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Abstract: The excitation cross sections of the 2S state of atomic hydrogen at 10 low incident electron
energies (10.30 and 54.5 eV) have been calculated using the variational polarized method. Nine partial
waves are used to get convergence of cross sections in the above energy range. The maximum of
the cross section is 0.137 πa2

0 at 11.14 eV which is close to the experimental result 0.163 ± 0.2 πa2
0

at 11.6 ± 0.2 eV. The present results are compared with other calculations, many of them are based
on the close-coupling approximation, including the R-matrix method. Differential cross sections at
13.6 eV incident energy have also been calculated. Spin-flip cross sections have been calculated and
compared with those obtained using the close-coupling approximation.

Keywords: electron-impact excitation

1. Introduction

Cross sections for excitation of the 2S state of atomic hydrogen at low incident electron energies is
a two-channel problem. It requires that two coupled equations must be solved. The close-coupling
method of Burke et al. [1] in which the total wave function is expanded in eigenstates of the hydrogen
atom has been applied to calculate excitation cross sections. This wave function has both 1S and
2S states and therefore is equivalent to solving two coupled equations. In one approximation, they
retained 1S and 2S eigenstates while in the other they retained 1S, 2S and 2P eigenstates. The second
approximation gives 66% of the asymptotic polarizability of the 1S state of the hydrogen atom.

Callaway [2] has carried out calculations for excitation in the range 12 to 54 eV using 11-state
expansion including seven pseudostates. A similar calculation in the above energy range has been
carried out by Callaway et al. [3] using six-state close-coupling expansion including an optical potential.
The results of these two calculations are essentially the same. Scott et al. [4] have performed calculations
using the standard R-matrix close-coupling method using nine-state basis which consists of three
eigenstates and six pseudostates. Their results are in agreement with those of Callaway et al. [3].
The calculations in [2–4] are essentially based on the close-coupling approximation, and therefore,
results are expected to be not too different. Implementing the Schmidt orthogonalization procedure in
the R-matrix method, cross sections at intermediate energies have been calculated by Bartschat et al. [5].
Their results are given in a figure and the maximum of the cross section appear to be around 0.07 πa2

0
at about 13.6 eV. This maximum value is much lower than the experimental value and also the results
of other calculations.

There are other calculations in which the excitation has been treated as a single-channel problem
and the initial state wave function is in principle an exact solution of the Schrödinger equation, has
been calculated by using some approximation. Lloyd and McDowell [6] carried out calculations
using the method of polarized orbitals [7] for the first three partial waves and Bessel functions for the
higher partial waves. Calculations by Poet [8] were carried out by assuming that the co-ordinate wave
function is spherically symmetric with respect to both incident electron and target electron positions.
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Because a hydrogen atom has only one electron, different methods of calculation have been
tried to infer the feasibility of various calculations and the accuracy of results. It seems that an exact
calculation of excitation is not possible in spite of the presence of only one atomic electron in the target.
The last two calculations amount to treating the excitation as a one-channel problem. However, the
results obtained in these five calculations [1,2,4,6,8] do not agree with each other as indicated in Table 1.

Table 1. Present results (πa2
0) for excitation of the 2S state of atomic hydrogen using the variational

polarized orbital method with Lmax = 8 and comparison with the results obtained in references [1,2,4,6,8].
The superscript indicates interpolated results.

k Present Lloyd and McDowell [6] Poet [8] Burke et al. [1] Callaway [2] Scott et al. [4]

0.87 6.8208(-2)
0.88 1.1267(-1)
0.89 1.2971(-1)
0.90 1.3589(-1) 0.1789 0.09918

0.904 1.3667(-1)
0.905 1.3673(-1)
0.906 1.3662(-1)
0.907 1.3660(-1)
0.91 1.3630(-1)
0.92 1.3345(-1)
0.95 1.1684(-1)
0.98 9.9106(-2) 0.161 a

1.00 8.9474(-2) 0.1443 0.0407 0.1783 0.154
1.02 8.1852(-2) 0.150 a

1.05 8.4057(-2) 0.142
1.10 6.9444(-2) 0.1654 0.135 0.1087
1.20 7.3317(-2) 0.1349 0.111 0.0986
1.50 8.5797(-2) 0.0891 0.087 0.0867
1.60 8.4611(-2) 0.081 a

