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Abstract: A number of formulations have been used to investigate scattering of low-energy electrons
and positrons from various targets. The hybrid theory of scattering, which takes into account the
short-range as well as the long-range correlations, and is variationally correct, is described in this
article. This approach has been applied to calculate phase shifts for scattering of electrons and
positrons, resonances in two-electron systems, photodetachment, and photoionization of two-electron
systems. This approach has also been applied to calculate excitation of 2s state of atomic hydrogen by
electron impact. In photoabsorption the target can be left in 2p state instead of 1s state, resulting in
the emission of Lyman-alpha radiation. Cross sections for this process are also calculated.

Keywords: hybrid theory of scattering

1. Introduction and Calculations

Scattering by single-electron systems is always of interest because the wave function of the
target is known exactly. Also, scattering from atoms helps us to understand their static and dynamic
properties. It also has applications in astrophysics and in the investigation of controlled thermonuclear
devices. Different approaches have been applied to study scattering of electrons and positrons from
various targets, to infer the feasibility of various calculations and the accuracy of their results. In other
words, this is an ideal problem for testing various theories. A simple method is to assume that the
wave function of the incident electron on hydrogen atom is given by Ψ(

→
r 1,
→
r 2) = u(

→
r 1)Φ0(

→
r 2),

where Φ0(
→
r 2) is the ground state of the hydrogen atom and u(

→
r 1) is the function whose asymptotic

limit determines phase shift of the scattering. Morse and Allis [1] introduced exchange between
electrons, writing the wave function in the form:

Ψ(
→
r 1,
→
r 2) = u(

→
r 1)Φ0(

→
r 2)± u(

→
r 2)Φ0(

→
r 1). (1)

The ground state function is given by:

Φ0(
→
r 2) =

√
Z3

π
e−Zr2 . (2)

The upper sign in Equation (1) corresponds to the singlet state and the lower sign corresponds to
triplet state of the system. The equation for the scattering function u(r) (letting r1 = r) is obtained by
the Kohn variation of the functional:〈

YL0(Ω1)Φ0(
→
r 2)
∣∣∣H − E

∣∣∣Ψ(
→
r 1,
→
r 2)
〉
= 0, (3)

where E = k2 − Z2 and k2 is the kinetic energy of the incident electron, and Z is the charge of the
nucleus. Considering the proton stationary during the interaction, the Hamiltonian H of the system in
Rydberg units is given by:
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H = −∇2
1 −∇2

2 −
2Z
r1
− 2Z

r2
+

2
r12

(4)

In the above equation, r12 =
∣∣∣→r 1 −

→
r 2

∣∣∣. Using Equation (3), we get the integro-differential equation:

[ d2

dr2 +
2(Z−1)

r − L(L+1)
r + e−2Zr2(Z + 1

r ) + k2)]u(r)± 4Z3e−Zr[(k2 + Z2)rδL0 I1

− 2
2L+1 (

I2
rL + rL+1 I3)] = 0.

(5)

The exchange terms with I1, I2, and I3 are the nonlocal potentials and are functions of u(r):

I1 =
∞w

0

e−Zxxu(x)dx, (6)

I2 =
rw

0

e−ZxxL+1u(x)dx, (7)

and

I3 =
∞w

r
e−Zx u(x)

xL dx. (8)

The singlet and triplet S-wave phase shifts in the exchange approximation are given in Table 1.
Among the different methods used is the variational principle of Kohn [2]. Schwartz [3] used this
principle to calculate phase shifts of electrons and positrons scattering from hydrogen atoms. There are
no bounds on phase shifts in this principle except at incident energy k = 0. There are also singularities
in this calculation. In spite of singularities, the results obtained in [3] are fairly accurate and have stood
the test of time. Another extensively used method is the close-coupling approximation [4], in which
the total wave function is expanded in eigenstates of the hydrogen atom. Accurate results have been
obtained using the R-matrix formulation [5] in which most of the complications of interactions are
taken into account within the inner region of a certain radius and outside this radius plane waves or
Coulomb waves are used for continuum functions.

Table 1. Phase shifts (radians) for the 1S and 3S states of e-H.

K
Singlet Triplet

EAa PO [6] QHQ [7] EAa PO [6] QHQ [7]

0.0 8.100 5.9 2.349 1.9
0.1 2.396 2.583 2.55358 2.908 2.945 2.93853
0.2 1.870 2.144 2.06678 2.679 2.732 2.71741
0.3 1.508 1.750 1.69816 2.461 2.519 2.49975
0.4 1.239 1.469 1.41540 2.257 2.320 2.29408
0.5 1.031 1.251 1.20094 2.070 2.133 2.10454
0.6 0.869 1.04083 1.901 1.93272
0.7 0.744 0.947 0.93111 1.749 1.815 1.77950
0.8 0.651 0.854 0.88718 1.614 1.682 1.64379

EAa are exchange approximation phase shifts, and k = 0 results are scattering lengths.

