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Abstract: Cross sections for rotational excitation and de-excitation of the HeH+ ion by an electron
impact are computed using a theoretical approach that combines the UK R-matrix code and the
multi-channel quantum defect theory. The thermally-averaged rate coefficients derived from the
obtained cross sections are fitted to an analytical formula valid for a wide range of temperatures.
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1. Introduction

Cross sections for the electronic, rotational, and vibrational excitation of molecules in collisions
with electrons are important for understanding and modeling various plasma environments, such as
the interstellar medium (ISM), planetary ionospheres and exospheres, in plasma processing and
de-pollution technologies, and others. Measuring cross sections experimentally for such processes
is usually difficult and expensive. However, theoretical methods for electron–molecule scattering
together with abundant computational resources have made it possible to obtain reliable cross sections
numerically, at least for diatomic and small polyatomic molecules.

The excitation of rotational and vibrational states of molecular ions has been studied theoretically
for several decades. In particular, in one of the earliest studies of this kind, Boikova and
Ob’edkov [1] considered the process using the Coulomb–Born approximation for the low-energy region.
The first-order perturbation theory was applied, and a general analytical formula was derived in which
dipole and quadrupole moments of the target ion determine the cross section for rotational excitation,
while derivatives of the moments with respect to nuclear distances determine the cross section for
vibrational excitation. The direct non-resonant excitation mechanism of the molecules was assumed to
maintain the validity of the Born–Oppenheimer approximation for such processes. Later, Chu and
Dalgarno [2] applied the same Coulomb–Born approximation to compute rate coefficients for the
rotational excitation j = 0→ j′ = 1 of the CH+ ion.

Flower [3] applied the semi-classical approximation and the time-dependent perturbation theory
to the j = 0 → j′ = 1 transition for CH+ and HeH+. The rotation of the target molecule was
quantised, while the motion of the incident electron was treated classically. The applicability of method
is restricted to incident electron energies Eel & 2(Ej′ − Ej), where Ej and Ej′ are the energies of the
rotational states of the target ion.

In a series of publications, Rabadan et al. [4–6] modified the method developed by Chu and
Dalgarno [2] for diatomic molecules. In their approach, the scattering matrix is obtained from first
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principles using the R-matrix approach [7], rather than from the Coulomb–Born approximation.
Similarly to Flower [3], cross sections for rotational excitation of CH+ and HeH+, as well as for
NO+ [4,5] are computed. However, as in the other studies mentioned above, the method does
not account for near-threshold effects and assumes that different rotational levels are degenerate.
In particular, it does not account for Rydberg resonances associated with closed rotational states of the
neutral molecule, such as rotational Rydberg resonances of the HeH molecule in the case of e−-HeH+

collisions. As it was shown later [8,9], this assumption is not appropriate if the incident electron couples
strongly different rotational states of the target ion. In such a situation, the near-threshold effects
should be accounted for to produce accurate rate coefficients at temperatures below 150 K. To address
this problem, in Reference [10] the authors extrapolated the numerically-obtained cross sections down
to the threshold using Wigner’s threshold law, producing more accurate results compared to those
obtained from a kinetic scaling of the previous -matrix study [6] on HeH+ and CH+. However,
closed-channel effects associated with rotational resonances were still neglected in this study [10].

The theoretical method accounts for near-threshold effects, including rovibrational Rydberg
resonances, and makes use of first-principle calculations (or experimental spectroscopic data if
necessary), and is based on (1) the electron–molecule scattering matrix computed for fixed positions
of nuclei (molecular-frame scattering matrix), (2) the idea of the rotational frame transformation [11],
and (3) the molecular quantum defect theory (QDT) [12,13], which makes it possible to evaluate the
scattering matrix in the laboratory frame (with respect to which the molecule rotates) and excitation
cross sections. This method will be referred to below as the QDT method. It has been used in slightly
different implementations in theoretical studies of rotational excitation for several molecular ions:
H+

2 [14,15], H+
3 [16], HeH+ [17], and CH+ [18].