1.80 7.1804(-2) 0.074 a

2.00 6.9460(-2) 0.1198 0.0168 0.06355 0.066 0.0661

The present calculation has been carried out using the variational polarized orbital method of
Bhatia [9]. In this method, the asymptotic polarizabilty is 4.5 a3

0, the exact value. This again is a
single-channel or a distorted wave calculation. However, in the scattering calculations carried out, the
phase shifts obtained in this calculation have lower bounds to the exact phase shifts. This approach
has also been applied to calculate Feshbach resonances [10] and photoabsorption cross sections [11].
The results obtained in [9–11] are accurate and compare well with the results obtained in various
previous calculations and experiments. It is expected that the present calculation carried out in
the distorted-wave approximation, using the variational method of polarized orbitals, will provide
accurate results for excitation cross sections as well, calculated in a single-channel approximation.

2. Calculations

The present calculation, as mentioned above, has been carried out in the distorted—wave
approximation. The total cross section from a state ‘i’ to a state ‘f ’ can be written

σ =
k f

ki

∫ ∣∣∣Tf i

∣∣∣2dΩ, (1)

where ki and k f are the initial and final momenta and Tf i is a matrix element given by

Tf i = − (1/4π) < ψ f

∣∣∣V∣∣∣Ψi > . (2)

In the above expression,

V = −2Z
r1

+
2

r12
. (3)
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Z is the nuclear charge, r1 and r2 indicate the position of the incident and target electrons, and
r12 =

∣∣∣→r 1 −
→
r 2

∣∣∣. We assume that the nucleus has an infinite mass. The initial state wave function, in
principle, an exact solution of the Schrödinger equation, is given by:

Ψi(
→
r 1,
→
r 2) =

1√
2
[u(
→
r 1)Φpol(

→
r 1,
→
r 2)± (1↔ 2)]. (4)

Temkin and Lamkin [12] have shown, using the adiabatic approximation in the
first-order-perturbation theory and using the dipole part of the resulting perturbed wave function,
that in the presence of the incident electron r1 the effective target wave function can be written as

Φpol(
→
r 1,
→
r 2) = φ0(

→
r 2)−

χST(r1)

r2
1

u1s→p(r2)

r2

cos(θ12)√
Zπ

, (5)

where θ12 is the angle between
→
r 1 and

→
r 2. The smooth cutoff function χST , introduced by Shertzer

and Temkin [13], is given by

χST(r1) = 1− e−2Zr1(
1
3
(Zr1)

4 +
4
3
(Zr1)

3 + 2(Zr1)
2 + 2Zr1 + 1). (6)

The function u1s→p is given by

u1s→p(r2) = (
Z
2

r3
2 + r2

2)e
−Zr2 . (7)

The target function is given by

φ0(
⇀
r 2) =

√
Z3

π
e−Zr2 . (8)

The scattering function u(r1) in Equation (1) is given by

u(
→
r 1) = a(L)

u(r1)

r1
YL0(Ω1). (9)

In the above equation, we have used the plane wave normalization:

a(L) =
√

4π(2L + 1). (10)

The equation for the function u(r1) is obtained from〈
YL0(Ω1)Φpol(

→
r 1,
→
r 2)
∣∣∣H − E

∣∣∣Ψi(
→
r 1,
→
r 2)
〉

. (11)

The integration in the above equation is carried out over dΩ1 and d
→
r 2, as indicated in [9] and

the resulting integro-differential equations for all partial waves are solved by a noniterative method,
as indicated in the Appendix A. The initial wave is assumed to be exact and the final state wave
function is given by

ψ f (
→
r 1, r2) = ei

→
k f •

→
r 1 φ2S(

→
r 2). (12)

The excited state wave function is given by

φ2S(
→
r 2) =

√
Z3

32π
(2− Zr2)e−Zr2/2. (13)
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Cross section for excitation is given by

σ(a2
0) =

k f

ki

∫ ∣∣∣Tf i

∣∣∣2P2
L(θ f i) ∂Ω f i . (14)

In the above equation ki and k f are the initial and final momenta, and θ f i is the angle between the
initial and final electron directions.

3. Cross Sections

Cross sections for excitation from 1S to 2S state have been calculated for the partial waves L = 0 to
L = 8 and they are given in Table 2 for various incident momentum k = 0.87 to 2.00. The convergence
at lower energies is good up to fifth and sixth decimal places while at energies higher than 14.15 eV
(corresponding to k = 1.05 in the Table 2) it is good up to the third decimal place.

