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Abstract: Rare Earth Elements are important for stellar atmosphere analysis but the corresponding
Stark broadening data are scarce. For Yb III and Lu IV theoretical as well as experimental data on Stark
broadening parameters of spectral lines are absent in the literature. Using the modified semiempirical
method of Dimitrijević and Konjević, we determined Stark widths for four Yb III and four Lu IV
transitions, belonging to the erbium isoelectronic sequence. The obtained results are also used to discuss
similarities between homologous transitions in the erbium isoelectronic sequence. We note as well that
calculated widths will be implemented in the STARK-B database which is also a part of the Virtual
Atomic and Molecular Data Center.
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1. Introduction

The development and use of space observations with satellite-born instruments increased the
importance of trace elements for investigation of stellar spectra. As an example, Rauch et al. [1] highlighted
the need of the reliable Stark broadening data for as many spectral lines as possible of different atoms
and ions, since they “are of crucial importance for sophisticated analysis of stellar spectra by means of
NLTE model atmospheres.” Such data are not only useful for analysis, synthesis and research of high
resolution spectra obtained from space born instruments, they are very useful for laboratory plasma
diagnostics as well as for investigation of various plasmas in laser physics, fusion research and for
plasma-based technologies.

Triply charged lutetium ion (Lu IV ) as well as doubly charged ytterbium ion (Yb III) belong to the
Er isoelectronic sequence and for both the electronic configuration of ground state is [Kr]4d105s25p64f14.
They both belong to the Rare Earth Elements (REE) and are part of the REE peak in the stellar abundance
distribution of chemical elements. So they are of astrophysical importance and both were found in stellar
spectra. For example Hawkins et al. [2] found the Yb II line in the Arcturus spectrum and Afsar et al. [3]
in the spectra of HIP 54048, HIP114809 and HIP57748 stars. Lu II spectral lines were observed, e.g.,
in the spectrum of CS3108-001 star [4] and stellar abundances for both ytterbium and lutetium have been
determined in Roederer et al. [5]. Spectral lines of ions of both elements are found also in the spectrum of
Przybylski’s star [6] and one can expect that YbIII and Lu IV lines, will be observed in the future. Moreover,
they are of interest as well for theoretical consideration and modelling of stellar plasma (atmospheres
and subphotospheric layers) where the electron density is sufficiently high (in present case higher than
1015–1016 cm−3) and for the corresponding radiative transfer calculations. Stark broadening data for the
considered ions may be of interest in laser physics and laser produced plasma since both are used in laser
technology. Of course such data are of interest as well in laboratory plasma investigations and diagnostics.
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Recently Stark broadening data for 27 Lu III spectral lines, calculated by using the modified
semiempirical method, have been published [7]. Since for Yb III and Lu IV neither theoretical nor
experimental data for Stark broadening exist, in this work are presented results of our calculations of full
widths at half intensity maximum (FWHM), due to impacts with electrons, for spectral lines of these ions,
using the modified semiempirical method (MSE) [8–10].

2. The Modified Semiempirical Method

The electron impact full width (FHWM) of an isolated ion line within the modified semiempirical
(MSE) approach [8], may be expressed in the form:

wMSE = N 4π
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where i denotes the initial level and f the final one. In the case of J1j coupling, used to describe Yb III and
Lu IV terms, the square of the matrix element {~<2[nk`k jk Jk, (`k ± 1)jk′ Jk′ ], k = i, f }may be presented as
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In Equation (1)
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, k = i, f

E = 3
2 kT is the electron kinetic energy and ∆E`k ,`k′

= |E`k
− E`k′

| is the energy difference between levels `k
and `k ± 1 (k = i, f ),

xnk ,nk+1 ≈
E

∆Enk ,nk+1
,

where for ∆n 6= 0, the energy difference between energy levels with nk and nk + 1, ∆Enk ,nk+1 is
approximated as

∆Enk ,nk+1 = 2Z2EH/n∗3k , (4)

n∗k = [EHZ2/(Eion − Ek)]
1/2 is the effective principal quantum number, Z is the residual ionic charge (e.g.,

