see Section 2.4).

The quasi-static line shape profile is given by:

Iqs(ω) =
∫ ∞

0
P(F) I(ω, F) dF (1)

where P(F) is the normalized probability that the emitter undergoes the static-ion field F.
The field-dependent profile reads:

I(ω, F) =
C−1

π
Re Tr

{
d† [iω− iL(F) + φ(ω)]−1 ρd

}
(2)

where L(F) = [Her(F), ] is the Liouville operator associated to the electron-radiator Hamiltonian Her,
ρ is the normalized radiator density operator, d is the radiator dipole operator, φ(ω) is the electron
broadening operator and C is a constant factor ensuring the normalization of the spectral profile.

The trace in Equation (2) represents the average of the inverse Fourier Transform of the system’s
dipole-dipole autocorrelation function. It must be performed on the product of matrices ρ, d.d† and
A−1 = [iω− iL(F) + φ(ω)]−1 which involve tetradic operators, i.e., acting on four sets of internal
states of the emitter corresponding to two initial and two final states. The inversion of matrix A in
the complex domain is one the most time-consuming task in a line-shape code. In order to speed up
the calculations, we make the following assumptions. First, perturbers are not allowed to induce a
transition between the lower and upper states involved in the radiator emission process (no-quenching
approximation). We only consider linear Stark effect, so that the electron-radiator Hamiltonian reads
Her(F) = H0 − ~d.~F/h̄, H0 being the unperturbed (no field) Hamiltonian. We assume that only states
belonging to the same Layzer complex (see Section 3 for definition) may be mixed by Stark and/or
Zeeman effects (∆n = 0 interaction channels). The broadening operator φ(ω) is calculated to the
second-order in the radiator-electron interaction (dipole approximation). The imaginary part of φ(ω),
which corresponds to small plasma-generated static level shifts, is neglected. We also neglect the
interference terms between upper and lower states in φ(ω). It is important to mention that we plan to
relax some of these approximations in future versions of the code (see discussions in Section 4).
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Since the trace is invariant under any unitary transformations, it is more convenient to use the
matrix P that diagonalizes the Liouville operator, L′ = PT LP , where L′ is a diagonal matrix in the
dual space, with matrix elements noted 〈〈i f |L′|i f 〉〉 = ωi f (F) corresponding to the energy of the Stark
component i → f . Numerical computations can use the fact that the matrix associated to L is real
and symmetric, yielding a real transformation matrix P that can be easily computed and inverted
(by taking its transpose P−1 = PT). The problem is that the broadening operator φ is not diagonal
with the eigenfunctions of L in general, i.e., when applying the transformation: φ′ = PTφP . For the
conditions where homogeneous broadening is small compared to the inhomogeneous broadening
produced by the static ions [12], it is, however, possible to neglect the off-diagonal matrix elements of
φ′ and to retain only the diagonal matrix elements denoted by φi f (this approximation will be relaxed
in future versions of the code with the consideration of the interference terms). With all the above
hypothesis, the trace can now be evaluated by the expression

Tr(PTρP PTdP PTd†P (iω− iL′ + φ′)−1)

which involves easy inversion of a diagonal matrix. If we denote by {|i〉} the set of orthogonal
wave-functions in the new basis, the line shape (2) can be simplified to the expression:

I(ω, F) =
C−1

π ∑
i→ f

〈i|ρ|i〉 |〈i|d| f 〉|2 φi f (ω)

(ω−ωi f (F))2 + (φi f (ω))2 (3)

The normalization factor, C = ∑i f |〈i|d| f 〉|2, is the total line strength of the transitions,
which is invariant under any unitary transformation (it may be evaluated with the unperturbed
wave-functions).

The calculation of matrix elements of Liouville, dipole and electron broadening operators in the
new basis requires knowledge of matrix elements of these operators between unperturbed (no field)
wave-functions, denoted by |i0〉. For an arbitrary operator O, we have:

〈i|O| f 〉 = ∑
i′ , f ′
Pii′〈i′

0|O| f ′0〉P f ′f (4)

where Pii′ are the eigenvectors of the unitary transformation (each column of matrix P). In practice,
we use an external atomic database generated with the multi-configuration Dirac-Fock code MCDF [13]
or the cFAC code [14,15]. The data stored are: the total angular momentum J, energy, parity and
configuration label for a collection of levels related to the unperturbed Dirac Hamiltonian H0; and the
signed reduced matrix element for electric-dipole (E1) and magnetic-dipole (M1) [See Section 2.3]
transitions between these levels. The use of Wigner-Eckart theorem allows one to compute the matrix
elements 〈i′0|O| f ′0〉 from the corresponding reduced-matrix elements in the database. For instance,
the dipole matrix elements of the Stark Hamiltonian HS = −~d.~F/h̄ between two unperturbed
states read:

〈αJM|HS|α′ J′M′〉 =
ea0F

h̄
δMM′(−1)J−M

(
J 1 J′

−M 0 M

)
〈αJ||C(1)||α′ J′〉 (5)

where a0 is the Bohr radius, C(1) is the spherical harmonic tensor operator of rank 1, and using a
level description based on the total angular momentum J, its projection M and some other quantum
numbers α to account for Pauli exclusion principle. For hydrogenic emitters, the required atomic data
(energies, reduced matrix elements) may be evaluated directly using analytical formulas [16]. It is
worth mentioning that perturbers (ions or electrons) are assumed to produce a randomly oriented
microscopic field, so that the emission spectrum is not polarized in general. The quantization axis may
be thus chosen arbitrarily.
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As concerns the population of states, ρi = 〈i|ρ|i〉, we have different options:

1. Local Thermodynamics Equilibrium (LTE):

ρi =
exp

(
− h̄ωi(F)

kBTe

)
∑j exp

(
− h̄ωj(F)

kBTe

)
where kB is the Boltzmann constant and Te is the electron temperature.

