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Abstract: Here we report the results of the theoretical investigation of the transmission of channeled
positrons through various short chiral single walled carbon nanotubes (SWCNT). The main question
answered by this study is “What are the manifestations of the rainbow effect in the channeling of
quantum particles that happens during the channeling of classical particles?” To answer this question,
the corresponding classical and quantum problems were solved in parallel, critically examined,
and compared with each other. Positron energies were taken to be 1 MeV when the quantum approach
was necessary. The continuum positron-nanotube potential was constructed from the thermally
averaged Molière’s positron-carbon potential. In the classical approach, a positron beam is considered
as an ensemble of noninteracting particles. In the quantum approach, it is considered as an ensemble
of noninteracting wave packages. Distributions of transmitted positrons were constructed from
the numerical solutions of Newton’s equation and the time-dependent Schrödinger equation. For
the transmission of 1-MeV positrons through 200-nm long SWCNT (14; 4), in addition to the central
maximum, the quantum angular distribution has a prominent peak pair (close to the classical
rainbows) and two smaller peaks pairs. We have shown that even though the semiclassical
approximation is not strictly applicable it is useful for explanation of the observed behavior. In
vicinity of the most prominent peak, i.e., the primary rainbow peak, rays interfere constructively.
On one of its sides, rays become complex, which explains the exponential decay of the probability
density in that region. On the other side, the ray interference alternates between constructive and
destructive, thus generating two observed supernumerary rainbow peaks. The developed model was
then applied for the explanation of the angular distributions of 1-MeV positrons transmitting through
200 nm long (7, 3), (8, 5), (9, 7), (14, 4), (16, 5) and (17, 7) SWCNTs. It has been shown that this explains
most but not all rainbow patterns. Therefore, a new method for the identification and classification
of quantum rainbows was developed relying only on the morphological properties of the positron
wave function amplitude and the phase function families. This led to a detailed explanation of the
way the quantum rainbows are generated. All wave packets wrinkle due to their internal focusing in
a mutually coordinated way and are concentrated near the position of the corresponding classical
rainbow. This explanation is general and applicable to the investigations of quantum effects occurring
in various other atomic collision processes.

Keywords: rainbow scattering; positron channeling effect; time-dependent Schrödinger equation;
chiral single wall carbon nanotubes

1. Introduction

Let us consider a single perfect graphene sheet shown in the Figure 1a. The primitive vectors
of the graphene lattice are denoted as a1, and a2. Single wall carbon nanotubes (SWCNTs) can be
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seen as a graphene sheet rolled-up to form a cylinder [1]. However, rolling up of the graphene sheet
is possible only in certain directions. To form a nanotube it is necessary that its circumference be
equal to the length of the vector, called the chiral vector Ch = ma1 + na2 specifying possible distances
between atoms of the sheet. The resulting SWCNT is made of the infinite number of nanotube unit
cells containing N carbon atoms translationally repeating itself in the direction orthogonal to the vector
Ch, defining the nanotube axis. Chiral indices (m, n) uniquely determine the structure of nanotube [1],
and are used for the identification of the nanotubes. Depending on the direction of the vector Ch,
all SWCNTs can be classified in the three classes: zig-zag Ch = (0, n), armchair Ch = (n, n), and generic
nanotubes also called chiral Ch = (m, n). Views in the direction of the axis of the zig-zag, armchair,
and chiral SWCNT are shown in the Figure 1a–c, respectively. Nanotubes have extraordinary elastic,
electronic and thermal properties. A good overview of nanotube properties which are important for
the potential applications can be found in the references [2–4].

Figure 1. (a) Section of the graphene sheet. Small arrows labeled a1 and a2 represent primitive vectors
of the graphene lattice. Large arrows show chiral vectors Ch of zig-zag, armchair, and generic chiral
single wall carbon nanotubes (SWCNT). Views in direction of axis in the case of: (b) zig-zag, (c)
armchair, and (d) chiral SWCNT.