Table 2. Cross sections (πa2
0) for 1 s -> 2 s excitation in the variational P.O. approximation.

k
Present

Lmax = 0 Lmax = 1 Lmax = 2 Lmax = 3 Lmax = 4 Lmax = 5 Lmax = 6 Lmax = 7 Lmax = 8

0.87 6.7949(-2) 6.8204(-2) 6.8209(-2) 6.8209(-2)
0.88 1.1107(-1) 1.1246(-1) 1.1255(-1) 1.1267(-1) 1.1267(-1)
0.89 1.2678(-1) 1.2938(-1) 1.2970(-1) 1.2971(-1) 1.2971(-1)
0.90 1.3148(-1) 1.3517(-1) 1.3586(-1) 1.3589(-1) 1.3589(-1)
0.904 1.3166(-1) 1.3574(-1) 1.3663(-1) 1.3667(-1) 1.3667(-1)
0.905 1.3158(-1) 1.3575(-1) 1.3670(-1) 1.3673(-1) 1.3673(-1)
0.906 1.3131(-1) 1.3558(-1) 1.3657(-1) 1.3662(-1) 1.3662(-1)
0.907 1.3115(-1) 1.3550(-1) 1.3655(-1) 1.3660(-1) 1.3660(-1)
0.91 1.3039(-1) 1.3501(-1) 1.3624(-1) 1.3630(-1) 1.3630(-1)
0.92 1.2602(-1) 1.3144(-1) 1.3333(-1) 1.3344(-1) 1.3345(-1) 1.3345(-1)
0.95 1.0447(-1) 1.1187(-1) 1.1638(-1) 1.1681(-1) 1.1684(-1) 1.1684(-1) 1.1684(-1)
0.98 8.0886(-2) 9.0296(-2) 9.8005(-2) 9.898(-2) 9.9093(-2) 9.9105(-2) 9.9105(-2) 9.9105(-2)
1.00 6.6852(-2) 7.7800(-2) 8.7768(-2) 8.9260(-2) 8.9447(-2) 8.9471(-2) 8.9474(-2) 8.9474(-2)
1.02 5.4526(-2) 6.7197(-2) 7.9401(-2) 8.1502(-2) 8.1801(-2) 8.1844(-2) 8.1851(-2) 8.1852(-2)
1.05 3.9620(-2) 5.5101(-2) 7.0508(-2) 7.3670(-2) 7.4202(-2) 7.4290(-2) 7.4305(-2) 7.4308(-2)
1.10 2.2524(-2) 4.2752(-2) 6.2890(-2) 6.8079(-2) 6.9165(-2) 6.9384(-2) 6.3431(-2) 6.9441(-2) 6.9444(-2)
1.20 7.0712(-3) 3.4327(-2) 6.0266(-2) 6.9638(-2) 7.2324-2) 7.3047(-2) 7.3224(-2) 7.3300(-2) 7.3317(-2)
1.50 3.0064(-3) 2.9985(-2) 5.6548(-2) 7.2552(-2) 8.0324(-2) 8.3709(-2) 8.5124(-2) 8.5714(-2) 8.5967(-2)
1.60 3.2974(-3) 2.7537(-2) 5.2116(-2) 6.8368(-2) 7.7147(-2) 8.1383(-2) 8.3328(-2) 8.4208(-2) 8.4612(-2)
1.80 3.2385(-3) 2.2129(-2) 4.2387(-2) 5.7648(-2) 6.7307(-2) 7.2763(-2) 7.5671(-2) 7.7176(-2) 7.7951(-2)
2.00 2.7917(-3) 1.7333(-2) 3.3707(-2) 4.7147(-2) 5.6640(-2) 6.2647(-2) 6.6235(-2) 6.8297(-2) 6.9461(-2)

Maximum of the cross section is 0.13673 πa2
0 at 11.1428 eV while Burke et al. [1] get maximum

cross section of 0.1783 πa2
0 at 13.605 eV. A comparison of the present results with the results of other

calculations is shown in Table 1. Lloyd and McDowell [6] calculated cross sections using the polarized
orbital method which does not provide bounds on phase shifts. They used this method for partial
waves L = 0, 1, and 2 and for higher partial waves, they used Bessel functions for the continuum
functions. The present results are expected to be accurate compared to those in [6] because the
variational method has been used for partial waves 0 to 8, however, the method in [6] is not even
variationally correct for the first three partial waves (0, 1, and 2) and Bessel functions have been used
for the higher partial waves. McCarthy et al. [14] calculated the polarization potential, which is due to
excitation to the excited states, for 2S, 2P, 3S, 3P, 4P, and 5P states. They find that the excitation cross
section at 54.4 eV is 0.092 πa2

0, which is lower than the present value and higher than that obtained by
Burke et al. [1] at the same energy.