2. Statistical Weight Approximation (SWAP):

ρi =
1
g

where g is a constant factor ensuring that ∑i ρi = 1. This corresponds to the high-temperature
limit of LTE plasmas.

3. Non-Local Thermodynamics Equilibrium (non-LTE):

ρi = ∑
j
(Pij)

2〈j0|ρ|j0〉NLTE

where the populations of states 〈j0|ρ|j0〉NLTE are derived from results of an external collisional-
radiative model [10] which do not account for the splitting of levels by Stark effect (the CR model
is based on degenerate levels). Denoting by pγj Jj the non-LTE probability of the parent level of
state j, we use a SWAP assumption within each level:

〈j0|ρ|j0〉NLTE =
pγj Jj

2Jj + 1

where Jj is the total angular momentum of the level.

We have the possibility to include other homogeneous broadening mechanisms: Doppler effect,
natural width, autoionization or any other radiative or collisional processes in the plasma limiting the
lifetime of states. Lifetime of states is estimated from collisional-radiative calculations by using the
diagonal terms of the rate matrix. If we assume that the matrix elements of the electron broadening
operator do not depend on the photon frequency φk(ω) ' φk (it is evaluated at the line center, i.e.,
impact approximation: see Section 2.2), then the convolution of expression (2) with other Lorentzian or
Gaussian functions leads to a sum of Voigt functions (see Appendix A). The integration over the ion
microfield distribution in (1) may be readily estimated by a sum over a well-chosen set of field values.
As a result, the quasi-static line shape can be written in compact form as a sum of Voigt profiles arising
from different Stark components and different ion field values,

Iqs(ω) = ∑
k

fk V(ω−ωk; σk, ak), (6)

where the normalized weight factors fk (such that ∑k fk = 1) include the probability of the ion
microfield and the strength of the relevant Stark component of energy h̄ωk. The width parameters of
the Voigt functions are defined by: {

σk =
ωk
c

√
kBTi
Mi

+
∆ωexp

2
√

2 ln 2
ak = φk + Γk

(7)

where Ti is the ion temperature, Mi is the ion mass, ∆ωexp is the intrumental FWHM (possibly taking
into account the spectral resolution of the spectrometer in an experiment), φk is the electron impact
width and Γk is an additional homogeneous broadening width (natural, autoionization, etc.).
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2.2. Electron Broadening Operator

The main contribution in φ(ω) comes from weak electron collisions of duration much shorter
than the inverse HWHM of the profile, i.e., much shorter than the decay timescale of the dipole
autocorrelation function. Using the perturbation theory up to the second-order in the radiator-electron
interaction, we obtain for the Maxwell-averaged operator:

φ(∆ω) =
4π

3
Ne

√
2m

πkBTe

(
e

4πε0h̄

)2
d.d† G(∆ω) (8)

where ∆ω is the detuning frequency from line center, m is the electron mass, Ne is the electron density.
There are many ways to estimate the G-function. It may be related to charge-density fluctuations in
the plasma by using the dielectric constant ε(∆ω, κ) of an equilibrium plasma as follows [17]:

GDufty(∆ω) =
∫ κm

0

dκ

κ

exp
(
− m∆ω2

2kBTeκ2

)
|ε(∆ω, κ)|2 (9)

where κ is the wavenumber associated to the momentum transfer in the radiator-electron collision.
The dielectric function may be estimated in the Random-Phase Approximation for a Maxwellian
plasma [18],

ε(∆ω, κ) = 1 +
(κD

κ

)2 [
1− 2xΦ(x) + i

√
πxe−x2

]
(10)

where κD = 1/λD =
√

e2 Ne
kBTeε0

is the inverse of the Debye length 1, x = m∆ω2

2kBTeκ2 and Φ(x) = e−x2 ∫ x
0 et2

dt
is the Dawson function. A cutoff κm is introduced in order to limit the momentum transfer due to close
(and strong) collisions and to avoid the divergence of the integral. For hydrogenic ions of charge Z,
radiating from the upper shell of principal quantum number n, we use:

κm = min
(

Z
n2a0

,
Z
√

2mkBTe

h̄n2

)
(11)

The numerical evaluation of the integral (9) is however rather painful. Following the model of
Lee [19], it is possible to approximate this cumbersome integral by an analytic expression using the
asymptotic limits of the G-function at ∆ω → 0 and ∆ω → ∞:

GLee(∆ω) ≈ min(G(0), G∞(∆ω)) (12)

where 
G(0) = 1

2

(
ln(1 + κ2

mλ2
D)−

κ2
mλ2

D
1+κ2

mλ2
D

)
G∞(∆ω) = 1

2 E1

(
∆ω2

2κ2
mλ2

Dω2
p

) (13)

and E1(x) =
∫ ∞

x
e−t

t dt is the exponential integral of first order and ωp =
√

e2 Ne
mε0

is the plasma frequency.
The semiclassical GBK model [20] yields a G-function which is slightly different from Lee’s model,

in particular near the center of the line:

GGBK(∆ω) =
1
2

E1

((
h̄n2

2Z

)2(∆ω2 + ω2
p

Ryd kBTe

))
(14)

1 This expression is valid only for classical plasmas (low-density and high-temperature limit). In practice, we use a modified
formula for the electron-ion screening length which has a wider range of applicability (see Section 2.5).
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where Ryd is the Rydberg energy. Using the same cutoff expression (11), we may rewrite the above
formula as:

GGBK(∆ω) =
1
2

E1

(
∆ω2 + ω2

p

2κ2
mλ2

Dω2
p

)
(15)

which is equivalent to Lee’s formula G∞(∆ω) when ∆ω → ∞.
A comparison of the G-functions computed for κmλD = 30 with different methods and

approximations is shown in Figure 1. The G-function is obtained: (i) numerically from Equations (9)–
(11) for Dufty’s model; (ii) Equations (12) and (13) for Lee’s model; (iii) by Equation (15) for GBK.
In Dufty’s model, we observe a saturation of the G-function at low detuning: this is due to the fact
that the exchange of electromagnetic energy h̄∆ω between the electron subsystem and the radiator
is inefficient below the plasma frequency for a classical plasma. We note that this behaviour is well
reproduced by the approximate model of Lee, but not in GBK. The discrepancy with the GBK model
amounts to roughly 15% near the center of the line, whereas all models have the same asymptotic
behaviour for large detuning. We have plotted in Figure 2 the ratio of the electron impact widths at
the line center, obtained with the model of Lee and the model of GBK, as a function of the parameter
κmλD. The latter quantity represents the ratio of maximal over minimal impact parameters for the
electron-radiator collision. As we can see, both models agree only when κmλD → ∞ (low-density
and/or high-temperature limit). We observe a discrepancy of less than 20% for κmλD > 20. For smaller
parameters, the differences can go up to a factor of 3; however, the validity of semiclassical approaches
is questionable as κmλD tends to one.

Figure 1. The frequency-dependent part of the electron broadening operator is plotted as a function of
the reduced detuning with respect to the center of the line. The dimensionless quantity is evaluated
using three different models and approximations (Dufty, GBK, Lee: see text) for κmλD = 30.

For classical plasmas (low-density and high-temperature limit), the parameter κmλD is often very
large so that one can further simplify the expression of the G-function. In the limit ∆ω → 0, it is easy
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to show that both models (GBK and Lee) yield an electron collision width depending on the Coulomb
logarithm 2, as expected in the impact approximation:

GGBK(0) ≈ ln(κmλD) +
1
2 (ln 2− γe) ≈ ln(κmλD) + 0.058 ≈ ln(κmλD)

for the GBK model (γe is the Euler’s constant) and

GLee(0) ≈ ln(κmλD)− 1
2

for the model of Lee. The noticible difference is the factor − 1
2 which explains why Lee’s model yields

smaller impact widths than GBK in general (see dashed curve in Figure 2).
The collisions whose impact parameter is lower than the cutoff ρm = 1/κm cannot be treated

in the framework of the perturbation theory. To account for these so-called strong (or close) collisions,
which are missing in the above models, a constant term Gn is added to the G-function as suggested in
the reference [20],

G(∆ω)→ [G(∆ω)]weak + [Gn]strong

where n is the principal quantum number of the active electron, G2 = 1.5, G3 = 1.0, G4 = 0.75,
G5 = 0.5, Gn = 0.4 for n > 5.

Figure 2. Discrepancies on the electron impact widths at the line center (Lee versus GBK), as a function
the parameter κmλD which represents the ratio of maximal over minimal impact parameters for the
electron-radiator collision.

2 It is defined as the logarithm of the ratio of the upper and lower impact parameter cut-offs for a binary elastic collision.
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Neglecting the interference terms, the diagonal matrix elements of the broadening operator read:

φi f (ω) =
4πNe

3

√
2m

πkBTe

(
e

4πε0h̄

)2
∑

i′
|〈i|d|i′〉|2G(ω−ωi′ f ) + ∑

f ′
|〈 f |d| f ′〉|2G(ω−ωi f ′)

 (16)

This frequency-dependent expression is used only when the line shape is evaluated through
Equations (1) and (3). When the Doppler effect is taken into account, we introduce the approximation
G(∆ω) ' G(0) so that the line shape reduces to a simple sum of Voigt functions, as seen in Equation (6).
This approximation is also necessary in our implementation of the FFM ion-dynamics approach
(see Section 2.4).