Viewed in the direction of their axes, SWCNTs can be described as an arrangement of atomic
strings (see Figure 1b–d). Let us now examine the scattering of a positively charged particle by an
atomic string. A schematic representation of this process is shown in Figure 2a. If the positively
charged particle is directed towards the atomic string at a small angle, then it will be reflected back
by the correlated series of small angle scatterings on atoms of the string. The particle does not fall
under the influence of individual atoms, rather it behaves as if being scattered by the atomic string
itself. To deflect the particle trajectory, the potential energy of the atomic string U, at the distance of
the closest approach, must be equal to the particle transverse kinetic energy. Lindhard has shown that
minimal approach distance is approximately equal to the atom screening radius asc [5]. Consequently,
the maximal incident angle Θc, called the critical angle, is defined by relation

Θc ≈

√
U(asc)

Ek
, (1)

where Ek is the kinetic energy of the incoming particle.
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Figure 2b show the schematic representation of the particle bounded motion in the potential
of the SWCNT. Such a motion occurs if the angle between SWCNT axis and ion velocity vector
in the entrance plane of the nanotube is smaller than Θc. The subsequent series of scatterings by
atomic strings then gently guides the particle trajectory through the regions of low electron density.
At all times an angle measuring the deflection of the particle from the SWCNT axis remains small.
The described mode of particle motion is called channeling.

Figure 2. (a) Schematic representation of the ion Scattering by the atomic string. The interatomic
distance of the string is d. The maximal ion incident angle Θc and its minimal approach distance asc

are indicated (b) Schematic representation of the ion channeling process. The deflection angles (θx, θy)

at the exit of the SWCNT are smaller than the critical angle.

Nanotubes were discovered in 1991 by Iijima [6]. Soon after their discovery, Klimov and Letokhov
demonstrated that SWCNT can be used for the channeling of positively charged particles [7]. The same
authors predicted that the motion of channeled particles would generate X-ray and γ-ray radiation [7,8].
A lot of subsequent studies were devoted to the investigation of the possibility to use nanotube for
ion guiding and the construction of nanotube based undulators. A good review devoted to particle
channeling in the SWCNT can be found in the Ref. [9].

Rainbow scattering occurs if the neighboring sections of the impact parameter plane are scattered
to the same section of the scattering angle plane. As a consequence, the differential cross-section
becomes infinite along certain lines, called rainbows. The best-known example of the rainbow
scattering is the scattering of the light rays by the droplet of water generating the meteorological
rainbow [10]. Rainbow scattering happens in nucleus-nucleus collisions [11], elastic scattering [12],
electron-molecule collisions [13], particle scattering form the surfaces [14], and ion channeling
in crystals [15].

Petrović et al. have shown that the rainbow effect appears also in ion channeling through
SWCNTs [16]. It was shown that the theory of rainbows, developed for the explanation of the rainbow
channeling in crystals [17], can also be applied for the explanation of the most important features of
the rainbow channeling in SWCNTs. A summary of the most important findings of the mentioned
group can be found in the Ref. [18].

Besides its theoretical significance, the rainbow effect has a number of practical uses. It was
used to extract the correct proton-Si interaction potential [19], and there is also suggestion to be
employed for production of the ion beams focused to the subatomic precision [20]. A new method for
characterization of the short SWCNTs proposed in the Refs. [21,22] is based on the rainbow effect. It
has been shown that the quantum rainbow channeling effect is even more sensitive to the variation of
the SWCNT radius [23,24]. Therefore, it is reasonable to expect that quantum rainbow channeling is
useful for investigation of the nanotubes and other nanostructured materials.
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It should be noted that the classical approach is usually sufficient for the description of
the channeling effects of energetic charged particles. Recently, Takabayashi et al. reported on the
first experimental observation of the rainbow effect in the planar channeling of 1GeV electrons in
the Si crystal [25]. In their experiments, no wave-features of the transmitted electron beam were
observed. According to the classical theory, the density of ion trajectories on the rainbow line
is infinite. The classical particle density is a strictly additive quantity; therefore, on the rainbow
line it is also infinite. However, any particle also behaves as a wave. Due to the interference
individual contributions to the wave function amplitude of the wave trains moving approximately
along the classical trajectories can be additive or subtractive. The net result is a finite particle density
of the rainbow peak, and in a number of additional smaller peaks called supernumerary rainbows.
Therefore, even for classical particles it is not possible to understand the true nature of the rainbow
effect without quantum mechanics. However, for particles of high energy, the rainbow pattern is so
fine that it is difficult to observe it even using detectors of very high resolution.

For light particles whose energies are in the MeV range the quantum description becomes
mandatory. Recent theoretical publications of the Kharkov group were devoted to the investigation
of the quantum rainbow channeling of electrons in ultra-thin crystals [26,27]. They explained
observed wave features as a result of the electron diffraction on the periodic arrangement of
the atomic planes or strings. They did not provide any finer classification of the rainbow peaks.
Schüller and Winter experimentally observed supernumerary rainbows in scattering of fast atoms by
the LiF(001) surface [28]. Their interpretation of the results was based on the semiclassical approach.