Poet [8] carried out his calculation by neglecting all angular momenta for all low and medium
energies. This amounts to using spherical symmetric wave functions. It is clear from Table 1 that
the previous calculations give different results and there is no agreement between them. However,
the present results are closer to the results obtained using the close-coupling approximation which is
equivalent to solving two-coupled equations. However, the close-coupling approximation [1] does
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not include the full asymptotic polarizability of the hydrogen atom. Therefore, these results cannot be
considered accurate in the absence of the full polarizability.

Kauppila et al. [15] obtained absolute values for a 2S cross section by measuring the ratio of the
2S and 2P cross sections in a modulated crossed-beam experiment and using the previously measured
2P cross sections [16,17] which have been normalized to the Born approximation at high energies.
They obtained maximum of 2S excitation cross section of 0.163 ± 0.020 πa2

0 at 11.6 ± 0.2 eV, while the
present calculation gives the maximum of the cross section of 0.137 πa2

0 at 11.14 eV. Burke et al. [1] get
maximum value of 0.1783 πa2

0 at 13.6 eV. After 11.14 eV the cross section decreases and has a minimum
at 16.46 eV and again has another maximum value at 34.82 eV as shown in Figure 1.

1 
 

 Figure 1. (Color online) Total 1S–2S excitation cross section (πa2
0) vs. the incident momentum k (Ryd).

4. Spin-Flip Cross Section

Spin-flip cross section is given by:

σSF(θ f i) =
1
4∑

L
|(2L + 1)[F(θ f i)− G(θ f i)]|2P2

L(cos θ f i). (15)

F(θ) and G(θ) are the singlet and triplet matrix elements for excitation, respectively. Here F(θ)
and G(θ) are independent of angles, we can, therefore, write:

σSF(a2
0) = π∑ (2L + 1)|F− G|2. (16)

Matrix elements F and G at k = 1.0 are given in Table 3. Cross sections for various values of k
are given in Table 4. There is a maximum at the threshold and a minimum at k = 1.02 as shown in
Figure 2. The present results have been compared with those obtained by Burke et al. [1] and the
present spin-flip cross sections are higher than those obtained in [1].
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Table 3. Matrix element for k = 1.0.

L F G

0 3.5686(-1) 4.6042(-2)
1 −2.0022(-1) −9.2426(-2)
2 −9.7205(-2) −1.7338(-1)
3 −4.6353(-2) −7.9044(-2)
4 −2.1528(-2) −3.1113(-2)
5 −9.5763(-3) −1.1964(-2)
6 −4.1782(-3) −4.7157(-3)
7 −1.8169(-3) −1.9301(-3)
8 −7.9477(-4) −8.1743(-4)

Table 4. Present results for spin-flip cross sections (πa2
0) for various values of k and comparison with

the results of [1].

k Present Burke et al. [1]

0.90 5.2831(-1) 0.157
0.905 4.9029(-1)
0.95 2.7794(-1)
0.98 1.8597(-1)
1.0 1.6885(-1) 0.2212
1.02 1.6641(-1)
1.05 1.8922(-1)
1.1 2.1959(-1)
1.2 2.8980(-1) 0.1146
1.5 1.6894(-1) 0.0285
1.8 7.0457(-2)
2.0 3.8774(-2) 0.0059
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5. Differential Cross Sections

Differential cross section for excitation is given by:

dσ

dΩ
=

k f

ki
|∑

L
(2L + 1)Tf iPL(cos θ f i)|2. (17)

Total differential cross section is given by:
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∂σ

∂Ω
|total =

∂σ

∂Ω
|Singlet + 3

∂σ

∂Ω
|Triplet. (18)

The resulting differential cross section is the sum of the singlet differential cross section and three
times the triplet differential cross section. Differential cross sections as a function of scattering angle
θ f i, in an interval of five degrees, are given in Table 5 for ki = 1.0. It is strongly peaked in the forward
direction and has a minimum at θ f i = 45 degrees, as indicated in Figure 3. The differential cross section
rapidly decreases in the beginning as the scattering angle increases. There are no measurements of
the differential cross section at this energy to compare with the present results. The total cross section
is obtained by multiplying the above equation by sin

(
θ f i

)
and summing the results for all θ f i. Total

cross section obtained thus is 0.089648 πa2
0 in good agreement with the direct calculation which gives

0.089474 πa2
0.