Z = 1 for neutrals) and Eion is the appropriate spectral series limit. N and T are electron density and
temperature, and Q(`j, `′ j′), Q(J, J′) multiplet and line factors. With g(x) [11,12] and g̃(x) [8] are denoted

the Gaunt factors. The calculation of radial integrals [R
n∗k `k±1
n∗k `k

] have been performed within the Coulomb
approximation in accordance with Bates and Damgaard [13] and using the tables of Oertel and Shomo [14].
When the corresponding data are absent in Oertel and Shomo [14], the needed radial integrals can be
calculated according to Ref. Van Regemorter et al. [15].

3. Results and Discussion

The atomic energy levels of Yb III and Lu IV were from Martin et al. [16], Kramida et al. [17], while
the matrix elements were calculated within the Coulomb approximation [13]. Calculation of FWHM
due to electrons as perturbers (Stark width), has been performed by using the modified semiempirical
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method [8] (see also e.g., [10]). We assumed that the energy levels are pure so that the configuration mixing
is neglected. Consequently the transitions where this effect can be neglected were chosen.

The obtained results for four Yb III and four Lu IV transitions are presented in Table 1 for perturber
density of 1017 cm−3 and temperatures from 5000 K up to 160,000 K. We choose this temperature range
due to its interest for applications in astrophysics, laboratory plasma, for lasers and laser produced plasma.
In the case of perturber densities lower than 1017 cm−3 the extrapolation is linear. For higher perturber
densities one can also use a linear extrapolation checking that the influence of Debye screening may be
neglected or it is reasonably small. The wavelengths in Table 1 are calculated from the corresponding
energy levels given as the input so that they may differ from the observed ones. Additionally is provided
the ratio of E = 3kT/2, and the energy difference of initial or final and the closest perturbing level, ∆E.
It is calculated for T = 10,000 K:

∆E = Max[E/∆Ei,i′ , E/∆E f , f ′ , E/∆Eni ,ni+1, E/∆En f ,n f +1] (5)

For a given temperature the value of 3kT/2∆E = 1 represents the threshold for the relevant inelastic
transition. For values lower than one, elastic collisions dominate. For values larger than approximately 50,
the high temperature limit approximation can be applied.

We did not find any experimental or theoretical data for Yb III and Lu IV for comparison with
our results.

For an analysis of similarities and regular behavior of Stark widths in the case of J1j coupling, we need
to convert obtained line widths from Å units to angular frequency units, in order to exclude the influence
of wavelength. This can be done using the expression:

W(Å) =
λ2

2πc
W(s−1) (6)

here c is the speed of light.
The corresponding values are given in Table 1 as well. We can see that the Stark widts for (J1, 3/2)

transitions are higher from the values for (J1, 1/2) for 6% in the case of Yb III and for 11% in the case of Lu
IV. Surprisingly, for both ions Stark widths for (5/2,j) and (7/2,j) are practically identical. This can be used
if we have the Stark width value for one of such lines and not for the other which we need.

It is stated in Majlinger et al. [7] that the theoretical resolving power of the high-resolution echelle
spectrometer for the Keck Ten—Meter Telescope is of the order of >250,000, but that practical realizations
may be approximately 36,000. Resolving power for Stark widths from Table 1 should be for Yb III from
12,056 at T = 5000 K to 68,825 at T = 160,000 K and for Lu IV from 28,356 at T = 5000 K to 165,811 for
T = 160,000 K. We can see that exist condition when we can observe the influence of Stark broadening on
Yb III and Lu IV specral lines with large terrestrial telescopes.

The results for Stark widths of Yb III and Lu IV spectral lines obtained in this work and presented
in Table 1, will be included in the STARK-B database [18,19], which has a principal aim to serve for the
investigations of the plasma of stellar atmospheres and for stellar spectra analysis. Of course these data
could be very useful for diagnostics of laboratory plasmas, as and for various research on laser produced
inertial fusion plasma and plasmas in different technologies.
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Table 1. FWHM—Full Width at Half intesity Maximum W in Å and in s−1 for Yb III and Lu IV spectral
lines, for a perturber density of 1017 cm−3 and temperatures from 5000 to 160,000 K. Calculated wavelength
(λ) of the transitions (in Å) is also given.

