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Abstract: Coherence properties of projectiles, found relevant in ion-atom collisions, are investigated
by analyzing the influence of the degree of coherence of the atomic beam on interference patterns
produced by grazing-incidence fast-atom diffraction (GIFAD or FAD). The transverse coherence
length of the projectiles, which depends on the incidence conditions and the collimating setup,
determines the overall characteristics of GIFAD distributions. We show that for atoms scattered from
a LiF(001) surface after a given collimation, we can modify the interference signatures of the angular
spectra by varying the total impact energy, while keeping the normal energy as a constant. Also,
the role played by the geometry of the collimating aperture is analyzed, comparing results for square
and circular openings. Furthermore, we study the spot-beam effect, which is due to different focus
points of the impinging particles. We show that when a region narrower than a single crystallographic
channel is coherently illuminated by the atomic beam, the spot-beam contribution strongly affects the
visibility of the interference structures, contributing to the gradual quantum-classical transition of the
projectile distributions.
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1. Introduction

The coherence conditions of the incident beam have been recently found to play an important
role in atomic collisions involving not only crystal surfaces [1–3] and molecules [4] as targets, but also
atoms [5,6]. These findings have renewed the interest in studying the influence of the degree of
coherence of the impinging particles on different scattering processes [7–11]. In grazing-incidence
fast-atom diffraction (GIFAD or FAD) from ordered surfaces [12,13] the observation of interference
structures in the angular distribution of the scattered projectiles relies strongly on the quantum
coherence of the atomic beam [14,15]. Consequently, the degree of coherence of the incident particles
becomes a key parameter that governs the overall features of the diffraction patterns, making GIFAD
an almost ideal benchmark to investigate this issue.

The degree of coherence of the atomic beam depends on both the collimating setup and
the incidence conditions. In Refs. [3,16,17] it was shown that the experimental collimating
scheme noticeably affects GIFAD distributions, allowing one to examine two different interference
mechanisms—inter-channel or intra-channel interferences—by varying the size of the collimating
aperture. This behavior is related to the transverse length of the surface area that is coherently
illuminated by the incident beam, whose determination is indispensable for an appropriate description
of the experimental spectra.
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In this article we present an overview of coherence-length effects in GIFAD, illustrating how
the incidence conditions, that is, the energy and mass of the projectiles [18], as well as the width of
the incidence channel, affect the general shape of GIFAD patterns obtained by employing a given
collimating setup. In addition, we study the influence of the shape of the collimating aperture
by comparing projectile distributions obtained from square and circular collimating slits. Finally,
for narrow coherent illuminations of the crystal surface, we analyze the contribution of the spot-beam
effect, which is associated with random-distributed focus points of the incident particles. Such a
spot-beam effect introduces a non-coherent background in GIFAD spectra, modifying the visibility
of the interference signatures and contributing to the transition from quantum to classical projectile
distributions [19].

From the application point of view, GIFAD is an extremely sensitive surface-analysis method
that allows one to study the electronic and morphological characteristics of a broad range of
crystal materials. It includes, among others, insulators [20], semiconductors [21], metals [22],
adsorbate-covered metal surfaces [23], graphene layers [24], and organic-inorganic interfaces [25,26].
In most of these cases, the GIFAD technique has shown to provide accurate values of different
surface parameters, such as rumpling [20,27], distances to the surface of the adsorbed atoms [28],
and corrugation heights [29,30]. But the GIFAD determination of such parameters is mainly based on
the comparison of the relative intensities of the observed diffraction peaks with those theoretically
derived, causing the visibility of the peaks to play an important role. Hence, the relevance of
present results to predict the visibility of the experimental interference structures, as well as to
contribute to the understanding of the origin of the incoherent background, which affects usual GIFAD
measurements [31].

Our study of the coherence-length effects is based on the use of the Surface-Initial Value
Representation (SIVR) approximation [32] to describe angular distributions of fast He and Ne atoms
scattered off LiF(001) along the 〈110〉 and 〈100〉 channels. Both He/LiF(001) and Ne/LiF(001) can be
considered as reference systems for GIFAD research [33,34]. On the other hand, the SIVR approach is
a semiquantum method that has proved to provide a successful description of experimental GIFAD
patterns [35–37]. It offers a clear account of the different interference mechanisms, representing a
suitable method to scrutinize the influence of the degree of coherence of the projectiles. To derive
the extent of the surface region that is coherently illuminated by the atomic beam after collimation
we resort to the Van Cittert-Zernike theorem [17,38], which is here extended to consider different
geometries of the collimating slit. This information is then used to determine the size of the coherent
initial wave packet to be evolved within the SIVR approach. In this version of the SIVR approximation
we incorporate the variation of the relative position of the focus point of the incident particles on the
crystal surface, which gives rise to the spot-beam effect.

The paper is organized as follows: The theoretical formalism, including the spot-beam
contribution, is summarized in Section 2. Results for different incidence conditions- total energy,
incidence channel and projectile mass—are presented and discussed in Sections 3.1–3.3, respectively.
In Section 4 we study the dependence on the shape of the collimating aperture, while in Section 5
the contribution of the spot-beam effect is analyzed. Finally, in Section 6 we outline our conclusions.
Parts of this article have been separately published in Refs. [18,19]. Atomic units (a.u.) are used unless
otherwise stated.