It has been emphasized by Wigner [8] that long range forces determine the nature of the scattering
parameters at threshold. A method in which the longest-range potential proportional to −1/r4 is taken
into account is the method of polarized orbital [6,9]. This method includes the essential physics of
the problem and has been widely used not only to calculate scattering parameters for electrons and
positrons but also to calculate photoabsorption cross sections. Using the first-order perturbation theory
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and the dipole part of the perturbed wave function, Temkin [9] showed that the effective target wave
function in the presence of the incident electron can be written as

Φpol(
→
r 1,
→
r 2) = Φ0(

→
r 2)−

ε(r1, r2)

r2
1

u1s→p(r2)

r2

cos(θ12)√
Zπ

(9)

where
u1s→p(r2) = e−Zr2(0.5Zr3

2 + r2
2). (10)

ε(r1, r2) = 1, r1 > r2

= 0, r1 < r2.
(11)

Now, the function in Equation (1) is written as:

Ψ(
→
r 1,
→
r 2) = u(

→
r 1)Φpol(

→
r 1,
→
r 2)± (1↔ 2). (12)

The equation for the scattering function uL(r1) can be derived from:〈
YL0(Ω1)Φ0(r2)

∣∣∣H − E
∣∣∣Ψ(
→
r 1,
→
r 2)
〉
= 0 (13)

The equation for the scattering function uL(r) for all momenta has been given by Sloan [10]:

[ d2

dr2 +
2(Z−1)

r − L(L+1)
r + e−2Zr2(Z + 1

r ) + k2)]uL(r)± 4Z3e−Zr[(k2 + Z2)rδL0 I1

− 2
2L+1{r−L I2 + rL+1 I3}] = − α(Zr)

(Zr)4 uL(r)

∓4Ze−Zr[ δL1
3 {−

Z(Z2+k2)
2 r3 + (Z2 − k2)r2}

∞r

r
e−Zxx−LuL(x)dx

+2(Zr3 + r2){ L
(2L−1)(2L+1) rL−1

∞r

r
e−Zxx−L−1uL(x)dx

+ L+1
(2L+1)(2L+3) rL+1

∞r

r
e−Zxx−L−3uL(x)dx}]

± 4
3 δL1e−2Zr[( 3

2 Z2r2 + 1
2 Zr− 3)uL(r)− ( 1

2 Zr2 + r) duL(r)
dr ],

(14)

where
α(x) =

9
2
− 2

3
e−2x(x5 +

9
2

x4 + 9x3 +
27
2

x2 +
27
2

x +
27
4
). (15)

The scattering equation has the well-known attractive potential which for large r is equal to
−α/(Zr)4, α = 4.5 a3

0 being the asymptotic polarizability for a hydrogen atom. Temkin and Lamkin [6],
using this method of polarized orbitals, calculated S-wave phase shifts, as well as for higher partial
waves, for scattering of an electron from a hydrogen atom. Phase shifts are determined by the
asymptotic limit of the function uL(r):

lim
r→∞

uL(r) =
sin(kr− πL/2 + σC + η)

r
. (16)

The Coulomb phase in the above equation is given by:

σC =
Z− 1

k
ln(2kr) + argΓ(L + 1− i(Z− 1)

k
). (17)

S-wave phase shift obtained by this method are given in Table 1 and they differ from those
obtained in the exchange approximation, showing the importance of polarization of the target resulting
in the long-range potential −1/r4. However, this method does not provide variational bounds to the
exact phase shifts.
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The short-range correlations can be important in addition to the long-range correlations.
These short-range correlations can be included using the projection-operator formalism of Feshbach [11]:

P = P1 + P2 − P1P2. and Q = 1 − P. (18)

The wave function in Equation (1) is augmented by a correlation functionΦL(
→
r 1,
→
r 2):

Ψ(
→
r 1,
→
r 2) = u(

→
r 1)Φ0(

→
r 2)± (1↔ 2) + ΦL(

→
r 1,
→
r 2) (19)

where

ΦL(
→
r 1,
→
r 2) = ∑

{
f κ,1
L (r1, r2, r12)Dκ,1

L (θ, φ, ψ) + f κ,−1
L (r1, r2, r12)Dκ,−1

L (θ, φ, ψ)
}

. (20)

The radial functions are of Hylleraas type and D’s are rotational harmonics [12].
The projections are defined by:

P1Φ(
→
r 1,
→
r 2) = Φ0(

→
r 1)

w
Φ0(

→
r 1)ΦL(

→
r 1,
→
r 2)dr1. (21a)

P2Φ(
→
r 1,
→
r 2) = Φ0(

→
r 2)

w
Φ0(

→
r 2)ΦL(

→
r 1,
→
r 2)d

→
r 2. (21b)

Using the projection operators P and Q, we get the equation for the scattering function u(±)
L (r),

having an optical potential [7]. The equation for the scattering function u(±)
L (r) is given by the

following equation:

[− d2

dr2 +
L(L + 1)

r2 + Vd ±Vex + V(±)
op(P, Q)− k2]u(±

L )(r) = 0 (22)

where Vd and Vex are the direct and nonlocal exchange potentials of the ‘exchange approximation’ [1].
V(±)

op (P, Q) is the optical potential which is negative definite and therefore attractive. The optical
potential acting on uL(r) is given by:

V(±)
op (P, Q)uL = r〈YL0PHQ

1
E−QHQ

QHPΨL〉. (23)

We find S-wave phase shifts, given in Table 1, increase compared to the exchange approximation
when short-range correlations are included but not the long-range correlations at the same time.
However, the phase shifts obtained by this method have lower bounds to the exact phase shifts.

Is it possible to consider the long-range and short-range correlations at the same time?
The projection-operator formalism, when both type of correlations are included, does not work
because it is not possible to construct projection operators when Φpol(

→
r 1,
→
r 2) instead of Φ0(

→
r 2) is

used in the definitions given in Equation (21). However, we can write a wave function which has a
long-range and a short-range parts at the same time and we call this formulation hybrid theory because
it includes both type of correlations: short-range as well as long-range at the same time. We describe
this formalism by confining ourselves to the e-H partial wave (denoted by L) problem. The total spatial
wave function is written as:

ΨL(
→
r 1,
→
r 2) =

uL(r1)

r1
YL0(Ω1)Φpol(

→
r 1,
→
r 2)± (1↔ 2) +

N

∑
λ=1

CλΦλ
L(
→
r 1,
→
r 2). (24)

The functions Φpol(
→
r 1,
→
r 2) and ΦL(

→
r 1,
→
r 2) are given in Equations (9) and (20), respectively.