2.3. Zeeman Effect

The effect of a static magnetic field ~B on the emission spectrum may be taken into account in the
code by adding the term

HZ = µB~B.(~J + (gs − 1)~S)/h̄

to the radiator Hamiltonian Her, where gs ' 2.0023193 is the anomalous gyromagnetic ratio for
electron spin, µB is the Bohr magneton, ~S and ~J are spin and total angular momenta. In the case of
a combined Stark-Zeeman calculation, the Hamiltonian to be diagonalized thus reads Her = H0 +

HS + HZ, where H0 and HS are respectively the unperturbed Hamiltonian and the Stark Hamiltonian,
as introduced in Section 2.1. This requires the calculation of additional matrix elements of the type:

〈αJM|HZ|α′ J′M′〉 =
µBB

h̄
δM,M′ (−1)J−M

(
J 1 J′

−M 0 M

)
〈αJ||J(1) + (gs − 1)S(1)||α′ J′〉 (17)

The reduced matrix elements in the above expression are identical to those encountered in the
calculation of magnetic-dipole transitions (M1). They are thus taken from the external atomic database,
in a manner similar to the use of electric-dipole transitions (E1) for Stark effect. In principle, the code
can take into account the Zeeman effect in the emission spectrum of any radiator ions (not limited
to one-electron system) and for a magnetic field of arbitrary value (not limited to Paschen-Back nor
weak-field limits), depending only on the ability to generate an appropriate atomic database.

A particularity of Zeeman effect is that the quantization axis is imposed by the direction of the
static magnetic field, so that the emission is polarized in general. Therefore, the emission profile
depends on the angle α between the direction of ~B and the line of sight of the observer:

I(ω, α) = cos2(α)I‖(ω) + sin2(α)I⊥(ω) (18)

where I‖(ω) = I+(ω) + I−(ω) and I⊥(ω) = 1
2 (I+(ω) + I−(ω)) + I0(ω). In this notation, Iq(ω) is

the intensity calculated for a given polarization q = M−M′ which can take only 3 possible values:
q = 0 (π polarization) and q = ±1 (σ± polarizations). Moreover, the introduction of a preferential
quantization axis breaks the spherical symmetry and the integration over the microfield becomes
anisotropic and must be performed in the three directions of space [21,22]:

Iq(ω) =
1
2

∫ ∞

0
P(F)

∫ +1

−1
Iq(ω, F, µ) dµ dF (19)

where µ = cos(θ) is the cosine of the angle θ between the electric and magnetic fields.

2.4. Ion Dynamics Effects

The quasi-static approximation usually breaks down near the center of the line since this
region corresponds to radiation over times long enough for the ions to move. Ion dynamics
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effects are implemented in the ZEST code using the fast Frequency-Fluctuation Model (FFM) [11].
The time-dependent ion field fluctuations are treated as a collision-type process causing an exchange
between the quasi-static radiative channels. This mixing is modeled by a stationary Markovian process
using a single relaxation rate γ, characteristic of the ion field fluctuations. This rate is estimated by
taking the ratio of the most probable ion velocity in the plasma (assuming a Maxwellian distribution)
to the average ion-ion distance:

γ =

(
2kBTi

Mi

) 1
2
(

4πNe

3Z̄

) 1
3

(20)

where Z̄ is the mean ionization of the plasma. The spectral profile accounting for the FFM ion dynamics
method is given by the expression:

Idyn(ω) =
1
π

Re
(

J(ω)

1− γJ(ω)

)
(21)

with:

J(ω) =
∫ ∞

−∞

Iqs(ω′)dω′

γ + i(ω−ω′)
(22)

In the above expression, Iqs(ω) is the quasi-static line shape given by Equation (6). If we assume
that the electron broadening operator does not depend on the frequency detuning (G(∆ω) ≈ G(0) i.e.,
impact approximation), then, from Equations (6) and (22), we note that the function J(ω) involves the
convolution of Voigt functions (i.e., the convolution of Lorentzian and Gaussian functions) with the
complex function 1

γ+iω . Taking the Fourier transform 3 of J(ω),

C(t) =
∫ +∞

−∞
eiωt J(ω)dω, (23)

and using the convolution theorem,

C(t) =
(∫ +∞

−∞

eiωt dω

γ + iω

)
∑
k

fkak

π
√

2πσk

(∫ +∞

−∞

eiωt dω

a2
k + (ω−ωk)2

)∫ +∞

−∞
eiωt e

− ω2

2σ2
k dω

 (24)

we obtain:

C(t) = 2π e−γt Θ(t) ∑
k

fk eiωkt e−akt e−
1
2 σ2

k t2
(25)

where Θ(t) is the Heaviside function. Taking the inverse Fourier transform of the last expression, we
obtain:

J(ω) =
1

2π

∫ +∞

−∞
e−iωtC(t)dt = ∑

k
fk Fk(ω) (26)

with

Fk(ω) =


√

π
2

1
σk

W
(

ωk−ω+i(ak+γ)√
2σk

)
if σk 6= 0

1
(ak+γ)+i(ω−ωk)

if σk = 0
(27)

where W(z) = e−z2
erfc(-iz) is the complex Faddeeva function [23] which may be computed efficiently

by different numerical methods. We note that the real part of W(z) is related to the Voigt function
(the latter is often evaluated this way; see Appendix A). The Faddeeva function is frequently