2. Theoretical Model

In usual GIFAD experiments, atoms with energies in the keV range impinge grazingly on the
surface along a low-indexed crystallographic channel, undergoing the elastic transition Ki → K f ,

where Ki (K f ) is the initial (final) momentum of the atomic projectile, with
∣∣∣K f

∣∣∣ = |Ki|. Due to the
experimental impossibility of determining the relative position of the focus point of the beam with
respect to the crystal lattice sites, we consider that each particle impacts on the surface plane at a
different position Rs. The corresponding SIVR transition amplitude reads [16]
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A(SIVR)
i f (Rs) =

∫
dro fi(ro − Rs)

×
∫

dko gi(ko) a(SIVR)
i f (ro, ko), (1)

where a(SIVR)
i f (ro, ko) is the partial transition amplitude associated with the classical projectile path

rt ≡ rt(ro, ko), with ro and ko being the starting position and momentum, respectively, at the time
t = 0. It can be expressed as

a(SIVR)
i f (ro, ko) = −

+∞∫
0

dt
|JM(t)|1/2 eiνt π/2

(2πi)9/2 VPS(rt)

× exp
[
i
(

ϕ
(SIVR)
t −Q · ro

)]
, (2)

where JM(t) = det [∂rt(ro, ko)/∂ko] = |JM(t)| exp(iνtπ) is a Jacobian factor (a determinant) associated
with the Maslov function [39], VPS denotes the projectile-surface interaction, Q = K f − Ki is the
projectile momentum transfer, and

ϕ
(SIVR)
t =

t∫
0

dt′
[

1
2mP

(
K f − pt′

)2
−VPS(rt′)

]
(3)

is the SIVR phase at the time t, with pt = mPdrt/dt the classical projectile momentum and mP the
projectile mass.

In Equation (1) functions fi(ro − Rs) and gi(ko) describe the spatial and momentum profiles,
respectively, of the initial coherent wave packet at a fixed distance zo from the surface where the
time evolution is started, i.e., at t = 0. The frame of reference is placed on the first atomic layer,
with the x̂ versor along the incidence channel and the ẑ versor oriented perpendicular to the surface,
aiming towards the vacuum region (see Figure 1). Within this reference frame, the central position of
the wave packet at t = 0 can be expressed as Rs = Xs x̂ +Ysŷ, while the starting position of the classical
trajectory reads ro = r′o + zo ẑ, with r′o = xo x̂ + yo ŷ being the component parallel to the surface plane
and zo being chosen as equal to the lattice constant. For more details of the theoretical model we refer
the reader to Ref. [32].

Collimating slit

surface

Figure 1. Sketch of the GIFAD process, together with the reference frame.
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2.1. Profiles of the Initial Coherent Wave Packet

The size and shape of the initial wave packet depend on the characteristics of the atom source
and the collimating setup. In our model, the spatial distribution of the initial coherent wave packet is
derived from the complex degree of coherence [40] corresponding to an atomic beam produced by
an extended incoherent quasi-monochromatic source, after passing through a collimating aperture
oriented perpendicular to Ki and placed at a long distance from the source and the surface (see
Figure A1). Under such assumption, the complex degree of coherence µ(ξ)(Ros) for a square (ξ = squ)
or circular (ξ = cir) collimating aperture, with side or diameter d respectively, can be obtained by
applying the Van Cittert-Zernike theorem [38], with Ros = r′o − Rs being the relative surface position.
For the different collimating geometries, it can be expressed as

∣∣∣µ(ξ)(Ros)
∣∣∣2 ' { j20 [η(ϕox)Xos] j20

[
η(ϕoy)Yos

]
, for ξ = squ,

j20 [η(ϕos)Ros] , for ξ = cir,
(4)

where for the circular aperture, the two-dimensional vector Ros = Xos x̂ + Yosŷ has been discomposed
in polar coordinates, that is, Ros = Ros(cos ϕos x̂ + sin ϕosŷ), with the angles ϕox = 0 and ϕoy = π/2
corresponding to the x̂- and ŷ-directions, respectively. In Equation (4) j0(x) denotes the spherical
Bessel function and the parameter η(ϕos) is defined as

η(ϕos) =
πd

Lcλo(ϕos)
, (5)

where Lc is the collimator-surface distance. The effective de Broglie wavelength λo depends on the
Ros-direction as

λo(ϕos) = λ/
√

1− (cos θi cos ϕos)2, (6)

with λ = 2π/Ki being the de Broglie wavelength of the impinging atom and θi being the polar
incidence angle, measured with respect to the surface plane (Figure 1). Details of the derivation of
Equation (4) for the circular case are given in the Appendix A, while those corresponding to the
square opening were reported in Ref. [17]. Notice that the closed forms displayed in Equation (4)
are approximated representations of more rigorous equations [for square and circular apertures,
Equation (A.8) in Ref. [17] and Equation (A2) in the Appendix A, respectively], which involve
numerical integrals. Furthermore, as it was found in Ref. [16], along the incidence channel (x̂-direction)
the effective de Broglie wavelength, given by Equation (6), coincides with the perpendicular
wavelength λ⊥ = λ/ sin θi associated with the initial motion normal to the surface plane, while along
the transversal direction (ŷ-direction) λo(ϕoy) = λ.