This approach is variationally correct and phase shifts obtained have lower bounds to the exact phase
shifts. This has been achieved by introducing separate correlation functions and then amalgamating
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them into the scattering problem, via an optical potential, in order to replace the many-particle
Schrödinger equation with a single-particle Schrödinger equation.

We can derive the equation for the scattering function u(r) from (letting r1 = r) from the functional:

I =
〈

ΨL(
→
r 1,
→
r 2)
∣∣∣H − E

∣∣∣ΨL(
→
r 1,
→
r 2)
〉
= 0. (25)

For S-waves, we can write:

ΦL=0(
→
r 1,
→
r 2) =

Nω

∑
lmn

Clmn[e−γr1−δr2 rl
1rm

2 rn
12 ± (1↔ 2)] (26)

Clmn in Equation (26) are coefficients which are determined when eigenvalues are calculated
using the Ritz variational principle. For Nω = 1, the functional can be written as:

I = A + C1B + C1
2D. (27)

where
A =

〈
[Φpolu(

→
r 1)± (1→ 2)]

∣∣∣H − E
∣∣∣[Φpolu(

→
r 1)± (1→ 2)]

〉
(28)

and
B = 2

〈
Φ1

L(
→
r 1,
→
r 2)
∣∣∣H − E

∣∣∣[Φpolu(
→
r 1)± (1→ 2)]

〉
= 4

〈
V1(
→
r 1)u(

→
r 1)
〉

.
(29)

We can determine C1 by:
dI

dC1
= 0. (30)

which implies that:
B + 2C1D = 0 (31)

This gives

C1 = −B/2D =
2〈V1(

→
r 1)u(

→
r 1)〉

E− ε1
. (32)

where
V1(r1) =

〈
Φ(1)

L (
→
r 1,
→
r 2)
∣∣∣H − E

∣∣∣Φpol)
〉

, (33)

D =
〈

Φ(1)
L

∣∣∣H − E
∣∣∣Φ(1)

L

〉
= ε1 − E. (34)

We can generalize the above treatment to any number of unknown coefficients in Equation (24).
Now all the quantities in Equation (24) are known except uL(r). The equation for the scattering
function uL(r) can be derived from:〈

YL0(Ω1)Φpol
∣∣∣H − E

∣∣∣Ψ(
→
r 1,
→
r 2)
〉
= 0. (35)

The resulting equation is fairly complicated and the various quantities are given in [13]. We give
a few of them below. We can generalize the above treatment to any number of unknown coefficients in
Equation (24). We write the wave function in the form:

ΨL(
→
r 1,
→
r 2) = uL(

→
r 1)Φpol(

→
r 1,
→
r 2)± (1↔ 2) + ∑

λ

CλΦλ
L(
→
r 1,
→
r 2). (36)

We define now:

Φpol(
→
r 1,
→
r 2) = Φ0(

→
r 2)−

χβ(r1)

r2
1

u1s→p(r2)

r2

cos(θ12)√
πZ

. (37)
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We have replaced the step function ε(r1, r2) by:

χβ(r1) = (1− e−βr1)
n
. (38)

The exponent n is found to be 3 or 4. Now, polarization takes place for any value of r1,
the coordinate of the incident electron. In the method of polarized orbitals, the orbital of the target
was perturbed only when the incident electron was outside the target. Now perturbation takes place
whether the incident electron is outside or inside of the target.

In addition to the nonlinear parameters in the correlation function, β is another nonlinear
parameter and it is a function of the incident momentum k. This further helps in getting improved
results. There is another form of the smooth cutoff function given by Shertzer and Temkin [14]:

χST(r1) = 1− e−2Zr1(
1
3
(Zr1)

4 +
4
3
(Zr1)

3 + 2(Zr1)
2 + 2Zr1 + 1). (39)

All the quantities are now known in the wave function given in Equation (24). We can derive the
equation for the scattering function using Equation (35). The equation for the scattering function is
again is of the same form as Equation (22), but with more terms:

[D(r)
d2

dr2 −
L(L + 1)

r2 + Vd + Vpol
d ± (Vex + Vpol

ex )−Vpol
op + k2]u(r) = 0. (40)

As stated earlier, most of the quantities are given in [13]. Some of these quantities occurring in the
direct potential are given below:

D(r) = 1 +
43

8Z6 (
χ(r)

r2 )
2

. (41)

The direct potentials are given by:

Vd =
2(Z− 1)

r
+ 2e−Zr(Z +

1
r
). (42a)

We repeat here the exchange terms already indicated in Equation (5):

VexuL(r) = 4Z3e−Zr{(k2 + Z2)rδL0 I1 −
2

2L + 1
(

I2

rL+1 + rL+1 I3)} (42b)

Vpol
d = (x1 + x2) + x3

d
dr

. (43)

x1 =
43

8Z6 (
2Z
r
− 2

r2 + k2)(
χ(r)

r2 )
2

. (44)

x2 = B1(r)
43

8Z6 (
χ(r)

r2 ). (45)

x3 = B2(r)
43

8Z6 (
χ(r)

r2 ) +
2α(r)

(Zr)4 χ(r)− 9
2

χ(r)2

(Zr)4 −
8

3Z
d(r)(

χ(r)
r2 )

2

, (46)

B1(r) =
1
r2 [−2Zχ(r) + 2Z− 2

r
+ e−2Zr(−2

3
Z4r3 − 4

3
Z3r2 + 2Z +

2
r
)], (47)

