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Abstract: We provide corrections to the data in Sholin’s tables from his paper in Optics and Spectroscopy
26 (1969) 27. Since his data was used numerous times by various authors to calculate the asymmetry
of hydrogenic spectral lines in plasmas, our corrections should motivate revisions of the previous
calculations of the asymmetry and its comparison with the experimental asymmetry, and thus should
have a practical importance.
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The input data presented in Sholin’s tables from paper [1] was used numerous times by various
authors to calculate the asymmetry of hydrogenic spectral lines in plasmas. (For the latest advances
in the theory of the asymmetry we refer to papers [2,3] and references therein). However, we found
that there are incorrect entries tabulated in paper [1] for the the Ly-γ, Ly-ε, and H-α lines, in both the
intensity corrections and the quadrupole frequency corrections.

The dipole and quadrupole frequency corrections are given in paper [1] as

∆dipole
k = nq− n′q′, (1)

and
∆quadrup

k =
1
3
[n4 − n2 − 6n2q2 − n′4 + n′2 + 6n′2q′2], (2)

where n and n′ are the principal quantum numbers of the upper and lower energy levels, respectively;
q = n1 − n2 and q′ = n1

′ − n2
′ are the combinations of the corresponding parabolic quantum numbers.

Frequency Corrections

For Ly-gamma (n = 4), Equation (2) becomes:

∆quadrup
k (q) = 80− 32q2 (3)

It yields ∆quadrup
k (0) = 80, ∆quadrup

k (±1) = 48, ∆quadrup
k (±2) = −48, ∆quadrup

k (±3) = −208.

The comparison shows that in Sholin’s table there are typographic errors in ∆quadrup
k (0) entered as

60 (instead of 80) and in ∆quadrup
k (±3) entered as −206 (instead of −208).

For Ly-epsilon (n = 4), Equation (2) becomes:

∆quadrup
k (q) = 420− 72q2 (4)

It yields ∆quadrup
k (0) = 420, ∆quadrup

k (±1) = 348, ∆quadrup
k (±2) = 132, ∆quadrup

k (±3) = −228,

∆quadrup
k (±4) = −732, ∆quadrup

k (±3) = −1380. The comparison shows that in Sholin’s table there are

typographic errors in ∆quadrup
k (±2) entered as 108 (instead of 132).
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Intensity Corrections

The intensity corrections are calculated from the corresponding corrections to the wave functions.
The latter are given, e.g., in the Appendix of paper [4].

For H-alpha (n = 3 to n = 2 transition), the comparison shows that in Sholin’s table there are
typographic errors in εk

(1) corresponding to ∆dipole
k = 2 entered as −62 (instead of −62/9) and

∆dipole
k = −2 entered as 62 (instead of 62/9), as shown in detail below.

For ∆dipole
k = 2:

Ik = < 110′′
∣∣z∣∣010′′ >2

=
(
< 110|z|010 > −3 ao

R < 200|z|010 >+ 3 ao
R < 020|z|010

> − ao
R < 110|z|100 > +3 ao

2

R2 < 200|z|100 > −3 ao
2

R2 < 020|z|100
>)2 ≈< 110|z|010 >2 −6 ao

R < 200|z|010 > + 6 ao
R < 020|z|010

> −2 ao
R < 110|z|100 >= Ik

(0)(1− ao
R

62
9
)
.

(5)

For ∆dipole
k = −2:

Ik = < 110′′ |z|100′′ >2

=
(
< 110|z|100 > −3 ao

R < 200|z|100 >+ 3 ao
R < 020|z|100

> + ao
R < 110|z|010 > −3 ao

2

R2 < 200|z|010 >+ 3 ao
2

R2 < 020|z|010
>)2 ≈ < 110|z|100 >2 −6 ao

R < 200|z|100 > + 6 ao
R < 020|z|100

> +2 ao
R < 110|z|010 > = Ik

(0)(1 + ao
R

62
9

)
.

(6)

We note in passing that the robust perturbation theory, as developed by Oks and Uzer [5],
allows for analytically calculating corrections to the eigenfunctions due to the quadrupole interaction
in a much simpler way than in Sholin paper [1]. Details are presented in Appendix.

For completeness, we list below also previously known (for a long time) corrections to the
tabulated entries from paper [1] for the H-beta line.

For the Stark components corresponding to the radiative transitions between the parabolic states
210 and 010 or between 120 and 100, the unperturbed intensity should be 81, instead of 16.

For the Stark component corresponding to the radiative transition between the parabolic states
210 and 001, the intensity correction εk

(1) should be −20 (instead of −16).
For the Stark component corresponding to the radiative transition between the parabolic states

120 and 001, the intensity correction εk
(1) should be 20 (instead of 16).

There are also two corrections (known for a long time) to the following typographic errors from
paper [1].

In Table 2 from [1] for the H-alpha line, in the header of the last column, the scaling factor should
be 106 instead of 105.