For small Ros values, the spatial profile fi of the initial coherent wave packet, defined as∣∣∣ f (ξ)i (Ros)
∣∣∣2 ' ∣∣∣µ(ξ)(Ros)

∣∣∣2, for ξ = squ, cir, can be approximate by means of Gaussian functions as

f (ξ)i (Ros) '
{

G [σcoh(ϕox), Xos] G
[
σcoh(ϕoy), Yos

]
, for ξ = squ,

G [σcoh(ϕos), Ros] , for ξ = cir,
(7)

where G [ω, x] = [2/(πω2)]1/4 exp(−x2/ω2) and

σcoh(ϕos) =
π√

2η(ϕos)
=

Lcλo(ϕos)√
2d

(8)

denotes the transverse coherence length [41] of the initial coherent wave packet along the surface direction
defined by ϕos.

In relation to the momentum profile gi, it can be derived from the spatial profile given by
Equation (7) by applying the usual Fourier transformation [42]. Since we are dealing with an incident
beam with a well-defined energy [3], the starting momentum k0 satisfies the energy conservation,
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i.e., k0 = Ki, making it possible to replace the momentum-vector profile by the corresponding
angular profile:

g(ξ)i (ko) ' g(ξ)i (Ωo) = G(ω
(ξ)
θ , θo − θi)G(ω

(ξ)
ϕ , ϕo), for ξ = squ, cir, (9)

where Ωo ≡ (θo, ϕo) is the solid angle determined by the ko-direction and the angular widths of the θo-
and ϕo- distributions read

ω
(ξ)
θ = ω

(ξ)
ϕ = γ(ξ)

√
2d

Lc
, for ξ = squ, cir, (10)

with γ(squ) = 1/2 and γ(cir) = 1, respectively.
Finally, the differential scattering probability in the direction of the solid angle Ω f can be obtained

from Equation (1), reading (except for a normalization factor) as

dP(SIVR)

dΩ f
=
∫

dRs

∣∣∣A(SIVR)
i f (Rs)

∣∣∣2 , (11)

where Ω f ≡ (θ f , ϕ f ) is the solid angle corresponding to the K f -direction, with θ f the final polar angle,
measured with respect to the surface, and ϕ f the azimuthal angle, measured with respect to the x̂ axis
(see Figure 1). In Equation (11), the Rs- integral involves different relative positions within the crystal
lattice, covering an area equal to a reduced unit cell of the surface.

3. Effects due to the Degree of Coherence of the Beam

The goal of this Section is to provide a global review of the effects associated with the transverse
coherence of the atomic beam. For this purpose, we analyze the influence of the impact energy,
the incidence channel and the projectile mass on the overall characteristics of GIFAD spectra
corresponding to 4He and 20Ne atoms scattered from LiF(001) after going through a given collimating
setup. The collimating configuration is similar to the one depicted in Figure 1, with a square collimating
aperture with size d = 0.2 mm, placed at a distance Lc = 25 cm from the surface plane. Notice that
these collimating parameters agree with ordinary collimating setups for GIFAD experiments [3],
while the source parameters were chosen within the validity range of Equation (7) [17]. For both
projectiles, the atom-surface interaction was evaluated with the improved pairwise additive potential
given in Ref. [36], which includes non-local terms of the electronic density, projectile polarization and
surface rumpling. Details of the present SIVR calculations can be found in Refs. [18,19].

3.1. Influence of the Impact Energy

We start analyzing the dependence of the general features of the GIFAD patterns on the total
energy E, with E = K2

i /(2mP). Due to the fast velocity of the projectile along the incidence
channel, which makes its parallel motion mainly sensitive to the average potential in this direction,
GIFAD patterns from LiF(001) are basically governed by the normal energy E⊥ = E sin2 θi, which is
associated with the slow motion of the atom in the perpendicular plane [33]. Along this Section we
have kept the normal energy E⊥ = 0.3 eV as a constant for the different impact energies.

In Figure 2 we show dP(SIVR)/dΩ f , as a function of θ f and ϕ f , for He projectiles scattered along
the (a) 〈110〉 and (b) 〈100〉 directions with different impact energies, ranging from 0.8 to 8 keV. As a
consequence of the energy conservation, the projectile distributions of Figure 2 present the typical

banana shape [43], lying inside an annulus
(

θ2
f + ϕ2

f

)1/2
' θi [13]. Furthermore, since neither inelastic

processes nor the detector resolution function were taken into account in the present SIVR calculations,
for a given channel and E⊥-value, all the angular distributions were expected to display the same
number of interference maxima, independently of the total impact energy [29]. However, in Figure 2
this behavior is verified for incidence along 〈100〉 only, while on the contrary, the distributions
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corresponding to the 〈110〉 direction display interference peaks whose number and relative intensities
depend strongly on E. This unexpected fact can be understood in terms of the number N of equivalent
parallel channels that are coherently illuminated by the atomic beam, which can be roughly estimated as

N '
2σcoh(ϕoy)

ay
=

Lc

d
2π

ay
√

mPE
, (12)

where σcoh(ϕoy) is given by Equation (8), with ϕoy = π/2, and ay denotes the width of the incidence
channel, with ay = 5.4 a.u. (ay = 3.8 a.u.) for 〈110〉 (〈100〉).