B2(r) = −2ZB1(r)−
4Z
r3 +

6
r4 + e−2Zr(

4
3

Z5r + 2Z4 − 4Z2

r2 −
8Z
r3 −

6
r4 ). (48)

α(r) =
9
2
− 2

3
e−2Zr(

3
2
(Zr)4 +

15
2
(Zr)3 +

27
2
(Zr)2 +

27
2
(Zr) +

27
4
). (49)
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The last term in x3 has:

d(r) = 129
32Z5

1
r +

18
Z7

1
r3 − e−2Zr( 3

16 r4 + 27
16Z r3 + 54

8Z2 r2 + 135
8Z3 r

+ 975
32Z4 +

1281
32Z5

1
r +

36
Z6

1
r2 +

18
Z7

1
r3 )

(50)

For r → ∞, x3 has a term
9

2Z4 (51)

which is the dipole polarizability of the target with nuclear charge Z. Vpol
op = optical potential which is

attractive, but does not depend on projection operators, and is given by:

Vpol
op uL(r1) = r1

Nω

∑
s

〈
YL0Ω1)Φpol(

→
r 1,
→
r 2)
∣∣∣H − E

∣∣∣Φs
L

〉〈
Φs

L
∣∣H − E

∣∣Ψ′L〉
E− εs

. (52)

The function Ψ′L is the function given in Equation (24) without the correlation terms. Phase shifts,
given in Table 2, are calculated using the asymptotic limit of the function uL(r) given in Equation (16).

We see that the method of polarized orbitals over estimates phase shifts. In the variational
formulation, phase shifts have lower bounds to the exact phase shifts, that is, they can be higher than
those given in Table 2 when the number of correlations terms in Equation (24) is increased. The phase
shifts obtained using hybrid theory agree well with those obtained by Schwartz [3] and also with those
obtained by Scholz et al. [15] using the close-coupling approximation. Similar calculations have been
carried out for S-wave electron scattering from He+ and Li2+ [16]. These results are shown in Table 3
and they agree with those obtained by Gien [17,18] using the Harris-Nesbet variational method.

Calculations have been carried out for partial wave L = 1 for electron scattering from H, He+, and
Li2+ [19,20]. The P-wave phase shifts for electron-H scattering are given in Table 4. They are compared
with those obtained using the R-matrix method [15] and by the finite-element method [21]. We see that
the singlet P phase shifts have a peak at k = 0.3, while the triplet P phase shifts increase continuously.

Table 2. Comparison of phase shifts (radians) obtained in hybrid theory [13] with those obtained by
Schwartz [3] and Scholz et al. [15], the results for k = 0 are scattering lengths.

k
Singlet Triplet

ηHB [13] ηschwartz [3] ηSSB [15] ηHB [13] ηSchwartz [3] ηSSB [15]

0.0 5.99567 5.965 1.78154 1.7686
0.1 2.55370 2.553 2.550 2.93856 2.9388 2.939
0.2 2.06717 2.0673 2.062 2.71751 2.7171 2.717
0.3 1.69684 1.6964 1.691 2.49987 2.4996 2.500
0.4 1.41554 1.4146 1.410 2.29457 2.2938 2.294
0.5 1.20195 1.202 1.196 2.10574 2.1046 2.105
0.6 1.04191 1.041 1.035 1.93336 1.9329 1.933
0.7 0.93084 0.930 0.925 1.77999 1.7797 1.780
0.8 0.88802 0.886 1.64444 1.643
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Table 3. Phase shifts (radians) for scattering of electrons from He+ and Li2+ [16].

k
He+ Li2+

1S 3S 1S 3S

0.1 0.43808 0.93065 0.23188 0.56084
0.2 0.43550 0.92704 0.23176 0.56020
0.3 0.43142 0.92114 0.23148 0.55869
0.4 0.42608 0.91302 0.23109 0.55678
0.5 0.41974 0.90282 0.23064 0.55435
0.6 0.41265 0.89057 0.23012 0.55142
0.7 0.40568 0.87645 0.22960 0.54799
0.8 0.39865 0.86066 0.22906 0.54413
0.9 0.39123 0.84366 0/22855 0.53925
1.0 0.38644 0.82536 0.22807 0.53514
1.1 0.38200 0.80636 0.22769 0.53000
1.2 0.37914 0.78677 0.22740 0.52456
1.3 0.37846 0.76696 0.22724 0.51880
1.4 0.38158 0.74708 0.22724 0.51276
1.5 0.39802 0.72746 0.22742 0.50646
1.6 0.34480 0.70815 0.22782 049997

Table 4. P-wave phase shifts (radians) for electron-hydrogen scattering. ηHB are the results obtained using
hybrid theory [19], ηRM are the R-matrix results [15], and ηFEM are finite-element method results [21].

K
1P 3P

ηHB ηRM ηFEM ηHB ηRM ηFEM

0.1 0.00635076 0.006 0.006 0.01038234 0.010 0.0100
0.2 0.01506556 0.015 0.0148 0.04536735 0.045 0.0452
0.3 0.01670634 0.016 0.0160 0.1069312 0.107 0.1067
0.4 0.01015347 0.009 0.0090 0.1888873 0.187 0.1873
0.5 −0.00061223 −0.002 −0.0020 0.2709762 0.270 0.2708
0.6 −0.01009367 −0.012 −0.0117 0.3416749 0.341 0.3417
0.7 −0.01321557 −0.016 −0.0149 0.3932100 0.392 0.3933
0.8 −0.0046818 −0.0068 0.4277296 0.4283

Calculations have also been carried for partial wave L = 2 for electron scattering from H, He+, and
Li2+ and photoabsorption when the final state is a 2p state [22].