In Equation (21) from [1], in its 2nd term in the right hand side, the coefficient should be
(3/8) instead of (3/16). We note that after this correction, Equation (21) from [1] coincides with
the corresponding term (proportional to 1/R4) in Equation (4.59) from book [5] after setting in the
latter Z1 = 1, Z2 = Z. Equation (4.59) from book [5] was derived from the exact expression for the
energy in elliptical coordinates for the two Coulomb center problem by expanding the latter in powers
of 1/R up to (including) the term ~1/R6. Therefore, Equation (4.59) from book [5] can be considered,
in particular, as the benchmark for testing Equation (21) from [1]. Such a test also confirms that the 2nd
term in the right hand side of Equation (21) from [1] correctly contains the first power of Z (while there
were incorrect suggestions that this term should contain Z2).

In summary, since Sholin’s input data from paper [1] was used numerous times by various authors
to calculate the asymmetry of hydrogenic spectral lines in plasmas, our corrections should motivate
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revisions of the previous calculations of the asymmetry and its comparison with the experimental
asymmetry, and thus should have a practical importance.
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Appendix A. Application of the Robust Perturbation Theory [5] for Calculating Quadrupole
Corrections to the Wave Functions

Here, we use the robust perturbation theory [6]. The gist of it is as follows. If for the perturbed
quantum system there is an operator A that commutes with the Hamiltonian H and the parts of
these operators A0 and H0, characterizing the unperturbed quantum system, also commute, then the
perturbation theory can be constructed in terms of the perturbation (A − A0) to the operator A0,
rather than in terms of the perturbation (H − H0) to the operator H0. For calculating corrections to
the wave functions (which are common for both A0 and H0), the advantage is that the eigenvalues
of the operator A0 are typically nondegenerate (in distinction to the eigenvalues of the operator H0).
Therefore, for calculating the first order corrections to the wave functions, it is sufficient to use the first
order of the nondegenerate perturbation theory with respect to the perturbation (A − A0) and it would
not involve infinite summations. In distinction, for calculating the same corrections in terms of the
perturbation (H − H0), one would have to proceed to the second order of the degenerate perturbation
theory, involving infinite summations.

Below as the operator A we choose the projection Az of the super-generalized Runge-Lenz vector,
derived by Kryukov and Oks [7], on the axis connecting the nucleus of the hydrogenic atom/ion with
the perturbing ion. The operator of the unperturbed projection Az

(0) has the well-known eigenvalues
q/n—see. e.g., the textbook [8]. According to Equation (12), from [6], the first non-vanishing term of
the expansion of the operator (Az − Az

(0)) in terms of the small parameter n2/R (here and below we
use atomic units) is −L2/R. Then, the corrections to the wave functions are given by

− 1
R

(
L2)nq′m

nqm

Az,α(0) − Az,α′
(0)

= − n
R

(
L2)nq′m

nqm

(q− q′)
, (A1)

where the selection rules for non-zero matrix elements of the operator L2 require q− q′ = ±2.
The non-diagonal matrix elements of the operator L2 in parabolic coordinates (as well as of the

operators L± = Lx ± iLy), have been calculated by Sholin, Demura, and Lisitsa in [9]:

< n1 + 1, n2 − 1, m
∣∣∣L2

∣∣∣n1n2m > = –[n2(n – n2)(n1 + 1)(n− n1 − 1)]1/2,

< n1 − 1, n2 + 1, m
∣∣∣L2

∣∣∣n1n2m > = –[n1(n – n1)(n2 + 1)(n− n2 − 1)]1/2.
(A2)

We note that matrix elements of the operator Lx in parabolic coordinates have been later
reproduced by Gavrilenko in paper [10]. We also note that the non-diagonal matrix elements of
the operators L± can also be obtained using their proportionality (within the manifold of the fixed n)
to the non-diagonal matrix elements of the operators (x ± iy):

< n, q± 2, m|L±|nqm > = –(±1)[2/(3n)] (x ± iy). (A3)
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(The underlying physical reason for the existence of relation (A3) is, according to Demura [11],
the O4 symmetry of hydrogenic atoms/ions.1) Therefore, the non-diagonal matrix elements of
the operator L2 in parabolic coordinates can be obtained using their similar proportionality to the
non-diagonal matrix elements of the operator (x2 + y2). The latter matrix elements have been calculated
by Clark [12].

Anyway, after substituting the non-diagonal matrix elements of the operator L2 from Equation (A2)
in Equation (A1), the latter equation yields the following result for the corrections to the wave functions
(more rigorously, for the coefficients of the corresponding linear combinations of the unperturbed
wave functions):

n[n2(n – n2)(n1+1)(n−n1−1)]1/2

2 R , q− q′ = 2,

− n[n1(n – n1)(n2+1)(n−n2−1)]1/2

2 R , q′ − q = 2.
(A4)

This is the same result as in Sholin paper [1], but it is obtained in a simpler way: without the need
to go to the second order of the perturbation theory.
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1 Specifically, this is related to the following two facts within the manifold of the fixed n [11]. First, the mean value <r> of the
radius vector of the bound electron is proportional to the unperturbed Runge-Lenz vector A(0), as it is well-known. Second,
the linear combinations J± = (L ± A(0))/2 obey the same commutation relations as the angular momentum.
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