The molecular-frame scattering matrix in the QDT method can be evaluated in different ways.
For example, in Reference [16], in calculations of the rotational excitation of H+

3 , the matrix was
obtained by extrapolating quantum defects extracted from ab initio calculations of excited electronic
states of H3 for several internuclear geometries of the molecule. A similar method for the evaluation of
the scattering matrix was used by Takagi et al. [19–22] in the study of the dissociative recombination of
HeH+. Another way to obtain the molecular-frame scattering matrix is to perform electron scattering
calculations directly, using first principles. In a recent study [10], Čurík and Greene employed the
molecular scattering matrix computed directly using the UK R-matrix method [7] in the calculation of
the rotational excitation cross sections in e−-HeH+ collisions.

In the present study, we discuss a general theoretical approach for the determination of
rotational excitation cross sections for collisions of electrons with molecular ions at low scattering
energies. A detailed derivation of the theory is presented for symmetric-top and linear target ions.
A generalization to asymmetric top polyatomic targets is straightforward. We apply the method
to the benchmark e−-HeH+ system and compute cross sections and rate coefficients for excitation
and de-excitation of the ion from the five lowest rotational states. The HeH+ ion is one of the
simplest molecular ions. It is present in helium-containing plasma, such as in fusion devices. It is
thought to be the first molecule formed in the early Universe. It has also been suggested [23–27]
that HeH+ could be detected in planetary atmospheres, white dwarfs, and the interstellar medium.
At low energies, e−-HeH+ collisions can lead to dissociative recombination, rotational excitation, or
dissociation recombination. The dissociative recombination of HeH+ has been extensively studied
both experimentally and theoretically [19–22,28]. There are no experimental measurements of cross
sections for the rotational excitation of HeH+, but there are a few previous theoretical studies [1,3,10,17].
Therefore, the present results can be compared with the previous calculations.

In the present study, essentially the same theoretical method as in Reference [17] is used to
represent the rotational excitation of HeH+, but the results for a larger number of rotational transitions
in HeH+ are obtained and an analytical fit of the thermally-averaged rate coefficients is performed,
allowing the use of the data in plasma modeling.
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The next section of the article presents the theoretical approach. In Section 3 we discuss the cross
sections and rate coefficients obtained for the e−-HeH+ collisions. Section 4 summarizes the obtained
results. Finally, in Appendix A, details of the theoretical derivation of the main formulas of Section 2
are provided.

2. Theoretical Approach

A detailed derivation of the present theory is given in Appendix A. Here, we discuss only the
main steps in the implementation of the approach.

As the first step in the calculation, the body-frame e−-HeH+ reactance matrix K̂Λ is determined.
For rotational-excitation transitions without changing the vibrational state of the target, the reactance
matrix can be evaluated using just one internuclear distance corresponding to the equilibrium position
of the target ion, Req = 1.445 bohr for HeH+. The ground electronic state of the HeH+ ion is X1Σ+

with the Hartree–Fock electronic configuration of 1σ2. The matrix is obtained numerically using the
UK R-matrix code [7,29]. Performing the scattering calculations, the R-matrix sphere of radius 10 bohr
is used. Initially, several basis sets, including 6-311G*, DZP, and cc-pVTZ, were tested to investigate
the stability of target properties such as dipole moment and ground state energy. Finally, the cc-pVTZ
basis set was selected to perform the final calculations. A multicentered configuration interaction wave
function expansion was used in the inner region, including two target states. The e−-HeH+ reactance
matrix is smooth at low electron energies, and the lowest electronic resonance appears at about 4 eV at
geometries near the equilibrium.

At electron energies below the first excited electronic state of the target ion, different channels of
the body-frame reactance matrix are labeled with partial wave labels, including the angular momentum
quantum number l and its projection λ of the molecular axis. The matrix is block-diagonal, where each
block corresponds to a given projection Λ of the total angular momentum (ion+electron) of the system.
Thus, in practice, the body-frame reactance matrix is calculated separately for each Λ. At low scattering
energies, below 10 eV, the target ion can only be in the ground electronic state 1Σ+. Therefore, in the
present calculations, the projection of the electronic angular momentum in a given channel is equal to Λ.