2. Scattering Length

The scattering length a (in units of Bohr radiusa0) is defined by:

lim
k→0

k cot(η) = −1/a. (53)

Temkin [23] has shown that the scattering length is significantly affected by the long-range
polarization potential. It is given by:

a = a(R)− α(
1
R
− a

R2 +
a2

3R3 ) (54)

where α is the fine structure constant.
For 1S, for Nω = 70 we find a(R) = 6.00239 at R = 117.3038, using the above correction, we get

a = 5.96595 compared to the value 5.965 ± 0.0003 obtained by Schwartz [3] who used the Kohn
variational principle. The 3S scattering length for Nω = 84 is a(R) = 1.781542 at R = 349.0831.
The corrected value is 1.76815 is little lower compared to the Schwartz a = 1.7686 ± 0.0002.
The agreement with Schwartz’s values for both singlet and triplet S scattering lengths is very good.

The hybrid theory is akin to the close-coupling approximation in which the wave function is
expanded in the orthonormal eigenstates of the target 1s, 2s, 2p . . . . However, in the close-coupling
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approximation, the asymptotic polarizability of the target depends on the number of p states included
in the wave function. If 1s, 2s, and 2p eigenstates are included, then 66% of the polarizability is
included, while in the hybrid theory the total asymptotic polarizability of the target is included
and these calculations are also variationally correct. Also, the convergence in the close-coupling
approximation is very slow as the number of eigenstates is increased.

3. Resonances

Calculations for phase shifts have been carried out for He+ and Li+2 targets in the resonance
region [16]. These phase shifts are fitted to the Breit-Wigner form to obtain the resonance parameters:

ηcalc.(E) = η0 + AE + tan−1(
0.5Γ

(ER − E)
). (55)

E = k2 is the incident energy, ER is the resonance position and Γ is its width. The present calculation
gives [16] ER = 57.8481 and Γ = 0.1233 eV for 1S state of He. The resonance position is with respect
to the ground state of the He atom. These results agree well with those obtained using the Feshbach
formalism [24]:

ER = 57.8435 and Γ = 0.125 eV. (56)

In the Feshbach formalism,ER =εQ + ∆, where εQ = 〈QHQ〉 and ∆ is the correction due to
the fact that the resonance is embedded in the continuum and there are other resonance states
nearby. These corrections have to be calculated separately in order to get the position given above,
as indicated in [24]. There are no such corrections when the resonance position is obtained by fitting
resonance-region phase shifts to the Breit-Wigner expression given in Equation (55). There is no bound
on the resonance position because of fitting of the phase shifts to ER and Γ in Equation (55) even when
there is a lower bound on the phase shifts.

4. Low-Energy Scattering

It is known [25] that at low energies L = 1 scattering, the long-range correlations contribute most
to the scattering phase shifts:

tan(η)/k2 = πα/15− Ak. (57)

So that
tan η(k1)/k2

1 − tan η(k2)/k2
2 = −A(k1 − k2). (58a)

The first term in Equation (57) is due to the long-range potential (α is the polarizability) and
the second term has contributions from the short-range correlations. Using the phase shifts given in
Table 5, we find:

AT = −1.002 and AS = 2.942. (58b)

Table 5. Low-energy P-wave phase shifts for electron-hydrogen scattering.

State k1 = 0.04 k2 = 0.05
1P 0.001303692 0.001963464
3P 0.001564346 0.002469346

These value compare reasonably well with the results AT = −1.3 and AS = 1.6 obtained in [25]
by using the phase shifts obtained by the method of polarized orbitals [6]. The results in [6] are not
accurate enough because of lack of any variational principle which is the reason for discrepancy.

For L equal to 1 and greater than 1, the first term in the expansion of tan η(k) is always proportional
k2 as given below:

tan η(k) =
παk2

(2L− 1)(2L + 1)(2L + 3)
− Ak2L+1. (58c)
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For L = 0, the expansion is complicated and involves terms like k, k2, ln(k), and the effective range.
It is given in Equation (49) of reference [25].

5. Photoabsorption

It was pointed out by Wildt [26] that the opacity in the sun is due to the absorption of photons:

hv + H− = H + e,

hv + He = He+ + e.
(59)

The photoabsorption or photodetachment cross section (in length form and in units of (a2
0) for a

transition from an initial state ‘i’ to the final state ‘f ’ is given by:

σ = 4π αkω| 〈 Ψf | z1 + z2 | Φi 〉|2, (60)

where α is the fine structure constant, k is the momentum of the outgoing electron, and ω is the energy
of the incident photon:

ω = I + k2, (61)

where I is the ionization of the system absorbing the photon and k2 is the energy of the ejected electron.
The Hylleraas-type normalized function Φi is the ground-state wave function of the two-electron
systems and it is given by:

Φi =
1√
8π2 ∑ Clmn[e−ar1−br2 rl

1rm
2 ± (1↔ 2)]rn

12. (62)

The upper sign refers to the singlet states and the lower sign refers to the triplet states. In the
Table 6, the photodetachment cross sections of H−[27] are given for a few values of k, momentum of
the ejected electron. These results have been obtained without the short-range correlations. They are
compared in Table 6 with those obtained by Bell and Kingston [28] who used the method of polarized
orbitals. Their results are higher than those obtained using the variational approach [27]. Addition of
short-range correlations in the final state wave function gave improved results for cross sections, given
in Table 7. However, we find that at low energies the cross sections do not change considerably, showing
that at low-energies the long-range correlations are more important than the short-range correlations.

Table 6. Photodetachment cross sections (Mb) of the ground state of H−, without short-range
correlations [27] and comparison with those obtained by Bell and Kingston [28].