Since for a given collimating setup, N varies not only with the impact energy, but also with the
channel width, as given by Equation (12), the different general behavior of the angular distributions
of Figure 2a,b will be discussed in terms of the incidence channel in the next Subsection. However,
before proceeding further, it is convenient to remember that the structures of GIFAD spectra come
from the combination of inter- and intra- channel interferences, each of them being associated with a
different factor of the SIVR transition amplitude [32]: The inter-channel factor, produced by interference
among parallel channels, which gives rise to periodic Bragg peaks, and the intra-channel factor, due to
interference inside a single channel, which acts as an enveloped function that displays supernumerary
rainbow maxima [33,44]. Accordingly, for extended coherent illuminations, covering several parallel
channels, GIFAD spectra present Bragg peaks modulated by the intra-channel interference. But for
N ≈ 1 the Bragg structures disappear, causing only supernumerary maxima, corresponding to pure
intra-channel interference, to be visible in the projectile distribution. Therefore, it is evident that the
number N of coherently illuminated channels is a crucial parameter that determines the general shape
of GIFAD patterns.

0.2

0.4

0.6

0.8

1.0

1.2

-0.6 -0.3 0.0 0.3 0.6

 

E= 8 keV 

E= 3 keV 

E= 1.6 keV 

E= 0.8 keV 

 f (
de

g)

f (deg)

 He  LiF(001) 

<100>
-0.6 -0.3 0.0 0.3 0.6

(b)

N= 1.4

N= 2.3

N= 3.1

N= 4.5

N= 1.6

N= 3.1

N= 2.2

 

 

 

<110> N= 1

(a)

Figure 2. (Color online) Two-dimensional projectile distributions, as a function of θ f and ϕ f , for He
atoms impinging on LiF(001) along the (a) 〈110〉 and (b) 〈100〉 directions, with E⊥ = 0.3 eV.
The helium beam is collimated by means of a square aperture with d = 0.2 mm. In both panels,
angular distributions for different impact energies - E = 0.8, 1.6, 3, and 8 keV - are shown, indicating the
corresponding N values, as given by Equation (12).
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3.2. Influence of the Incidence Channel

In Figure 2a, corresponding to the 〈110〉 direction, the application of Equation (12) for the lowest
energy - E = 0.8 keV - leads to N = 3.1 parallel channels coherently illuminated by the He beam.
As a result, the projectile distribution displays well separated Bragg peaks, whose intensities are
determined by the intra-channel factor which acts as a form factor [29]. However, when E augments,
and consequently, N decreases, these Bragg maxima broaden [32], causing the interference structures
for E = 1.6 keV to become comparatively wider than those for E = 0.8 keV. In Figure 2a the Bragg
peaks for 〈110〉 incidence start to blur out for a total energy about 3 keV, for which N = 1.6, while the
limit case corresponding to pure intra-channel interference is reached at E = 8 keV. At this energy, a
single 〈110〉 channel is coherently illuminated by the incident beam, producing a projectile distribution
with supernumerary maxima only. In contrast with this strong dependence on E of the 〈110〉 patterns,
in Figure 2b, for the same impact energies as in Figure 2a but along 〈100〉, all the spectra display
a constant number of Bragg peaks (i.e., 5 peaks). This is in accord with N values higher than 1,
varying from N = 4.5 to 1.4 for the lowest and highest energies, respectively, as indicated in Figure 2b.

To investigate thoroughly the energy dependence of the projectile distributions displayed in Figure
2, in Figure 3 we plot the corresponding SIVR differential probabilities as a function of the deflection
angle Θ = arctan(ϕ f /θ f ) (see Figure 1). Under ideal scattering conditions, involving the incidence
of transversely extended wave packets, these Θ- distributions were expected to be independent of
E at the same E⊥ [29]. Nevertheless, in concordance with Figure 2a, we remarkably found that the
spectra of Figure 3a are severely affected by E if the same collimating setup is used for all the energies.
In Figure 3a, for 〈110〉 incidence with E = 0.8 keV [N = 3.1] the projectile distribution as a function of
the deflection angle displays well-defined Bragg peaks, placed at the angular positions Θm (indicated
with vertical dashed lines) satisfying sin Θm = mλ⊥/ay, where m is an integer number. But these
Bragg structures progressively fade out as the energy increases, bringing to light supernumerary
rainbows, as observed for E = 8 keV [N = 1] at the top of Figure 3a. Instead, for 〈100〉 incidence, the
spectra of Figure 3b shows well-resolved Bragg maxima for most of the energies and the structures
start to blur out only for the highest impact energy, E = 8 keV, corresponding to N = 1.4. In addition,
all the spectra of Figure 3 show high-intensity rainbow maxima at the outermost angles, which have a
classical origin [39,45].
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Figure 3. (Color online) Angular spectra, as a function of the deflection angle Θ, for the cases considered
in Figure 2. Dashed vertical lines indicate the angular positions of Bragg peaks.
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3.3. Influence of the Projectile Mass