The reactance matrix is used to compute the body-frame scattering matrix

ŜΛ =
1̂ + iK̂Λ

1̂− iK̂Λ
, (1)

where 1̂ is the identity matrix. The laboratory-frame scattering matrix is then obtained by the
transformation [30]

S J
j′µ′ l′ ;jµl = ∑

λλ′
(−1)l′+λ′+l+λCj′µ′

l′−λ′ JΛ′C
jµ
l−λJΛSΛ

l′λ′ ;lλ , (2)

where J is the total angular momentum of the e−-HeH+ system, j, µ and j′, µ′ are the angular momenta
with their projections on the molecular axis of the target before and after the rotational excitation of

HeH+, and Cj′µ′

l′−λ′ JΛ′ and Cjµ
l−λJΛ are Clebsch–Gordan coefficients.

The total energy E of the system is the sum E = Eel + Ejµ of the relative kinetic energy Eel and
the energy Ejµ of the initial state of the target. At a given energy E, the size No of the scattering
matrix should be equal to the number of open channels with energies below E. Therefore, No varies
with the energy depending on how many rotational states are open for a given E. However, the
scattering matrix S J in Equation (2) does not contain information about which channels are open or
closed. The actual scattering matrix SJ with the correct energy dependence is obtained from S J using
the procedure of the closed-channel elimination [31,32] according to Equation (A15) of Appendix A.
The resulting “physical” scattering matrix SJ represents properly rotational resonances associated with
the closed rotational levels of the target.
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Having the “physical” scattering matrix SJ , the cross section for the rotational excitation or
de-excitation of the linear molecule by an electron impact is given as

σj′µ′←jµ(Eel) =
1

2j + 1
π

k2
j

∑
J,l,l′

(2J + 1)
∣∣∣ei(lπ/2+σl)SJ

j′µ′ l′ ;jµle
−i(l′π/2+σl′ )

∣∣∣2 , (3)

assuming that the initial jµ and final j′µ′ rotational states are different (an inelastic process) and that
the vibrational state is not changed during the process. In the above formula, σl is the Coulomb phase
shift (see Equation (A5) in Appendix A).

3. Cross Sections and Rate Coefficients

Cross sections for electron impact transitions between the lowest five j, j′ = 0–4 rotational states
of HeH+ were computed. Note that the only allowed projection µ in Equation (3) for HeH+ in its
ground electronic state is zero. Therefore, for scattering energies below the first excited ionization
threshold of HeH+, µ = µ′ = 0 in Equation (3). Some examples are given in Figure 1. Solid lines
in the figure represent the results obtained using the complete theoretical approach described in the
previous section. The cross sections exhibit a strong resonant character. The resonances are produced
by closed rotational states of the target. These resonances are washed out when thermally-averaged
rate coefficients are computed. Therefore, in the calculation of the rate coefficients, one can use cross
sections averaged over the resonances. Such averaged cross sections can be computed directly from
the energy-independent scattering matrix S J , replacing in Equation (3) the matrix elements SJ

j′µ′ l′ ;jµl of

the physical scattering matrix with the corresponding elements S J
j′µ′ l′ ;jµl of the energy-independent

matrix. The cross sections calculated using the energy-independent scattering matrix are shown by
dotted lines in Figure 1. Due to the overall 1/Eel dependence of the cross sections as a function of the
collision energy, it is convenient to see the products k2

j σj′µ′←jµ, which could be viewed as excitation
probabilities. They are shown in Figure 2. It is evident that the excitation probabilities obtained in the
full treatment, including the closed-channel elimination, oscillate near the averaged value obtained in
the treatment without considering the closed channels (i.e., from the energy-independent scattering
matrix S J).

The obtained averaged rate coefficients are shown in Figure 3. They are compared with recently
published data for the j = 0↔ j′ transitions: dotted lines are the calculations by Hamilton et al. [10]
and the dashed lines are those of Čurík and Greene [17]. The agreement between the three sets of
calculations are perfect to the 0↔ 2 transitions, while for the 0↔ 1 transitions the rate coefficients of
Reference [10] are somewhat larger than the present result and the one from Reference [17]. For the
0↔ 3 transitions, the coefficients of Reference [17] are somewhat larger than the present result and
the one from Reference [10]. For the 0↔ 4 transitions, the coefficients from the two other calculations
agree with each other and are slightly larger than the present result.