3 We use an unconventional definition of the Fourier Transform in order to favor the domain t > 0.
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encountered in the theory of the Brownian motion when considering the narrowing of the Doppler
broadening due to collisions (Dicke effects) [24]. In order to avoid the manipulation of complex
numbers, we use an efficient and fast routine [25] which evaluates separately the real and imaginary
parts of the Faddeeva function. Introducing the functions JR(ω) = Re J(ω) and JI(ω) = Im J(ω),
the dynamic line-shape profile finally reads:

Idyn(ω) =
1
π

JR − γ(J2
R + J2

I )

1− 2γJR + γ2(J2
R + J2

I )
(28)

In the case γ = 0, the last expression recovers the quasi-static limit as expected:

Idyn(γ=0)(ω) =
JR
π

= ∑
k

fk√
2πσk

Re W
(

ωk −ω + iak√
2σk

)
≡ Iqs(ω) (29)

For a very high fluctuation rate, the radiator system is unable to follow the ultra-fast modulations
of the ion field, and the line spectrum is expected to tend approximately to the only electrons profile.
However, it is known that the FFM approach does not reach this asymptotic form for γ → ∞ [26].
In order to force the impact-approximation limit for both electrons and ions, it may be necessary to
introduce a field-dependent fluctuation rate γ(F) or to use a semi-empirical amendment [8,27,28]
to expression (20). One can also modify the FFM approach following the method described in
reference [29]. Another possibility is to use the Frequency Separation Technique (FST) [30], which
separates the phase space into fast and slow perturbers. In the FST method, the line shape is
approximated as a convolution of two profiles: a fast component based on the impact broadening
theory, and a slow component for which we can use the FFM approach.

2.5. Microfield Distribution

There are many approaches to estimate the static ion fields distribution in a plasma [31],
for instance: the expensive Molecular Dynamics simulations (MD) [32]; more affordable numerical
models like the Adjustable Parameter EXponential approximation (APEX) [33] or the Monte-Carlo
method (MC) [34]; simple analytic formulas with a restricted domain of validity like Holtsmark
(for uncorrelated plasmas), Mayer (strongly correlated plasma) or Nearest Neighbour distributions
(strong fields). We need a fast and accurate description of the ion microfield distribution which
covers a broad range of plasma conditions. To achieve this goal, we use analytic fits of numerous
Monte-Carlo simulations (MC) which reproduce P(F) with a great accuracy [35]. The MC simulations
were performed at a neutral or charged point using Debye quasi-particles interacting through screened
Coulomb potentials. The screening length λe accounts for the shielding of ion-ion interactions by
a constant neutralizing electron background. In the MC simulations, a plasma configuration is
represented by a collection of N + 1 interacting particles in a cubic box (one emitter and N perturbers)
whose dimension L is related to the ion density Ni = (N + 1)/L3. All perturbers are assumed to have
the same charge Zpe. During the MC run, a sampling procedure is applied in the configuration
space, by choosing randomly a particle in the box and its displacement. This displacement is
limited to a maximum value which accounts for the plasma conditions (ion coupling parameter and
screening length). The effects of distant particles are replicated by using periodic boundary conditions.
The state of equilibrium is searched by the Metropolis algorithm, yielding a set of configurations of
minimal energy from which it is possible to determine the electric fields distribution at the emitter.
The microfield distributions obtained from numerous MC simulations covering a broad range of
plasma conditions were then fitted with a reduced number of parameters including the ion coupling
parameter Γii, the screening factor Uei and the reduced microfield variable β = F/F0 (where F0 is the
normal field between two perturbers). These fits cover the domain: Γii ≤ 100 and 0 ≤ Uei ≤ 2.
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Since the MC calculations use the same charge Zpe for all the perturbers (and possibly for the
charged emitter), we assume that this charge is equal to the mean ion charge of the plasma: Zp = Z̄.
In the average-atom model, the ion-coupling parameter reads:

Γii =
(Z̄e)2

4πε0 kBTi Rii
(30)

where Z̄ is the mean ionization of the plasma, Ti is the ion temperature and Rii =
(

3Z̄
4πNe

)1/3
is the

mean distance between two ions (Wigner-Seitz radius). The screening parameter is defined by:

Uei =
Rii
λe

. (31)

The electron-ion screening length λe is evaluated in the Thomas-Fermi-Debye-Hückel approach [2],
which makes a bridge between the classical description of Debye-Hückel and the Thomas-Fermi
quantum theory:

λe = a0

(
π

2F−1/2(η)

)1/2 ( Ryd
kBTe

)1/4
(32)

where Fn(x) =
∫ ∞

0
yndy

1+ey−x is the complete Fermi-Dirac integral of order n, η = µ
kBTe

is the reduced
chemical potential. This allows one to tackle situations from hot and diluted plasmas (relevant to
laser-plasma conditions) to cold dense plasmas (encountered in astrophysics), for which we recover
the Debye-Hückel length and the Thomas-Fermi screening length at zero temperature, respectively
(see the derivation of these asymptotic limits in Appendix B).

The microfield distribution P(F) is determined in the following manner. The plasma conditions
(atomic number Z, Te, Ti and Ni) are used to determine the mean ionization Z̄ of the plasma in LTE or
non-LTE, and the electron density Ne = Z̄Ni (alternatively, it is possible to fix Ne and to determine
Ni). The chemical potential µ is then calculated in the Thomas-Fermi approximation by solving
the equation:

Ne = 4π

(
2mkBTe

h2

)3/2
F1/2(η) (33)

We can now determine the parameters Γii, Uei and the normal field which read F0 = Z̄e
4πε0R2

ii
. The

microfield distribution is then obtained from the analytical fitting formula P̃:

P(F) ≡ P̃( F
F0

; Γii, Uei)

There are two different formulas: one for a charged emitter (assuming the same charge as the
perturbers, i.e., Z̄) and another one for a neutral emitter.