To study the influence of the projectile mass on the coherence of the atomic beam, we consider Ne
instead of He projectiles. The angular distributions of neon atoms scattered along the 〈110〉 channel,
plotted in Figure 4, display a behavior analogous to that shown in Figure 3a for helium. However,
for Ne projectiles the dependence of N on the atomic mass, as given by Equation (12), originates
a reduction of the number of coherently illuminated channels in comparison with He at the same
impact energy. Therefore, under the same collimating conditions, the limit energy for the observation
of inter-channel interference in Ne spectra results to be about 5 times lower than in the case of He
impact. Hence, in Figure 4 the Ne distribution for E = 1.6 keV shows only supernumerary rainbow
maxima, which contrasts with the Bragg structures of Figure 3a for the same impact energy of He
projectiles. Notice that in Figure 4 well-resolved Bragg peaks are only present in the Ne distribution
for E = 0.3 keV [N = 2.3], which is comparable to that for 1.6 keV He projectiles in Figure 3a,
indicating the reduced energy window where inter-channel interferences can be observed for Ne
impact. These results suggest that the transverse coherence length might be the central parameter that
limits the observation of Bragg peaks in experimental Ne spectra, rather than the thermal vibrations of
the surface atoms or the spatial resolution of the detector, as it was previously considered [34].

-30 -20 -10 0 10 20 30

E= 0.3 keV [N= 2.3]

E= 1.6 keV [N= 1]
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nt
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l p
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b
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ty

 (
ar

b.
 u

ni
ts

)

Deflection angle  (deg)

Figure 4. (Color online) Analogous to Figure 3 for Ne atoms impinging on LiF(001) along the 〈110〉
direction, with E⊥ = 0.3 eV and total energies E = 0.3, 0.8, and 1.6 keV.

4. Dependence on the Shape of the Collimating Slit: Square versus Circular

In this Section we analyze the influence of the geometrical shape of the collimating opening
on GIFAD patterns by contrasting results for the He/LiF(001) system derived by using square and
circular collimating slits, respectively. In Figure 5 we display two-dimensional projectile distributions,
as a function of θ f and ϕ f , for He incidence along the 〈110〉 direction with E⊥ = 0.5 eV and two
different total energies: E = 1 and 8 keV. As given by Equation (8), the transverse coherence length
of the impinging wave packet along the ŷ-direction does not depend on the opening shape if it is
expressed as a function of d. Thence, the number of parallel channels that become totally (for a
square aperture) or partially (for a circular aperture) illuminated in a coherent way is similar for
both geometries [Equation (12)]. This behavior is confirmed by the GIFAD patterns of Figure 5a,
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which display inter-channel interference structures, as well as by the ones of Figure 5b, which present
supernumerary rainbows only, both being weakly affected by the collimating shape.

0.9

1.0
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1.4

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

(b)

Circular aperture

Circular apertureSquare aperture

He  <110> LiF(001)

 f (
d

eg
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
f
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E= 1 keV [N=2.8]
Square aperture

(a)

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8


f
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0.3

0.4

0.5

-0.2 0.0 0.2

 f (
d

eg
)


f
 (deg)

E= 8 keV [N=1]

-0.2 0.0 0.2


f
 (deg)

Figure 5. (Color online) Two-dimensional distribution, as a function of θ f and ϕ f , for He atoms
impinging along 〈110〉with E⊥ = 0.5 eV and total energy: (a) E = 1 keV and (b) E = 8 keV. Square and
circular collimating openings, with d = 0.2 mm, are considered in the left and right panels, respectively.

Again, the influence of the shape of the collimating slit can be exhaustively examined by
comparing differential probabilities, as a function of the deflection angle Θ, as shown in Figure 6.
In Figure 6a,b, for E = 1 and 8 keV, respectively, the spectra corresponding to square and circular
collimations look alike. Only the intensities of the peaks are higher for the square collimation than for
the circular one, this fact being related to the averaged transverse length of the surface area coherently
illuminated by the incident beam, which is longer for the square than for the circular aperture.
Moreover, despite the difference between ω

(sq)
ϕ and ω

(cir)
ϕ [Equation (10)], in Figure 6 the widths of the

interference maxima corresponding to the distributions for square and circular openings are similar,
indicating a slight dependence on the azimuthal width of the initial momentum wave packet.

In addition, it should be noticed that the use of any other collimating scheme, different from
the ones considered in this work, might affect present results, requiring the generalization of the
Appendix A for the specific experimental collimation condition.
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Figure 6. (Color online) Differential probabilities, as a function of the deflection angle Θ, for the
cases of Figure 5. Red solid (blue dashed) line, differential probability for the circular (square)
collimating opening.

5. Contribution of the Spot-Beam Effect

Finally, we address the spot-beam contribution, which is produced by the different relative
positions of the focus point of the projectiles. Regarding focusing effects, it is important to mention that
all the results presented in the previous Sections were obtained from coherently illuminated regions
with a transverse length longer than or equal to the channel width, that is, with N & 1. Under such
a constraint, the SIVR transition amplitudes given by Equation (1) are nearly independent of Rs,
which makes it possible to approximate

dP(SIVR)/dΩ f '
∣∣∣A(SIVR)

i f (Rs = 0)
∣∣∣2 , (13)

where Rs = 0 corresponds to a focus position in the middle of the incidence channel.
However, the spot-beam effect starts to be relevant when E increases, under a fixed collimating