The problem of the form of the quantum wave function in the vicinity of the rainbow line
and classification of rainbow peaks is well known. It is usually treated in the framework of
the semiclassical approach employing uniform approximation [11,29]. However, this approach
is applicable only when longitudinal energy is so large that asymptotic approximations are
applicable [30]. Another approach is to treat the motion of quantum channeled particles using
the formalism of dynamical diffraction [31–34]. However, expanding the incoming wave function
in the Bloch state basis is unable to describe the propagation of the evanescent waves, which are
shown to be important for the description of the interference in the vicinity of the rainbow line [35].
It is in principle possible to introduce complex interaction potentials which would generate, required
imaginary branches of the dispersion relations, but it is difficult to obtain parametrization of such
a potential which reproduces observable results. In both approaches, the incoming particle beam
is represented as a plane wave. This assumption is perfectly adequate for the description of the wave
diffraction. However, there are two main reasons why this is not desirable in particle channeling.
Firstly, with simple plane wave it is difficult to model the influence of the beam divergence on the
resulting distributions. Angular divergence is extremely important quantity. If it is larger than the
critical angle Θc then there is no channeling at all. Secondly, the plane wave is infinite, it interacts
with the whole sample at the same time. The experimentally proven characteristic feature of the
channeling effect is that all physical quantities (such as energy loss, dechanneling probability, etc.) are
orientational and impact parameter dependent. This means that one needs to consider fine details
of the individual scattered waves. Using the plane wave, one immediately gets a wave describing
the interference of all scattered waves and such detailed investigation is impossible. Also, it has been
found that the difference between angular distributions of the transmitted parallel positron beam
represented as the plane wave and diverging beam represented as an ensemble of wave packets can be
large (compare Figure 4 against Figures 7 and 8 of the Ref. [23]).

The simplest way to remedy all the mentioned drawbacks is to represent particles as wave
packets and to base the analysis on the explicit solution of the time dependent Schödinger equation.
In this report, the transmission of 1-MeV positrons will be examined in detail, when quantum
treatment is needed. Initially, quantum particles will be represented as Gaussian wave packets.
The corresponding classical problem will be examined in parallel, and both results will be compared
and critically examined. We start with a brief review of the classical rainbow channeling theory, and
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give a short description of the developed model of quantum channeling. Next, we show how to
interpret obtained exact solutions using the language of the semiclassical approach. At the end, we
present a method for classification of prominent peaks of transmitted distributions relaying only on
the information contained in the corresponding quantum amplitude and phase functions families.

2. Theory

In this section, a brief review of the theory of rainbow channeling will be given, and a model of
quantum rainbow channeling will be presented. The z axis of the adopted coordinate system is aligned
with the axis of the nanotube. The x and y axes are vertical and horizontal axes, respectively.

2.1. Interaction Potential

The primitive vectors of the graphene lattice are denoted as a1, and a2. Their lengths are
|a1| = |a2| =

√
3l, where l = 0.14 nm stands for the carbon-carbon bond length. The angle between

vectors is π/3. Chiral vector is defined by expression Ch = ma1 + na2. Consequently, the radius of
the nanotube is given by the expression

R =
|Ch|
2π

=

√
3l

2π

(
m2 + mn + n2

)1/2
, (2)

and translational vector of SWCNT unit cell is

T =
1

qmn
[(2n + m)a1 + (2m + n)a2] . (3)

where qmn is the greatest common divisor of 2m + n and 2n + m. The number of atoms in the SWCT
unit cell

N =
4

qmn
(m2 + nm + n2) (4)

is equal to the number of graphene atoms contained in a rectangle defined by vectors Ch, and T.
Each atom is the starting point of one atomic string forming circumference of the SWCNT.

We assume that the potential describing charged particle carbon interaction is given by
the Molière’s expression [36]

V(r̄) =
Z1Z2e2

4πε0|r̄|
3

∑
k=1

αk exp
[
−βk
|r̄|
asc

]
. (5)

where Z1, Z2 are charge state of the incoming particle and carbon atomic number (Z2 = 6), respectively;
e is the elementary charge; r̄ = (x̄, ȳ, z̄) = r − ro represent the distance vector between positions
of the particle r = (x, y, z), and carbon atom ro = (x0, y0, z0); ε0 is dielectric permittivity of
the vacuum; asc = [9π2/(128Z2)]