The thermally averaged coefficients at low temperatures are sensitive to exact positions and widths
of the lowest resonances, because the averaging integral over thermal velocities at low temperatures
T is determined only by the small collision energies, Eel ∼ kBT. For example, the actual value of
the cross sections for the j = 1 → j′ = 0 and j = 2 → j′ = 1 transitions in Figure 1 depends
strongly on the position and the widths of the lowest resonances: at very low energies (below
2 meV), the cross sections are very different from the averaged ones shown with blue dotted lines.
Therefore, the closed-channel elimination procedure is essential at low temperatures. Computationally,
the procedure is not expensive if the number of channels is not very large (e.g., less than a thousand),
and therefore, one can use the cross sections with all resonances in calculation of the rate coefficients
for all temperatures.
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Figure 1. Rotational (de-)excitation cross sections for transitions between the four lowest rotational
states of HeH+. Solid lines represent the results obtained with the applied closed-channel elimination
procedure of Equation (A14), while the dotted lines show the results for which the procedure was
not applied.
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Figure 2. Rotational (de-)excitation probabilities for transitions between the four lowest rotational
states of HeH+. Solid lines represent the results obtained with the applied closed-channel elimination
procedure, while the dotted lines show the results for which the procedure was not applied.
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Figure 3. Rate coefficients (solid lines) for transitions from the four lowest rotational states of
HeH+, j = 0, · · · , 3 rotational states. Dotted lines in the upper left panel are the calculations by
Hamilton et al. [10], and the dashed lines are those of Čurík and Greene [17]. For the 0→ 1 transition,
the dashed and solid lines overlap. For the 0→ 2 transition, the curves for all three calculations overlap.
For the 0→ 3 transitions, the dotted and solid lines overlap. For the 0→ 4 transitions, the dotted and
dashed lines overlap.

Due to the general 1/Eel-dependence of cross sections σj′←j, the calculated rate coefficients behave

as 1/
√

T for de-excitation and exp
(
−∆j′ j/T

)
/
√

T for excitation transitions, where ∆j′ j = Ej′µ′ − Ejµ

(with µ = µ′ = 0 for the present case) is the excitation energy. Therefore, similarly to References [16,33],
for convenience of use, the rate coefficients are fitted to the formula

α
f it
j′←j(T) =

1√
T

e−
∆j′ j

T P f it
j′ j (x) , (4)

where Pj′ j(T) are smooth functions of temperature and represented by the quadratic polynomial

P f it
j′ j (x) = a0 + a1x + a2x2 and x = ln(T) , (5)

where ∆j′ j is the threshold energy defined as

∆j′ j =

{
Ej′ − Ej > 0 for excitation ,
0 for (de-)excitation .

(6)

The numerical parameters given in Table 1 are such that when used in Equations (4) and (5) along
with the temperature T expressed in kelvin, the obtained numerical value of the rate coefficient in
Equation (4) will be in units of cm3/s.
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Table 1. Parameters a0, a1, and a2 of the polynomial P f it
jj′ (x) of Equations (4) and (5) for several pairs

of initial and final rotational states for de-excitation j ← j′ of HeH+, with j < j′. The probabilities
P f it

j′ j (x) for the opposite (excitation) process, j→ j′, are obtained from P f it
jj′ (x) multiplying them with

the factor (2j′ + 1)/(2j + 1) (see Equation (7)). For convenience, we also specify (the second column)
the threshold energy ∆j′ j in units of temperature (K) for the excitation process of the corresponding
pair. For the de-excitation processes, ∆j′ j = 0.