condition, causing the coherently lighted area to cover a transverse length smaller than the
channel width (i.e., N < 1). In this case, different Rs positions give rise to different amplitudes
A(SIVR)

i f (Rs), which provide information of local zones of the atom-surface potential inside a single
channel. In a simplified picture, each atom probes the region of the effective equipotential contour
(i.e., averaged along the axial channel) that is around the turning point of its classical trajectory,
with ltr ≈ Nay being approximately the transverse length of the explored zone [19]. Thence, for ltr

values about or lower than the half of the channel width, the partial distributions
∣∣∣A(SIVR)

i f (Rs)
∣∣∣2

present interference structures placed at negative or positive deflection angles, depending on the slope
of the averaged equipotential contour in the probed zone. Only when these partial contributions are
added, as given by Equation (11), the angular spectrum including the spot-beam contribution presents
supernumerary peaks symmetrically distributed with respect to the specular direction. However,
in this case the spot-beam effect also introduces a non-coherent background, which reduces the
visibility of the interference structures, in comparison with that of the spectrum for N = 1.

To exemplify the above-mentioned fact, in Figure 7 we analyze the angular distribution of Ne
atoms scattered along the 〈110〉 direction with E⊥ = 0.3 eV and the total energy E = 4 keV (i.e.,
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N = 0.6). Like in Section 3, a square collimating slit, with d = 0.2 mm, is used to collimate the atomic
beam. In Figure 7a the differential probability including the spot-beam contribution [Equation (11)]
is contrasted with the pure intra-channel spectrum, evaluated from Equation (13) with N = 1, as a
function of the deflection angle. Figure 7a shows how the spot-beam effect, by means of the addition
of different Rs-contributions, helps to recover supernumerary maxima along the whole Θ-range.
However, in addition, the spot-beam effect originates a non-coherent background, centered at Θ ≈ 0,
which modifies the relative intensities of the interference structures, affecting their visibility.
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Figure 7. (Color online) For Ne atoms impinging along 〈110〉 with E⊥ = 0.3 eV and E = 4 keV
[N = 0.6]: (a) Angular spectra, as a function of the deflection angle Θ; (b) visibility V(n), as a function
of the supernumerary order n. In both panels, red solid line, results including the spot-beam effect
[Equation (11)]; dark-green dashed line, pure intra-channel distribution corresponding to N = 1
[Equation (13)].

The visibility V(n), associated with the supernumerary maximum labelled with n in Figure 7a,
with n = 0,±1,±2, ..., can be defined as [19,38]

V(n) =
I(n)max − I(n)min

I(n)max + I(n)min

, (14)

where I(n)max is the differential probability dP(SIVR)/dΘ, derived from Equation (11), at the
n-supernumerary maximum [46], and I(n)min denotes the averaged value of the differential probability at
the positions of the two adjacent minima. In Figure 7b we compare V(n), including the spot-beam
effect, with the visibility corresponding to the pure intra-channel spectrum, as a function of n, for the
case of Figure 7a.

From Figure 7b it is observed that the decreasing of V(n) due to the spot-beam contribution is
more pronounced for the central maximum than for the outer ones. To understand this behavior, it is
necessary to take into account that the intra-channel interference structures are mainly produced by
trajectories reflecting at different transverse positions inside the channel, but with the same slope of
the averaged equipotential curve. Then, the condition to observe a given supernumerary maximum
in the projectile distribution is given by ltr > δtp, where δtp is the transverse distance between the
turning points of the corresponding interfering trajectories. Since for 〈110〉 scattering from LiF(001) the
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maximum δtp- value, that is, δtp = ay/2, corresponds to the central peak of the intra-channel spectrum,
the visibility of the central maximum, V(n = 0), is more affected as ltr decreases, becoming lower than
the channel width.

For higher E (lower N) values, the visibilities of the supernumerary peaks substantially decrease,
in comparison with the ones corresponding to the pure intra-channel spectrum, as illustrated
in Figure 8b for E = 16 keV [N = 0.3]. Consequently, the interference structures gradually
disappear, and the projectile distribution approximates the classical limit, where V(n) ≈ 0 for
all n-values, causing only pronounced rainbow maxima to be visible, as it is shown in Figure 8a.
Concerning decoherence, we should mention that there are other effects not included in our model,
like inelastic processes [47], which can contribute to deteriorate the coherence, helping to the transition
from quantum to classical projectile distributions.
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Figure 8. (Color online) Analogous to Figure 7 for E = 16 keV [N = 0.3]. Blue dot-dashed line,
classical projectile distribution for N = 1.

6. Conclusions

We have analyzed the influence of the total energy, the incidence channel, and the projectile mass
on the general characteristics of GIFAD patterns produced by an atomic beam that collides grazingly
on a LiF(001) surface, after passing through a fixed collimating setup. We have shown that, even using
the same collimating aperture, it is possible to obtain final projectile distributions containing different
interference structures by varying the total energy, while keeping the normal energy as a constant.
This behavior can be explained in terms of the number N of equivalent parallel channels that are
coherently illuminated by the atomic beam.

The N value, derived from the complex degree of coherence of the beam, depends on both the
collimating scheme and the incidence conditions. We have shown that when the total energy increases,
the decreasing of N modifies the overall features of the GIFAD spectra, which switch gradually from
inter-channel patterns to the pure intra-channel distributions. We also investigate the influence of the
geometry of the collimating aperture, which was found to play a secondary role.