1/3aB is Thomas-Fermi screening radius, while aB is the Bohr’s
radius; α = [0.35, 0.55, 0.10], and β = [0.1, 1.2, 6.0] are Molière’s fitting parameters. The channeled
particle does not feel the influence of the potential of individual atoms V(r̄), rather, its trajectory
is influenced by the longitudinally averaged atomic potential of the atomic string

U(ρ̄) =
1
|T |

∞∫
−∞

V(r̄)dz̄ =
Z1Z2e2

2πε0|T |
3

∑
k=1

αkK0

(
βk
|ρ̄|
aSC

)
, (6)

where ρ̄ = (x̄, ȳ) = ρ − ρo is distance vector between transverse positions of particle ρ = (x, y),
and atomic string ρo = (x0, y0); K0 is modified Bessel function of the second kind and 0-th order [37].
Potential of the SWCNT UCh at the transverse point ρ is the sum of contributions of all atomic strings
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located at transverse positions ρs (s = 1, . . . , N). It can be shown that the potential UCh is given by
the expression [38]:

UCh(ρ; R)=
N

∑
s=1

U(ρ− ρs)

=
Z1Z2e2R
3
√

3l2ε0

3

∑
k=1

[
Uk

0(ρ; R) + 2
∞

∑
µ=1

Uk
µN
2
(ρ; R) cos

(
µN
2

∆φ

)
cos

(
µN
2

(φ− ∆φ)

)]
,

(7)

where ρ and φ are coordinates of the vector ρ in polar coordinate system;
∆ φ = (m + n)π/(2m2 + 2mn + 2n2); while quantities Uk

ν(ρ) are defined by expression:

Uk
ν(ρ; R) =


αk Iν

(
βk

ρ

asc

)
Kν

(
βk

R
asc

)
, for ρ ≤ R,

αkKν

(
βk

ρ

asc

)
Iν

(
βk

R
asc

)
, for ρ > R.

(8)

Iν, and Kν are modified Bessel functions of the first and second kind and ν-th order [37]. In channeling,
thermal effects are introduced by averaging the static potential UCh over the distribution of atoms
thermal vibrations [38,39]

Uth
Ch
(ρ; R) =

∫
ρ′

Pth(ρ− ρ′)UCh(ρ
′; R)dρ′, (9)

where Pth(ρ) =
1√

(2π)2|det Σ|
exp[− 1

2 ρT · Σ−1 · ρ] is distribution of carbon transverse thermal motion;

Σ is its associate covariance matrix; while ρT is transposed vector.

2.2. Theory of Rainbow Channeling

For simplicity, we assume that the incoming particle beam is monochromatic, perfectly collimated
and aligned with the nanotube axis. We also assume that the energy of the particle is sufficiently large
so that the energy loss and fluctuation of the scattering angle due to the interaction with SWCNT
electrons can be neglected. Once the interaction potential is known, the particle trajectories can be
found by solving Newton’s equations of motion

m
d2r
dt2 = −∇Uth

Ch
(ρ; R), (10)

where m is particle mass, t denotes the time, and ∇ = (∂x, ∂y, ∂z). Appropriate initial conditions are
r(t = 0) = (b, 0), and v = (0, 0, vz); b = (bx, by) is the particle impact parameter. The distribution
of the incoming, macroscopic particle beam is uniform on the scale of the nanotube; therefore, the
impact parameters b should be random samples form uniform distribution. The Equation (10) shows
that the motion of the particle in the longitudinal direction is free. It is inertial motion with constant
velocity vz, while motion in the transverse plane satisfies equation

m
d2ρ

dt2 = −∇Uth
Ch
(ρ; R). (11)

Therefore, the particle trajectory can be parameterized by a value of the longitudinal coordinate
z. At the exit of the SWCNT of length L, trajectory end point determines particle exit transverse
position ρ(L) and deflection angle θ = (θx, θy) (see Figure 2b). Angular and spatial distributions
of transmitted particles Yθ and Yρ are constructed by counting the number of particles detected at
the specific angle and at the specific position. It should be noted that in principle spatial yield Yρ
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is measurable. To observe it a position sensitive detector of picometer resolution is required, which still
does not exist.

Particle trajectories define two mappings: a mapping of the impact parameter plane to the final
transmission position plane b → ρ, and a mapping of the impact parameter plane to the final
transmission angle plane b→ θ. Since the initial distribution of particles is uniform, the differential
cross-sections describing scattering process are defined by the following expressions

σ
ρ
diff(ρ) =

dbxdby

dxdy
=

1
|Jr|

, σθ
diff(θ) =

dbxdby

dθxdθy
=

1
|Jθ |

, (12)

where Jρ and Jθ are determinants of Jacobian matrices associated with mappings b→ ρ, and b→ θ,
respectively. Differential cross-sections are infinite whenever the following equations are satisfied.