A comparison of the distributions obtained with different sets of parameters is shown in Figure 3.
The left part addresses screened plasma ions (with Uei = 1), whereas the right part is for unscreened
(Uei = 0) one-component plasma (OCP). As expected, the effect of the screening is to narrow the
distribution and to shift it toward smaller field values. In the case of OCP, two extreme cases are
recovered: the Mayer distribution for strongly-coupled plasmas and the Holtsmark distribution for
uncorrelated plasmas.



Atoms 2018, 6, 11 12 of 20

Figure 3. Microfield distributions at a charged emitter are calculated as a function of the reduced field for
different values of the ion coupling parameter Γ and screening factor U, using the fit functions of Ref [35].

3. Numerical Calculations and Examples

3.1. Steps of the Calculation

The main input required for a line shape calculation with the ZEST code are:

1. the hypothesis for the calculation of state populations (SWAP, LTE, non-LTE)
2. the plasma parameters including: the atomic number Z, the ion temperature Ti, the electron

temperature Te, the electron (or ion) density Ne (or Ni)
3. the value of the static magnetic field (where appropriate)
4. the grid for the sampling of the microfield distribution
5. the initial and final Layzer complexes to define the radiator
6. the spectral range on which the line shape is to be determined
7. the atomic database relevant to the considered case

We recall that a Layzer complex is a special type of super-configuration where spin-orbitals n`j
having the same principal quantum number are gathered into a single shell n. The number of electrons
is then fixed on average for each shell of the complex:

(1)p1(2)p2(3)p3 . . . = (1s)p1(2s+2p−2p+)p2(3s+3p−3p+3d−3d+)p3 . . .

where 0 ≤ pn ≤ 2n2 are integers. The use of two Layzer complexes allows one to specify very simply
how states will be mixed by Stark/Zeeman effects (indeed, we assume that only states belonging
to the same complex may interact with each other) and which radiative transitions will be studied.
For example: the Lyman-α line is defined by the complexes (2)1 → (1)1; the He-β line is defined
by (1)1(3)1 → (1)2. In general, two complexes may be linked by more than one mono-electronic
transition (e.g., (3)1 → (2)1 which includes 3s → 2p, 3p → 2s and 3d → 2p transitions), so that
we need to specify the spectral range of interest. The use of complexes implies that only ∆n = 0
interaction channels are taken into account in the Stark-Zeeman Hamiltonian. This hypothesis might
be removed however by using super-configurations that gather the spin-orbitals of two (or more)
shells, for example.

The first step is the generation of the atomic database required by the line-shape calculation.
This is done using the MCDF [13] or cFAC codes [14,15]. The following data are computed and stored
in a file: the index, total angular momentum J, energy, parity and configuration label for the levels of
both complexes; the signed reduced matrix elements for E1 and M1 transitions between levels of the
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same complex (relevant to Stark and Zeeman interactions, respectively); the signed reduced matrix
elements for E1 transitions between levels of distinct complexes (relevant to the emission spectrum of
interest). In the case of non-LTE plasmas, an external collisional-radiative model is used to determine
the population of levels of both complexes.

The second step is the calculation of the microfield distribution, described in Section 2.5. We use
the fit formulas, which depend on the ion coupling parameter Γii and the screening factor Uei, in order
to sample the microfields on the predefined grid.

The third step is an initialization phase. We use the atomic database to retrieve the list of levels in
each complex. These levels are split to obtain the list of unperturbed basis states for the initial and final
complexes. Accounting for the symmetries of the system, we determine an optimal block-diagonal
form for the radiator Hamiltonian, and we initialize the corresponding arrays.

In the fourth and final step, we do a loop over the microfield values. For each ion field, the
Liouvillian matrix is built by retrieving all required matrix elements in the database, and diagonalized.
The corresponding eigenvalues and eigenvectors are used to compute the strength and the energy of
the Stark components, and the values for the homogeneous broadening. The population of the initial
states are determined using either: the Boltzmann formula (in LTE), the non-LTE level populations of
the CR code, or are assumed to be constant (SWAP assumption). We then compute separately two
partial spectra, corresponding to the terms fkRe(Fk) and fkIm(Fk) in Equation (26), where Fk depends
on the complex Faddeeva function and the coefficients fk contain the populations of initial states,
the strength of the Stark components and the weight of the current microfield. These contributions are
accumulated to obtain the functions JR(ω) and JI(ω) from which we can derive the dynamic or static
line shape profile.

3.2. Magnetized Plasmas

In Figure 4, we compare the profiles of the Hydrogen Lyman-10 line (transition n = 10 to n = 1),
computed for different values of the magnetic field: 0, 10 T and 20 T. One-component electron plasma
at T = 1 eV, Ne = 1013 cm−3 is assumed. These cases address typical tokamak edge conditions.
The Doppler effect is omitted. The spectra are computed by assuming an isotropic magnetic field
(sum of the three polarizations with equal weight).