Additionally, we have studied the spot-beam effect related to the different positions within the
crystal lattice of the focus point of the beam. Such a spot-beam contribution becomes relevant when
just a portion of a single crystallographic channel is coherently illuminated by the impinging particles.
In this case, the spot-beam contribution affects the visibility of the supernumerary maxima, causing for
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small N values the projectile distributions approximate to the classical ones, with two peaks associated
with classical rainbow scattering at the outermost angles.

Finally, notice that the predicted dependence of GIFAD patterns on the transverse coherence
length of the projectiles has been successfully contrasted with experimental data in Refs. [16,19].
However, extensive experimental research on the topic should be desirable.

In conclusion, the coherence-length effects are relevant to adequately use GIFAD spectra as a
surface analysis tool, as well as to choose the appropriate collimating scheme for the observation of
interference effects in a given collision system. Present results might be also a guide for further studies
on coherence in other collision systems.
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Appendix A. Complex Degree of Coherence for an Atomic Beam Passing through a Circular
Collimating Aperture

In this Appendix the Van Cittert-Zernike theorem [38] is applied to evaluate the complex degree
of coherence between two points—R1 and R2—placed on a plane parallel to the crystal surface at a
distance zo, which is illuminated by an extended incoherent quasi-monochromatic source, after passing
through a circular collimating opening. Let us consider that both, the extended particle emitter and
the collimating aperture, present a circular shape, with diameters e and d (areas Se = πe2/4 and
Sa = πd2/4) respectively. By extending the Van Cittert-Zernike theorem [38] for the case under study,
the mutual coherence function U(R1, R2) reads

U(R1, R2) = Io

∫∫
Se

d2re

∫∫
Sa

d2x1

∫∫
Sa

d2x2
exp [ik(r1 + s1 − r2 − s2)]

r1s1r2s2
, (A1)

where Io is the intensity of the extended source, assumed as uniform, k = 2π/λ is the wave number of
the atomic beam, and the distances sj and rj are indicated in Figure A1 for j = 1, 2.

To derive the profile of the incident wave packet it is convenient to choose R2 = 0 as the center
of the wave packet and R1 = Ros = Ros(cos ϕos x̂ + sin ϕosŷ), with the x̂ and ŷ versors laying on
the upon-surface plane and x̂ parallel to the incidence channel. By assuming, as usually, that the
distances Le and Lc between the source and the collimator and between the collimating slit and the
upon-surface plane, respectively, are larger than e, d, and Ros, the mutual intensity function (excluding
a normalization factor) can be expressed as:

U(Ros, 0) ∼=
1∫

0

dr′1r′1 exp
(

iαr′
2

1

) 1∫
0

dr′2r′2 exp
(
−iαr′

2

2

)
×J0

[
η(ϕos)Rosr′2

]
h
(
r′1, r′2

)
, (A2)

where

h
(
r′1, r′2

)
=

[
r′2 J0

(
βr′1
)

J1 (βr′2)− r′1 J1
(

βr′1
)

J0 (βr′2)
]

β(r′22 − r′21 )
, (A3)

for r′2 6= r′1, and h
(
r′1, r′2

)
=
[

J2
1
(

βr′1
)
+ J2

0
(

βr′1
)]

/2, for r′2 = r′1, with Jn (x) being the Bessel function
of order n, n = 0, 1, and β = ked/(4Le). In Equation (A2) the parameter η(ϕs) is defined by Equation (5)
and α = kd2/(8L), with L = LeLc/(Le + Lc).
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sj rj

Le Lc

source

collimating screen

upon-surface plane

Rj

re xj

i

ŷ

x˄

J = 1,2

Figure A1. Depiction of the collimating scheme considered in the Appendix, together with the
involved coordinates.

The calculation of the mutual intensity function U(Ros, 0) from Equation (A2) requires the
numerical evaluation of a two-dimensional integral. However, like in the case of a square opening [17],
under the condition of extended source [46], for small Ros values the square modulus of the complex
degree of coherence can be roughly described as∣∣∣µ(cir)(Ros)

∣∣∣2 ∝ |U(Ros, 0)|2 ≈ j20 [η(ϕos)Ros] , (A4)

where j0(x) is the spherical Bessel function of order zero.

References

1. Moix, J.M.; Pollak, E. Heavy atom quantum diffraction by scattering from surfaces. J. Chem. Phys. 2011,
134, 011103. [CrossRef] [PubMed]

2. Minniti, M.; Díaz, C.; Cuñado, J.L.F.; Politano, A.; Maccariello, D.; Martín, F.; Farías, D.; Miranda, R. Helium,
neon and argon diffraction from Ru(0001). J. Phys. Condens. Matter 2012, 24, 354002. [CrossRef] [PubMed]

3. Seifert, J.; Lienemann, J.; Schüller, A.; Winter, H. Studies on coherence and decoherence in Fast Atom
Diffraction. Nucl. Instrum. Methods Phys. Res. B 2015, 350, 99–105. [CrossRef]

4. Egodapitiya, K.N.; Sharma, S.; Hasan, A.; Laforge, A.C.; Madison, D.H.; Moshammer, R.; Schulz, M.
Manipulating Atomic Fragmentation Processes by Controlling the Projectile Coherence. Phys. Rev. Lett.
2011, 106, 153202. [CrossRef] [PubMed]