j← j′ ∆j′ j (K) a0 a1 a2

0← 1 96 0.41 × 10−5 −0.18 × 10−6 −0.15 × 10−8

0← 2 289 0.37 × 10−5 −0.14 × 10−7 0.85 × 10−9

0← 3 578 0.57 × 10−7 0.33 × 10−9 −0.96 × 10−10

0← 4 964 0.44 × 10−9 −0.20 × 10−11 0.77 × 10−12

1← 2 192 0.73 × 10−5 −0.83 × 10−6 0.37 × 10−7

1← 3 482 0.48 × 10−5 −0.93 × 10−8 0.38 × 10−9

1← 4 868 0.75 × 10−7 0.35 × 10−9 −0.98 × 10−10

2← 3 289 0.57 × 10−5 −0.19 × 10−6 −0.10 × 10−7

2← 4 675 0.53 × 10−5 0.61 × 10−9 −0.39 × 10−9

3← 4 385 0.32 × 10−5 0.56 × 10−6 −0.61 × 10−7

Due to the detailed balance principle, the probabilities for the direct P f it
j′ j (x) (j′ ← j) and the

inverse P f it
jj′ (x) (j← j′) processes are related to each other by the relative degeneracy factor

P f it
j′ j (x) =

2j′ + 1
2j + 1

P f it
jj′ (x) . (7)

The coefficients ai (i = 0, 1, 2) are obtained numerically for each pair of transitions j′ ↔ j and are
given in Table 1.

4. Conclusions

In this study, cross sections and thermally-averaged rate coefficients for electron impact rotational
transitions in HeH+ are computed for the five lowest rotational levels of HeH+ using the UK R-matrix
method combined with the multichannel quantum defect theory (MQDT). Our improved channel
elimination procedure removes this ambiguity to evaluate accurate results at low energy (<0.01 eV).
This and our previous study [33] make us believe that once the collisional excitation cross section
data is available, the analysis of the intensities of infra-red and microwave regions can provide
information for the diagnostics of tokamak, as well as the study of planetary atmospheres and of the
interstellar medium.

With certain modifications accounting for a different threshold behavior of the cross section at low
collision energies, the present theoretical approach can be extended for collisions between an electron
and a neutral molecule. These developments will be published later.
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Appendix A

This section provides details on the formulas used for the cross section calculations.
First, rotational and electronic states of the target ion are introduced as:

φjµmj =

√
2j + 1
8π2

[
Dj

mjµ(Ω)
]∗

ω(r2), (A1)

where j, mj, and µ are the angular momentum of HeH+ and its projections in the laboratory frame
(LF) and the molecular frame (MF), respectively. The function ω(r2) specifies the two-electron wave
function of HeH+, which depends on µ. Dj

mjµ(Ω) is the Wigner function depending on three Euler
angles, which are called collectively by symbol Ω. The vibrational state of the target ion is not specified
(i.e., pure rotational transitions are considered). We assume that the incident electron plane wave
propagates along the z-axis in the LF with a wave vector of magnitude k j. The complete scattering
wave function Ψjµmj of the system in the asymptotic region is given by the sum of the contributions due
to the pure Coulomb field ψC and the short-range potential Vsr, representing the difference between
the actual e−+HeH+ interaction and the Coulomb potential, as follows [34]:

Ψjµmj → ψC(k j,~r)φjµmj+
1
r ∑j′µ′mj

′ exp
[
i(k j′r− η′ ln{2k j′r})

]
f j′µ′mj

′←jµmj
(~k j′)φj′µ′mj

′ ,
(A2)

where η′ = −1/(k j′ h̄
2) is the Sommerfeld parameter. In the above expression, energetically open

channels are labeled by the quantum numbers j′ and µ′; f j′µ′mj
′←jµmj

(~k j) denotes the differential
amplitude for scattering from state {j, µ, mj} to {j′, µ, m′j}. The amplitude includes only the
contributions due to Vsr . We assume that the incident wave in ψC is a plane wave for large r,
such that the incident current density is k j. Similar to Reference [30], channel functions with a definite
total angular momentum~J =~l +~j and its projection M = ml + mj in the LF are introduced:

ΦJM
jµl =

√
2j + 1
8π2 ω(rN−1)

l

∑
ml=−l

j

∑
mj=−j

C JM
lml jmj

[
Dj

mjµ(Ω)
]∗

Ylml
(r̂) , (A3)

where l and ml are the incident electron angular momentum and its projection in the LF. The scattering
state of Equation (A1) takes the form