Transition T [K] W [Å] W [1012 s−1]

YbIII 4f13(2Fo
7/2)6s1/2(7/2,1/2)o − 4f13(2Fo

7/2)6p1/2(7/2,1/2) 5000 0.221 0.586
10,000 0.156 0.414

λ = 2664.3 Å 20,000 0.110 0.292
3kT/2∆E = 0.278 40,000 0.0780 0.207

80,000 0.0556 0.148
160,000 0.0446 0.118

YbIII 4f13(2Fo
7/2)6s1/2(7/2,1/2)o − 4f13(2Fo

7/2)6p3/2(7/2,3/2) 5000 0.166 0.600
10,000 0.118 0.424

λ = 2285.0 Å 20,000 0.0831 0.300
3kT/2∆E = 0.278 40,000 0.0588 0.212

80,000 0.0416 0.150
160,000 0.0332 0.120

YbIII 4f13(2Fo
5/2)6s1/2(5/2,1/2)o − 4f13(2Fo

5/2)6p1/2(5/2,1/2) 5000 0.221 0.591
10,000 0.157 0.418

λ = 2657.0 Å 20,000 0.111 0.296
3kT/2∆E = 0.277 40,000 0.0783 0.209

80,000 0.0558 0.149
160,000 0.0447 0.119

YbIII 4f13(2Fo
5/2)6s1/2(5/2,1/2)o − 4f13(2Fo

5/2)6p3/2(5/2,3/2) 5000 0.169 0.607
10,000 0.119 0.430

λ = 2288.9 Å 20,000 0.0845 0.304
3kT/2∆E = 0.277 40,000 0.0597 0.215

80,000 0.0423 0.152
160,000 0.0338 0.121

LuIV 4f13(2Fo
7/2)6s1/2(7/2,1/2)o − 4f13(2Fo

7/2)6p1/2(7/2,1/2) 5000 0.0742 0.316
10,000 0.0525 0.223

λ = 2104.4 Å 20,000 0.0371 0.158
3kT/2∆E = 0.219 40,000 0.0262 0.112

80,000 0.0186 0.0789
160,000 0.0140 0.0594

LuIV 4f13(2Fo
7/2)6s1/2(7/2,1/2)o − 4f13(2Fo

7/2)6p3/2(7/2,3/2) 5000 0.0574 0.350
10,000 0.0406 0.248

λ = 1757.6 Å 20,000 0.0287 0.175
3kT/2∆E = 0.219 40,000 0.0203 0.124

80,000 0.0144 0.0876
160,000 0.0106 0.0649

LuIV 4f13(2Fo
5/2)6s1/2(5/2,1/2)o − 4f13(2Fo

5/2)6p1/2(5/2,1/2) 5000 0.0735 0.316
10,000 0.0520 0.223

λ = 2093.0 Å 20,000 0.0368 0.158
3kT/2∆E = 0.218 40,000 0.0260 0.112

80,000 0.0184 0.0790
160,000 0.0138 0.0594

LuIV 4f13(2Fo
5/2)6s1/2(5/2,1/2)o − 4f13(2Fo

5/2)6p3/2(5/2,3/2) 5000 0.0573 0.350
10,000 0.0405 0.247

λ = 1757.2 Å 20,000 0.0287 0.175
3kT/2∆E = 0.218 40,000 0.0203 0.124

80,000 0.0143 0.0874
160,000 0.0106 0.0648
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We wish to underline that STARK-B database is one of 33 databases with atomic and molecular data
which enter in the Virtual Atomic and Molecular Data Center (VAMDC) [20,21], in order to provide an
e-platform for more effective search and mining of atomic and molecular data.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.
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