Differential cross sections over the angular range 20 to 140 degrees have been measured by
Williams and Willis [18] for incident energies of 54 to 680 eV. They state that the experimental values
do not agree with values predicted by various theories, mentioned in [18]. Differential cross sections at
various energies have been calculated using the R-matrix method and Born approximation for higher
energies by Scott [19]. However, the results are given in a figure and it is not possible to compare the
present results with those given in [19]. Fon et al. [20] have also calculated differential cross sections at
k = 1.01, 1.05, and 1.1 using the R-matrix method and their results at 1.01 are lower than the present
results at k = 1.0.

Table 5. Differential cross section (πa2
0/sr) at k = 1.0 at various scattering angles.

θfi
∂σ
dΩ

θfi
∂σ
dΩ

θfi
∂σ
dΩ

0 6.1752(-1) 65 2.1103(-2) 130 1.6477(-2)
5 5.9068(-1) 70 2.5993(-2) 135 1.6807(-2)

10 5.1623(-1) 75 2.9160-2) 140 1.7405(-2)
15 4.1029(-1) 80 3.0793(-2) 145 1.8120(-2)
20 2.9386(-1) 85 3.1106(-2) 150 1.8854(-2)
25 1.8651(-1) 90 3.0280(-2) 155 1.9557(-2)
30 1.0164(-1) 95 2.8520(-2) 160 2.0211(-2)
35 4.4444(-2) 100 2.6109(-2) 165 2.0804(-2)
40 1.3019(-2) 105 2.3419(-2) 170 2.1298(-2)
45 1.1171(-3) 110 2.0854(-2) 175 2.1634(-2)
50 1.3008(-3) 115 1.8754(-2) 180 2.1754(-2)
55 7.2108(-3) 120 1.7321(-2)
60 1.4565(-2) 125 1.6593(-2)
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6. Conclusions

Calculations for excitation of 2S state of the hydrogen atom from 1S state has been carried out in
the distorted-wave approximation using the variational polarized method [9]. At low incident energies,
cross sections have been calculated at a fine energy interval. Using the results between k = 0.87 and 2.0,
cross sections at other k values can be obtained by interpolation. The present results compare well with
those of Burke et al. [1] and agree well with the experimental result of Kauppila et al. [15]. The present
results have converged to at least fifth decimal place for most low incident energies.

Acknowledgments: Thanks are extended to R.J. Drachman for helpful discussions and for critical reading of the
manuscript. Thanks are also extended to A. Temkin for comments. Calculations were carried out in quadruple
precision using the Discover computer at the NASA Center for Computation Science.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

There are a number of integro-differential equations being solved for scattering functions in this
calculation of the excitation of 2S state of atomic hydrogen. They can be solved by an iterative process
or by a non-iterative process. A typical integro-differential equation occurring in this calculation can
be written in the form:

[
d2

dr2 + V(r) + k2]u(r) = f (r)
∞∫

0

g(x)u(x)dx = f (r)C. (A1)

In the noniterative method of Omidvar [21], we let the function u(r) be of the form:

u(r) = u0(r) + Cu1(r). (A2)

The constant C represents the definite integral in Equation (A1). Substitution of u(r) in Equation (A1)
gives us two equations:

[
d2

dr2 + V(r) + k2]u0(r) = 0, (A3)

[
d2

dr2 + V(r) + k2]u1(r) = f (r). (A4)

Now we have two equations which can be solved easily for u0 and u1. Substitution of Equation (A2)
in the integral gives

C =

∞∫
0

g(x)u0(x)dx + C
∞∫

0

g(x)u1(x)dx = I0 + CI1 (A5)

I0 =

∞∫
0

g(x)u0(x)dx, (A6)

and

I1 =

∞∫
0

g(x)u1(x)dx. (A7)

Having solved for u0 and u1, I0 and I1 can be calculated. From Equation (A5), we can solve for C.
We obtain

C =
I0

(1− I1)
. (A8)

Putting u0, u1, and C in Equation (A2), the function u(r) can be calculated. The above procedure
can be generalized to any number of integro-differential equations, as has been carried out in [22],
where the number of constants were 220, instead of one.
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