5. Wang, X.; Schneider, K.; LaForge, A.; Kelkar, A.; Grieser, M.; Moshammer, R.; Ullrich, J.; Schulz, M.; Fischer,
D. Projectile coherence effects in single ionization of helium. J. Phys. B 2012, 45, 211001. [CrossRef]

6. Arthanayaka, T.; Lamichhane, B.R.; Hasan, A.; Gurung, S.; Remolina, J.; Borbély, S.; Járai-Szabó, F.; Nagy,
L.; Schulz, M. Fully differential study of wave packet scattering in ionization of helium by proton impact.
J. Phys. B 2016, 49, 13LT02. [CrossRef]

7. Karlovets, D.V.; Kotkin, G.L.; Serbo, V.G. Scattering of wave packets on atoms in the Born approximation.
Phys. Rev. A 2015, 92, 052703. [CrossRef]

8. Gassert, H.; Chuluunbaatar, O.; Waitz, M.; Trinter, F.; Kim, H.K.; Bauer, T.; Laucke, A.; Müller, C.;
Voigtsberger, J.; Weller, M.; et al. Agreement of Experiment and Theory on the Single Ionization of
Helium by Fast Proton Impact. Phys. Rev. Lett. 2016, 116, 073201. [CrossRef] [PubMed]

9. Sarkadi, L.; Fabre, I.; Navarrete, F.; Barrachina, R.O. Loss of wave-packet coherence in ion-atom collisions.
Phys. Rev. A 2016, 93, 032702. [CrossRef]

http://dx.doi.org/10.1063/1.3528120
http://www.ncbi.nlm.nih.gov/pubmed/21218990
http://dx.doi.org/10.1088/0953-8984/24/35/354002
http://www.ncbi.nlm.nih.gov/pubmed/22898880
http://dx.doi.org/10.1016/j.nimb.2015.01.016
http://dx.doi.org/10.1103/PhysRevLett.106.153202
http://www.ncbi.nlm.nih.gov/pubmed/21568555
http://dx.doi.org/10.1088/0953-4075/45/21/211001
http://dx.doi.org/10.1088/0953-4075/49/13/13LT02
http://dx.doi.org/10.1103/PhysRevA.92.052703
http://dx.doi.org/10.1103/PhysRevLett.116.073201
http://www.ncbi.nlm.nih.gov/pubmed/26943532
http://dx.doi.org/10.1103/PhysRevA.93.032702


Atoms 2018, 6, 64 15 of 16

10. Navarrete, F.; Ciappina, M.; Sarkadi, L.; Barrachina, R. The role of the wave packet coherence on the
ionization cross section of He by p+ and C6+ projectiles. Nucl. Instrum. Methods Phys. Res. B 2017,
408, 165–168. [CrossRef]

11. Nagy, L.; Járai-Szabó, F.; Borbély, S. The effect of projectile wave packet width on the fully differential
ionization cross-sections. J. Phys. B 2018, 51, 144005. [CrossRef]

12. Schüller, A.; Wethekam, S.; Winter, H. Diffraction of Fast Atomic Projectiles during Grazing Scattering from
a LiF(001) Surface. Phys. Rev. Lett. 2007, 98, 016103. [CrossRef] [PubMed]

13. Rousseau, P.; Khemliche, H.; Borisov, A.G.; Roncin, P. Quantum Scattering of Fast Atoms and Molecules on
Surfaces. Phys. Rev. Lett. 2007, 98, 016104. [CrossRef] [PubMed]

14. Lienemann, J.; Schüller, A.; Blauth, D.; Seifert, J.; Wethekam, S.; Busch, M.; Maass, K.; Winter, H. Coherence
during Scattering of Fast H Atoms from a LiF(001) Surface. Phys. Rev. Lett. 2011, 106, 067602. [CrossRef]
[PubMed]

15. Busch, M.; Lienemann, J.; Seifert, J.; Schüller, A.; Winter, H. Decoherence in grazing scattering of fast H and
He atoms from a LiF(001) surface. Vacuum 2012, 86, 1618–1623. [CrossRef]

16. Gravielle, M.S.; Miraglia, J.E. Influence of beam collimation on fast-atom diffraction studied via a
semiquantum approach. Phys. Rev. A 2015, 92, 062709. [CrossRef]

17. Gravielle, M.S.; Miraglia, J.E. Single- and double-slit collimating effects on fast-atom diffraction spectra.
Nucl. Instrum. Methods Phys. Res. B 2016, 382, 42–48. [CrossRef]

18. Gravielle, M.S. Fast interaction of atoms with crystal surfaces: coherent lighting. J. Phys. Conf. Ser. 2017,
875, 012006. [CrossRef]

19. Frisco, L.; Miraglia, J.E.; Gravielle, M.S. Spot-beam effect in grazing atom-surface collisions: From quantum
to classical. J. Phys. Condens. Matter 2018, 30, 405001. [CrossRef] [PubMed]

20. Schüller, A.; Wethekam, S.; Blauth, D.; Winter, H.; Aigner, F.; Simonović, N.; Solleder, B.; Burgdörfer, J.;
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