Ψjµmj →
2πi

r
√

kj
∑JM ∑lml

Ylml
(k̂ j)ileiσl ∑j′ l′

C JM
lml jmj√

kj′
ΦJM

j′µ′ l′×[
δj′ jδµ′µδl′ le

−iθj′ (r) − SJ
j′µ′ l′ ;jµle

iθj′ (r)
]

,
(A4)

with θj′(r) = k j′r− l′π
2 − η′ ln(2k j′r) + σl′ and σl′ = arg Γ (l′ + 1 + iη′) . (A5)

The pure Coulomb scattering wave function can be written in a similar form:

ψC(k j,~r)φjµmj →
2πi

r
√

kj
∑JM ∑lml

Ylml
(k̂ j)ileiσl ∑j′ l′

C JM
lml jmj√

kj′
ΦJM

j′µ′ l′×[
δj′ jδµ′µδl′ le

−iθj′ (r) − δj′ jδµ′µδl′ le
iθj′ (r)

]
.

(A6)

The difference between Equations (A4) and (A6) gives the last term in Equation (A2):

∑mj
′ exp

[
i(k j′r− η′ ln{2k j′r})

]
f j′µ′mj

′←jµmj
(~k j′)φj′µ′mj

′ =

2πi√
kj

∑JM ∑lml
Ylml

(k̂ j)ileiσl ∑l′
C JM

lml jmj√
kj′

ΦJM
j′µ′ l′

(
δj′ jδµ′µδl′ l − SJ

j′µ′ l′ ;jµl

)
eiθj′ (r) .

(A7)
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Moving the exponent factor to the right-hand side, we obtain

∑mj
′ f j′µ′mj

′←jµmj
(~k j′)φj′µ′mj

′ =

2πi√
kj

∑JM ∑lml
Ylml

(k̂ j)∑l′
C JM

lml jmj√
kj′

ΦJM
j′µ′ l′ i

leiσl
(

δj′ jδµ′µδl′ l − SJ
j′µ′ l′ ;jµl

)
eiσl′ i−l′ .

(A8)

Multiplying both sides of the above equation with φj′µ′m̃′j
, integrating over electronic coordinates

r2 of the target and the angles Ω, we obtain the scattering amplitude for the transition jµmj → j′µ′m̃′j:

f j′µ′m̃′j←jµmj
(~k j′) =

2πi√
kj

∑JM ∑lml
Ylml

(k̂ j)∑l′m′l

C JM
lml jmj√

kj′
C JM

l′m′l j′m̃′j
Yl′m′l

(θϕ)ileiσl
(

δj′ jδµ′µδl′ l − SJ
j′µ′ l′ ;jµl

)
eiσl′ i−l′ .

(A9)

To make notations slightly more uniform, in the equations below, we use symbol m′j instead of
m̃′j. The cross section for rotational excitation σj′µ′←jµ(Eel) averaged over initial projections mj and
summed over final projections m′j = m̃′j is obtained as follows:

σj′µ′←jµ(Eel) =
∫

sin θdθdϕ
1

2j + 1
k j′

k j
∑

mj ,m′j

∣∣∣ f j′µ′m̃′j←jµmj
(~k j′)

∣∣∣2 , (A10)

where Eel = (h̄k j)
2/(2m) is the energy of the incident electron, and θ and φ are spherical angles of the

wave vector~k j′ of the scattered electron in the LF.
Below, we assume that the incident plane wave propagates along the z-axis of the LF

(i.e., Ylml
(k̂ j) = δml ,0

√
(2l + 1)/(4π) in Equation (A9)). Therefore, the number of summation indexes

in Equation (A9) is reduced from six to five, over J, M, l, l′, and m′l . The square of the amplitude in
Equation (A10) doubles the number of summation indexes. We will refer to the additional indexes as
J̄, M̄, l̄, l̄′, and m̄l

′. With the sums over mj and m′j in Equation (A10), the number of summation indexes
becomes twelve. Due to the orthogonality of Yl′m′l