K Nω = 220 286 364 Ref. [28]

0.01 0.0243 0.244 0.0245
0.05 2.7015 2.7148 2.7480
0.1 15.2147 15.2324 15.2465 12.34
0.2 38.3763 38.3675 38.3688 40.48
0.3 34.9783 34.9806 34.9684 36.40
0.4 24.2498 24.2472 24.2537 25.296
0.5 15.8663 15.8699 15.8692 16.43
0.6 10.4972 10.4942 10.4924 11.29
0.7 7.1234 7.1243 7.1258

0.74 6.1508 6.1521 6.1530
0.8 4.9762 4.9769 4.9768 5.31

0.8544 4.1423 4.1425 4.1421
0.8631 4.0230 4.0228 4.0224
0.8660 3.9852 3.9851 3.9846
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Table 7. Photodetachment cross sections (Mb) of the ground state of H−, with short-range correlations
included in the final state [27].

K Nω = 220 286 364

0.04 1.4464 1.4545 1.4750
0.05 2.7050 2.7185 2.7517
0.1 15.2526 15.2704 15.3024
0.2 38.5516 38.5429 38.5443

0.23 39.5764 39.5927 39.6366
0.25 39.0699 39.0925 39.1350
0.3 35.2420 35.2443 35.2318
0.4 24.4734 24.4709 24.4774
0.5 16.0830 16.0866 16.0858
0.6 10.7459 10.7428 10.7410
0.7 7.4837 7.4847 7.4862

0.74 6.6050 6.6063 6.6072
0.800 5.6506 5.6514 5.6512
0.8544 4.1426 4.1425 4.1421
0.8631 6.8980 6.8984 6.8976
0.8660 7.6229 7.6230 7.6223

Ohmura and Ohmura [29], using the effective range theory and the loosely bound structure of
hydrogen ion, obtained:

σ =
6.8475x10−18γk3

(1− γρ)(γ2 + k2)3 cm2. (63)

where γ = 0.2355883 and ρ = 2.646 ± 0.0004, γ is the square root of the binding energy of the electron
and ρ is the effective range. The cross sections obtained using the effective-range theory are higher
than those obtained in [27]. However, at low energies they are close to each other. Photodetachment
cross sections for H−are shown in Figure 1 from Ref. [27].
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Figure 1. Photodetachment of detachment of a hydrogen ion. The lowest curve is obtained only
when the long-range correlations are included; the middle curve is obtained when the short-range and
long-range correlations are included. The top [27] curve is obtained when the effective range theory
and the loosely bound structure of hydrogen ion used [29].

A similar calculation, including short-range and long-range correlations, has been carried out
for the photoionization of He [27]. The results, given in Table 8, agree well with those obtained using
the R-matrix approach [30] and the experimental results of Samson et al. [31]. Photoionization cross
sections for Li ion have also been calculated and they are also given in [27].
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Table 8. Photoionization cross sections (Mb) of He [27] obtained with correlations.

k N! = 120 165 220 Ref. [30] Ref. [31]

0.1 7.3319 7.3305 7.3300 7.295 7.44
0.2 7.1563 7.1549 7.1544 7.115 7.13
0.3 6.8733 6.8720 6.8716 6.838 6.83
0.4 6.4965 6.4953 6.4951 6.474 6.46
0.5 6.0471 6.0461 6.0461 6.006 6.02
0.6 5.5929 5.5924 5.5925 5.535 5.55
0.7 5.0121 5.0118 5.0120 4.985 5.04
0.8 4.4738 4.4738 4.4740 4.482 4.51
0.9 3.9647 3.9648 3.9649
1.0 3.4652 3.4654 3.4654 3.476 3.48
1.1 3.0205 3.0206 3.0206 3.023 3.00
1.3 2.2560 2.2561 2.2561 2.271 2.19
1.4 1.9820 1.9821 1.9821 1.943 1.89
1.5 1.6816 1.6817 1.6817
1.6 1.6324 1.6329 1.6329

We notice that in the limit k→ 0, the photodetachment cross section for H− goes to zero because
the plane wave is normalized as sin(kr)/kr which is equal to 1 for r → 0, while the photoionization cross
section of He goes to a finite value because of the final state Coulomb wave, which is proportional to

1√
k

for r → 0.

6. Recombination Rates

Knowing the photoabsorption cross sections, we can calculate radiative attachment rate
coefficients which are important in the solar and astrophysical problems.

e + H → H− + hv

e + He+ → He + hv
(64)

The attachment cross section σa is given by:

oa = (
hv
c
)

2 1
2mE

g( f )
g(i)

σ. (65)

This relation follows from the principle of the detailed balance. The weight factors in the initial
and final states are g(i) and g(f ), E = k2 is the energy of the electron, and kB is the Boltzmann constant
in Equation (66), which gives the rate coefficient:

αR(T) =
(2S + 1)10.2509x1010

(T)1.5

∞w

0

dE(E + I)2σe−E/kBT . (66)

In Table 9, the rate coefficients for the singlet states of H−, He, and Li+ are given at various
temperatures [27]. We see that the rate coefficients for H− and Li+ ions increase with temperature,
attain a maximum value and then decrease, while in He atoms they decrease monotonically with the
increase of the temperature.
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Table 9. Recombination coefficients (cm3/s) for singlet states of H−, He, and Li+ [27].