Figure 4. Hydrogen Lyman-10 line shapes at Ne = 1013 cm−3 and Te = 1 eV for different values of the
static magnetic field: B = 0, 10 and 20 T. The photon energy is relative to the center-of-gravity of the
profile. The Doppler effect is omitted in the calculations.
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3.3. Linear-Stark Effects

We first consider a hydrogen plasma at Ne = 1017 cm−3 and T = 100 eV. In this low density
and high temperature regime, the plasma is in a classical limit with low values for the ion coupling
parameter (Γii = 10−3) and screening factor (Uei = 0.056). The microfield distribution is thus close to
the Holtsmark distribution. The rate of fluctuation of the ion field is estimated to be γ = 54.8 cm−1,
which is quite high when compared to the half-widths of the quasi-static profiles of Ly-α (0.36 cm−1)
and Ly-β (56.5 cm−1) lines. The comparison between the quasi-static line shape and the dynamic
profile implementing the FFM ion dynamics effects is shown in Figure 5 for the Ly-β and Figure 6
for Ly-α. To ease the comparison, the Doppler effect has been omitted in the calculations (electron
broadening widths were taken into account, however). As expected, the Stark components are merged
together by the strong modulations of the microfield, yielding a single unresolved feature for each
line. In the case of Ly-β, the dynamic profile is narrower than the quasi-static profile, which is a
consequence of the Dicke effect [11]. This narrowing is not observed for the Ly-α line because of the
central component which is insensitive to the microfield intensity (it depends only on the direction
of the fields). We note however that the FFM approach mixes the central component with the other
Stark-shifted components, which is a known flaw of the method.

Figure 5. Lyman-β line shapes of hydrogen at T = 100 eV and Ne = 1017 cm−3. The calculations
were performed with the ZEST code either in the quasi-static approximation (QS) or accounting for ion
dynamics effects (FFM), assuming a Holtsmark microfield distribution. The Doppler effect has been
omitted for the comparison (electron broadening only).

Since the microfield fluctuation rate is highly dependent on the ion temperature, it is interesting
to compare the dynamic line shapes calculated for H Ly-α and H Ly-β lines at Ne = 1017 cm−3 and
various temperatures: T = Te = Ti = 1, 10 and 100 eV. For a better insight into the ion dynamics
effects, the Holtsmark distribution is used for all calculations and the homogeneous broadening has
been omitted (no electron broadening and Doppler width). These only ions calculations thus differ
exclusively by the ion dynamics effects on the inhomogeneous broadening. Results for H Ly-β are
H Ly-α lines are shown in Figures 7 and 8, respectively. As expected, the dynamic profiles tend to
Lorentzian functions as the ion temperature and the microfield fluctuation rate increase. In the case
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of H Ly-β line, the gap at the line center is filled gradually and we observe again a narrowing of the
profile (Dicke effect).

Figure 6. Same as Figure 5 for the Lyman-α line shapes.

Figure 7. Lyman-β line shapes of Hydrogen at Ne = 1017 cm−3 and various temperatures T = 1, 10
and 100 eV. The calculations were performed with the ZEST code accounting for ion dynamics effects
(FFM) and assuming a Holtsmark microfield distribution. Doppler and electron broadenings have been
omitted for the comparison.
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Figure 8. Same as Figure 7 for the dynamic Lyman-α line shapes of Hydrogen.

3.4. Interpretation of Experiment

The chlorine Helium-β line and its Lithium-like satellites were measured recently on the ORION
laser facility [36]. The interpretation of the entire spectrum requires the use of a collisional-radiative
model, because of the electron-excitation and dielectronic-recombination channels that are particularly
important to reproduce the relative intensity between the Li-like structures and the He-like resonance
line. The conditions inferred in the publication are around Te = Ti = 500 eV and Ne = 1022 cm−3.
However, the shape of the Helium-β line, alone, is relatively insensitive to the assumption on the
populations: we can thus use a LTE assumption to simplify the analysis of this line (this is not the
place to discuss non-LTE physics).

The line shapes of the Chlorine Helium-β line were computed with the ZEST code at a temperature
4 Ti = Te = 440 eV for electron densities varying from Ne = 1021 cm−3 to Ne = 5.1022 cm−3.
The calculations are compared to the normalized experimental profile in Figure 9. The Stark
calculations include the ions dynamics effects and a homogeneous broadening including the
electron-collision broadening, Doppler and natural width. The atomic database was generated with
the cFAC code for the complexes (1)1(3)1 → (1)2 (a 0.5 eV shift was added to the energy of the 3p− 1s
lines). An experimental Gaussian FWHM of 2 eV was also taken into account in the Voigt profiles.
As mentioned in the paper, this experimental width is not consistent with the resolving power of the
OHREX spectrometer (10,000 equivalent to FWHM=0.3 eV), but this is assumed to be the consequence
the time-integration over the full plasma evolution. As we can see, the width and shape of the He-β
line is very sensitive to the electron density. In particular, our analysis took advantage of the strong
influence of the Stark effect on the relative intensity between the structures at hν = 3266.8 eV and
hν = 3271 eV, which correspond roughly to the position of the unperturbed lines 1s+3p− → 1s2 and
1s+3p+ → 1s2, respectively. As the electron density increases, the states in the complex (1s)1(3s3p3d)1

are mixed together more efficiently, resulting in a progressive redistribution of strengths among the