(θϕ) and Yl̄′m̄l
′(θϕ), the integral over θ and ϕ reduces

the number of summation indexes to ten with l′ = l̄′ and m′l = m̄l
′. In the remaining ten-fold sum,

the double sum over m′j and m′l is

∑
m′l ,m

′
j

C JM
l′m′l j′m′j

C J̄ M̄
l′m′l j′m′j

= δJ, J̄δM,M̄ , (A11)

which reduces the number of indexes to J, M, l, l′, l̄, and mj. Again, in the remaining sum (because
ml = m̄l = 0):

∑
mj ,M

C JM
l0jmj

C JM
l̄0jmj

=
2J + 1
2l + 1

δl,l̄ . (A12)

With the above simplifications, the cross section of Equation (A10) becomes:

σj′µ′←jµ(Eel) =
1

2j + 1
π

k2
j

∑
J,l,l′

(2J + 1)
∣∣∣ei(σl+lπ/2)SJ

j′µ′ l′ ;jµle
i(σl′−l′π/2)

∣∣∣2 , (A13)

assuming that the initial jµ and final j′µ′ states are different (i.e., an inelastic process).
For a given total energy E = Eel + Ejµ of the e−-HeH+ system, the size No of the matrix SJ

in the formula above is equal to the number of open scattering channels with energies Ej′µ′ < E.
However, the closed channels with Ej′µ′ > E, which are not included explicitly in Equation (A13),
usually significantly influence the S-matrix and the cross section. Such closed channels are taken into
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account using the “closed channel elimination” procedure [31,32]. The S-matrix in Equation (A13) is
obtained from another matrix, having a larger number of channels, including the channels that are
closed at given E. Namely, SJ in Equation (A13) is given by:

SJ = eiη̂c

[
Soo − Soc

(
Scc − e−2iβ(E)

)−1
Sco
]

eiη̂c , (A14)

where η̂c is a No × No [32] diagonal matrix with diagonal elements equal to the Coulomb phase
shift in the corresponding channel, [η̂c]i,i = − lπ

2 − η ln(2k jr) + σl . The matrices Soo, Soc, Scc, and Sco

are submatrices of the larger N × N S-matrix, which includes open and closed channels (N ≥ No).
The larger S-matrix, partitioned as:

S J =

(
Soo Soc

Sco Scc

)
, (A15)

where the partition of the matrix elements in the “o”- and “c”-parts is made on the basis whether the
corresponding channel, jµ or j′µ′, is open or closed for ionization at the total energy E. The quantity
β(E) is a diagonal Nc × Nc matrix:

β j′µ′ ;jµ(E) =
π√

2(Ejµ − E)
δj′ jδµ′µ , (A16)

and Nc = N − No is the number of closed channels.
We assume that the initial and final vibrational states of the target ion are the same. In this

situation, it is a good approximation to consider that the averaged internuclear distance in the target
ion is unchanged during the rotational excitation process and is equal to the equilibrium distance Re.
The scattering matrix S J in Equation (A15) is therefore obtained for a fixed geometry Re in the basis of
channel functions of Equation (A3). In the R-matrix calculation, the reactance matrix K is obtained in a
different basis of functions X JM

lλ [30], in which the molecule is fixed in space (i.e., the body-fixed (BF)
basis). The channel functions X JM

lλ transform into ΦJM
jµl in the following way:

ΦJM
jµl = ∑

λ

X JM
lλ (−1)l+λCjµ

l−λJΛ , (A17)

where λ is the projection of the orbital momentum l of the incident electron on the molecular axis, and
Λ is the projection of the total orbital momentum of all electrons on the molecular axis. For the HeH+

ion in the ground electronic state, λ = Λ and µ = 0. The S-matrix obtained in the BF is diagonal over
quantum numbers J and Λ. Therefore, the transformation between the S-matrices obtained in the two
bases is given by:

S J
j′µ′ l′ ;jµl = ∑

λλ′
(−1)l′+λ′+l+λCj′µ′

l′−λ′ JΛ′C
jµ
l−λJΛSΛ

l′λ′ ;lλ , (A18)

where SΛ
l′λ′ ;lλ is an element of the the BF S-matrix obtained from the reactance matrix K as:

ŜΛ =
1̂ + iK̂Λ

1̂− iK̂Λ
, (A19)

with 1̂ being the identity matrix and K̂Λ is the reactance matrix obtained numerically using the UK
R-matrix code.
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