T αR(T) × 1015, H− αR(T) × 1013, He αR(T) × 1013, Li+

1000 0.99 2.50 0.12
2000 1.28 2.39 1.04
5000 2.40 1.87 2.62
7000 2.82 1.66 2.92

10,000 3.20 1.45 3.03
12,000 3.37 1.35 3.02
15,000 3.56 1.23 2.95
17,000 3.65 1.17 2.89
20,000 3.75 1.10 2.79
22,000 3.79 1.05 2.73

250,000 3.83 0.99 2.63
30,000 3.83 0.92 2.49
35,000 3.77 0.87 2.36
40,000 3.67 0.82 2.25

Photoabsorption cross sections for excited states of the above systems and the recombination rate
coefficients associated with these states have also been calculated [27]. In Table 10, rate coefficients for
the excited states of He atoms and Li+ ions are given. As is well known, there are no excited states
of H−, therefore no results are given for this ion. We see that the singlet and triplet states the rate
coefficients differ quite a bit.

Table 10. Rate coefficients (cm3/s) for (1s2s) 3S and (1s2s) 1S singlet excited states of He atom and Li+

ion [27].

T
He Li+

αR(T) × 1014, 3S αR(T) × 1015, 1S αR(T) × 1014, 3S αR(T) × 1014, 1S

1000 2.13 8.27 4.68 2.99
2000 2.08 7.97 4.47 2.87
5000 1.73 7.30 3.48 2.27
7000 1.56 5.71 3.09 2.03

10,000 1.40 5.05 2.68 1.78
12,000 1.32 4.73 2.49 1.66
15,000 1.23 4.35 2.26 1.52
17,000 1.18 4.15 2.14 1.45
20,000 1.12 3.90 1.98 1.36
22,000 1.09 3.75 1.90 1.31
25,000 1.04 3.57 1.79 1.24
30,000 0.98 3.31 1.64 1.15
35,000 0.93 3.10 1.52 1.08
40,000 0.89 2.93 1.43 1.02

7. Excitation of the 2S State

Cross section for excitation of the 2S state of atomic hydrogen at low incident electron energies
has been carried out using different methods. We mention a few: Burke et al. [32] used close-coupling
approximation retaining 1s, 2s, and 2p eigenstates. Callaway et al. [33] carried out calculations in
the range 12 to 54 eV using 11-state expansion including seven pseudostates. A similar calculation
in the above energy range has been carried by Callaway et al. [34] using six-state close-coupling
expansion including an optical potential. The results of these calculations are essentially based on the
close-coupling approximation. Scott el al. [35] used the standard R-matrix close-coupling method using
nine-state basis, consisting of three eigenstates and six pseudostates. Poet [36] carried out calculations
by assuming spherically symmetric wave functions. Lloyd and McDowell [37] used the method of
polarized orbitals for the first three partial waves and Bessel functions for the higher partial waves.
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All these results are different from each other. Even though the hydrogen atom is the simplest system,
it seems it is not easy to get exact cross sections for excitation. Excitation cross sections have been
calculated using the variational method of polarized orbitals [13]. The excitation cross section [38]
from state ‘i’ to state ‘f ’ is given by:

σ =
k f

ki

w ∣∣∣Tf i

∣∣∣2dΩ. (67)

where ki and kf are the initial and final momenta and Tfi is a matrix element given by:

Tf i = −(1/4π)
〈

ψ f

∣∣∣V∣∣∣Ψi

〉
. (68)

The interaction potential is:

V = −2Z
r1

+
2

r12
(69)

The initial state wave function Ψi, in principle, is an exact solution of the Schrödinger equation [38].
Using this method, excitation cross sections have been calculated in the energy range 10.30 to 54.5 eV
by using nine partial waves to get convergence, which is good up to the fifth and sixth decimal places
for low energies, while at high energies it is good up to the third decimal place [38]. Some of the
results of the various calculations are given in Table 11. The maximum of the cross section 0.137 πa2

0 at
11.4 eV which is close to the experimental result 0.163 ± 0.2 πa2

0 at 11.6 ± 0.2 eV of Kauppila et al. [39].
There is a minimum of the cross section at 16.46 eV and another maximum at 34.82 eV, as shown in
Figure 2 from Ref. [38]. Differential and spin cross sections have also been calculated [38].
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Table 11. Excitation cross sections (πa2
0) obtained in using variational polarized orbital method [40]

and comparison with the results of other calculations.

K Hybrid Theory [38] Lloyd and McDowell [37] Burke et al. [32] Callaway [33]

0.87 6.8208(-2)
0.90 1.3589(-1) 0.1789 0.09918

0.904 1.3667(-1)
0.905 1.3673(-1)
0.906 1.3662(-1)
0.907 1.3660(-1)
0.98 9.9106(-2) 0.161
1.00 8.9474(-2) 0.1443 0.1783 0.154
1.02 8.1852(-2) 0.150
1.05 8.4057(-2) 0.142
1.10 6.9444(-2) 0.1654 0.135
1.20 7.3317(-2) 0.1349 0.111
1.50 8.5797(-2) 0.0891 0.087
1.60 8.4611(-2) 0.081
1.80 7.1804(-2) 0.074
2.00 6.9460(-2) 0.1198 0.06355 0.066

8. Lyman-Alpha Radiation

When the transition (2p- > 1s) takes place, we get electric dipole Lyman-alpha radiation which has
a wavelength of 1216 A0 in H atoms and 304 A0 in He atoms. This radiation has been seen from the sun
and from various astrophysical sources, and also from the Milky Way galaxy [41]. In most calculations,
the 2p state is excited by electron impact. However, photoexciation is also possible: instead of leaving
the target in the 1s state, it is left in the 2p state. The outgoing electron can then be in the final state
lf = 0 or 2. In the dipole approximation, the cross section is:

σ = 4παkω
3(2li+1) (|M0|2 + |M2|2) . (70)

The matrix element M is defined as:

M = (2l f + 1)0.5|〈Ψ f |z1 + z2|Φi〉|. (71)

In Table 12, we give photoabsorption cross sections [40] for two-electron systems for various
values of the outgoing electron leaving the photoionized target in 2p 2P state. The calculation in this
problem has been carried out using only the exchange approximation for the final continuum states.
No short-range and long-range correlations have been included in this calculation. The purpose was to
show that the cross sections are significant and this process should be considered along with excitation
by electron impact. Photoabsorption cross sections when the final state is 2s 2S instead of 2p 2P are also
given in [40], along with the recombination rate coefficients.
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Table 12. Photoabsorption cross sections (Mb) of the H anion, He, Li+, Be2+, and C4+. The final state is
the 2P state [40].