4 The temperature T = 440 eV was taken from a more detailed analysis of the He-like and Li-like spectra using the non-LTE
code DEDALE [10] and the present line-shape code ZEST (see Acknowledgments).
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lines. For a very large electron density, the off-diagonal Stark matrix elements of the Hamiltonian may
become even more important than the effects of the fine-structure on the diagonal matrix elements;
when this limit is reached, the corresponding profile becomes symmetric. As we can see, this limit is
almost reached at 5.1022 cm−3. The best agreement with the experimental data is obtained for densities
between Ne = 5.1021 cm−3 and Ne = 1022 cm−3.

Figure 9. Analysis of the Chlorine He-β profile measured on the ORION laser facility [36]. The ZEST
calculations are performed for a LTE plasma at Ti = Te = 440 eV and various electron density Ne.
An experimental Gaussian FWHM of 2 eV is taken into account in the simulations.

4. Discussions and Perspectives

A number of assumptions have been made to make the code as fast as possible, so that it can
be inlined in an opacity or emissivity model. Some of these approximations need to be relaxed,
revisited or investigated. This concerns, for example, the improvement of the calculation of the trace
and the inversion of the complex matrix A = ω − iL(F) + φ(ω) [37,38]. Taking into account the
interference terms in the electronic collision operator may be also important, as shown in [29] for
lithium-like satellites of argon. It may also be interesting to study different approximations for the
collision operator [39], especially in the limit of weakly coupled plasmas [40] or when accounting
for a magnetic field [41]. Another interesting development is the implementation of penetrating
collisions which can be taken into account analytically in the case of hydrogen [42] and hydrogen-like
ions [43] through an ad hoc theory. For the moment, the code is limited to the dipole approximation for
the Stark effect. However, recent studies have shown that quadrupole corrections can be important
in some cases [44]. Accounting for such effects requires the estimation of spatial gradients of the
microfield distribution.

Another point that we need to improve in the code is the static limit of the profile. Indeed,
the present version of the code assumes the impact approximation (constant electron broadening width
for all frequencies) because it allows us to use Voigt functions which ease the implementation of the
FFM ion-dynamics approach (leading to simple analytical expressions based on the Fadeeva function).
However, this fast procedure does not recover the static limit as expected in the far wings (I(ω) ∼
ω−5/2ω−2 instead of I(ω) ∼ ω−5/2). This issue may be solved easily by using a frequency-dependent
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electron broadening operator (such as the one in Section 2.2) and by doing the convolutions numerically
(e.g., by Fast Fourier Transform). This is however computationally much more expensive than what is
done now.

Finally, the FFM ion-dynamics approach provides an excellent route to fast and accurate line-shape
calculations, but it is not valid for ultra-fast modulations of the ion field. Different methods have been
proposed to extend the validity of the FFM approach and we plan to investigate them.

Acknowledgments: We wish to thanks all participants of the 4th Spectral LineShape Workshop (SLSP-4,
20–24 March Baden, Austria, 2017) for very fruitful discussions, which have contributed in the improvement
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the DEDALE and ZEST codes by Franck Gilleron, Robin Piron and Jean-Christophe Pain (work to be published).
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Appendix A. Definition of the Faddeeva Function

The Voigt function is defined as the convolution of the centered Gaussian function of variance σ2,

G(ω; σ) =
1√
2πσ

e−
ω2

2σ2

with the centered Lorentzian function of HWHM a,

L(ω; a) =
a
π

1
ω2 + a2 .

The resulting function can be evaluated as

V(ω; σ, a) = G(ω; σ)⊗ L(ω; a) =
1√
2πσ

Re W
(

ω + ia√
2σ

)
where i =

√
−1 and Re W(z) is the real part of the complex Faddeeva function defined as:

W(z) = e−z2
(

1 +
2i√
π

∫ z

0
et2

dt
)
= e−z2

erfc(−iz)

using the complex complementary error function erfc(z) = 1− erf(z).

Appendix B. Limits of the Thomas-Fermi-Debye-Hückel Approach

For classical non-degenerate plasmas (high temperature and low density), the Fermi-Dirac
integrals of order ±1/2 can be estimated by the following expression, making use of Equation (33):

F−1/2(η) ≈
√

πeη ≈ 2F1/2(η) = 4π2 a3
0 Ne

(
kBTe

Ryd

)−2/3

Introducing the above expression in Equation (32), we obtain the classical Debye-Hückel
screening length:

λD =

√
ε0kBTe

e2Ne
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If we now consider plasmas in the highly-degenerate limit (low temperature and high density),
the Fermi-Dirac integrals take the following expressions,

F1/2(η) ≈ 2
3 η3/2

F−1/2(η) ≈ 2η1/2

which lead to

F−1/2(η) = 2(3π2a3
0 Ne)

1/3
(

kBTe

Ryd

)−1/2

Introducing the latter expression in Equation (32), we obtain the Thomas-Fermi screening length
at zero temperature:

λTF0 =

(
πa3

0
192Ne

)1/6
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