K H− He Li+ Be2+ C4+

0.1 1.2511 3.4706(-2)
0.2 1.6983 2.2972(-2) 3.8740(-3) 6.9296(-3) 1.8170(-4)
0.3 1.6578 3.0459(-2) 3.8183(-3) 6.7374(-3) 1.8144(-4)
0.4 1.1709 2.7627(-2) 3.7482(-3) 6.4820(-3) 1.8104(-4)
0.5 6.4369(-1) 2.4948(-2) 3.6694(-3) 6.1657(-3) 1.8048(-4)
0.6 4.4867(-1) 2.2717(-2) 3.5894(-3) 5.8193(-3) 1.7987(-4)
0.7 4.1448(-1) 2.1120(-2) 3.5102(-3) 5.4450(-3) 1.7916(-4)
0.8 3.5327(-1) 2.0058(-2) 3.4337(-3) 5.0471(-3) 1.7836(-4)
0.9 2.6847(-1) 1.9375(-2) 3.3712(-3) 4.6498(-3) 1.7505(-4)
1.0 1.508(-1) 1.8811(-2) 3.3083(-3) 4.2507(-3) 1.7641(-4)
1.1 1.8219(-2) 3.2481(-3) 3.8543(-3) 1.7552(-4)
1.2 1.7409(-2) 3.1894(-3) 3.4825(-3) 1.7437(-4)
1.3 1.6392(-2) 3.1220(-3) 3.1270(-3) 1.7322(-4)
1.4 1.5181(-2) 3.0533(-3) 2.8077(-3) 1.7198(-4)
1.5 1.3866(-2) 2.9777(-3) 2.4963(-3) 1.7072(-4)
1.6 1.2498(-2) 2.8919(-3) 2.2171(-3) 1.6963(-4)
1.7 1.1158(-2) 2.7898(-3) 1.9516(-3) 1.6819(-4)
1.8 9.8391(-3) 2.6849(-3) 1.7123(-3) 1.6678(-4)
1.9 8.6095(-3) 2.5735(-3) 1.4960(-3) 1.6521(-4)
2.0 7.4791(-3) 2.4546(-3) 1.3015(-3) 1.6371(-4)

9. Positron-Hydrogen Scattering

It should be noted that for positron-hydrogen scattering Φpol has a positive sign instead of the
negative sign as in the case of electron-hydrogen scattering:

Φpol(
→
r 1,
→
r 2) = φ0(

→
r 2) +

χST(r1)

r2
1

u1s→p(r2)

r2

cos(θ12)√
πZ

. (72)

In Table 13, we compare phase shift for S-wave scattering obtained in [42] using 35-term correlation
functions with those obtained using 84-term correlation functions where projection operators were
used [43]. With shorter expansions, improved results have been obtained, as also indicated in Figure 3
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The scattering length is −2.10258. Using the correction given in Equation (54), we find the
scattering length is −2.104004 which agrees with −21036 ± 0.0004 obtained by Houston and
Drachman [44], and with −2.103 ± 0.001 obtained by Humberston and Wallace [45].

Table 13. Comparison of phase shifts (radians) for e+-H scattering for various k obtained in [42] with
those obtained in [43].

k Hybrid Theory [42] P, Q Projections [43] Zeff

0.1 0.14918 0.1483 8.092
0.2 0.18803 0.1877 5.357
0.3 0.16831 0.1677 4.264
0.4 0.12083 0.1201 3.370
0.5 0.06278 0.0624 2.424
0.6 0.00903 0.0039 2.249
0.7 −0.04253 −0.0512 2.069

10. Zeff

There is a possibility of positronium annihilation for which the cross section is given by:

σa(πa2
0) = Ze f f α3/k. (73)

Annihilation takes place with the emission of two gamma rays [46]. For hydrogen:

Ze f f =
x

d
→
r 1d
→
r 2

∣∣∣ΨL(
→
r 1,
→
r 2)
∣∣∣2δ(

→
r 1,
→
r 2). (74)

The normalization of the scattering function for r1 → ∞ is given by:

uL(r1) = [4π(2L + 1)]0.5 sin(kr1 −
Lπ

2
+ η)/k. (75)

11. Positronium Formation

Positronium formation takes place when the incident positron captures an electron of the
hydrogen target:

e− + H(1s)→ Ps + P. (76)

Zeff and positronium formation have been calculated [42] using hybrid theory. The results for Zeff
are given in Table 13 and positronium formation cross sections are given in [42]. A similar calculations
have been carried out for P-wave scattering. Zeff and positronium formation cross sections have also
been calculated [47].

12. Conclusions

In summary, we have used an approximation for scattering calculations in which the long-range
and short-range correlations have been included at the same time variationally. The phase shifts for
electron and positron scattering have a lower bound to the exact phase shifts. We have used these
continuum functions to calculate resonance parameters, photoabsorption, and excitation cross sections,
Zeff and positronium formation cross sections. The results are in agreement with those obtained in
other calculations.
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