Jρ(b) =
∂x
∂bx

∂y
∂by
− ∂x

∂by

∂y
∂bx

= 0, Jθ(b) =
∂θx

∂bx

∂θy

∂by
− ∂θx

∂by

∂θy

∂bx
= 0. (13)

The solutions of Equations (13) form lines in the impact parameter plane, called spatial,
and angular impact parameter rainbow lines, respectively. Their images obtained by the application of
the corresponding mapping b→ ρ, and b→ θ respectively, are also lines, called spatial and angular
rainbow lines, respectively. Note that spatial and angular rainbow lines separate areas of different
multiplicities of the mappings θ→ b, and ρ→ b. The side of higher multiplicity is called the bright
side of the rainbow, while the rainbow side of lower multiplicity is called the dark side of the rainbow.
Thus singularities (i.e., rainbow lines) and multiplicity of mappings θ → b and ρ → b dominantly
determine the shape of the observable distributions Yθ and Yρ, respectively.

2.3. Model of Quantum Rainbow Channeling

In the quantum approach particles are represented as wave packets Ψ. Evolution of any individual
state in the spatial representation satisfy the time-dependent Schrödiner equation.

ih̄
∂

∂t
Ψ(r, t) =

[
− h̄2

2m
∇2 + Uth

Ch
(ρ; R)

]
Ψ(r, t), (14)

Since the particle is free in the z direction, and the initial particle beam is monochromatic, the wave
function Ψ must be an eigenstate of the longitude momentum operator p̂z. Therefore, wave function Ψ
can be represented in the form

Ψ(r, t) = ψ(ρ, t; b) exp
[

i
h̄
(pzz− Ekt)

]
, (15)

where pz = h̄kz is longitude momentum eigenvalue, kz is longitudinal wave vector, and Ek is initial
kinetic energy, while ψb(ρ, t) is the transverse part of the wave function associated with the impact
parameter b which satisfies the following equation

ih̄
∂

∂t
ψb(ρ, t) =

[
− h̄2

2m
∇2

ρ + Uth
Ch
(ρ; R)

]
ψb(ρ, t), (16)

where ∇2
ρ = ∂2

xx + ∂2
yy. The corresponding wave function in the angular representation ϕb is given

by expression

ϕb(θ, t) =
kz

2π

∫
ψb(ρ, t) exp [−ikzθ · ρ]dρ2. (17)
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Initially, the wave function is represented as Gaussian wave packets

ψb(ρ, t = 0) =
1√

2πσρ

exp
[
− (ρ− b)2

4σ2
r

]
, ϕb(θ, t = 0) =

exp [−ikzθ · ρ]√
2πσθ

exp

[
− θ2

4σ2
θ

]
, (18)

here σρ and σθ = 1/(2kzσρ) are corresponding standard deviations of the probability distributions
in spatial and angular representations, respectively. According to the rules of quantum mechanics,
spatial and angular yields of transmitted particles are defined by relations

Yρ(ρ, t) = ∑
b

wb|ψb(ρ, t)|2, Yθ(θ, t) = ∑
b

wb|ϕb(θ, t)|2. (19)

where expansion coefficients wb satisfy constrain ∑b wb = 1. We assume that at the entrance plane of
the SWCNT the spatial distribution of the incoming beam is uniform, while its angular distribution
is Gaussian normal with standard deviation ∆θ . It is easy to see that Yθ(θ, t = 0) = 1

2πσ2
θ

exp[−θ2/2σ2
θ ];

therefore, ∆θ = σθ . Expansion coefficients wb should be determined in such a manner that Yρ(ρ, t = 0),
composed of Gaussian distributions of standard deviations σρ = 1/(2kz∆θ), is constant in the region
of the channel.

3. Results

For simplicity in this section we will focus on the channeling through chiral SWCNT. For arbitrary
chiral indices m, n, the greatest common divisor qmn is generally small; therefore, according to
the Equation (4) the number of atoms in the unit cell of the chiral nanotube N is large. Consequently,
a large number of the atomic strings almost uniformly cover the SWCNT circumference making its
potential effectively axially symmetric. Note that the general expression for the SWCNT potential (7)
represents the Fourier expansion in the polar angle φ. The first term in the square bracket Uk

0 gives
the axially averaged value of the function, and the remaining terms Uk

µN/2 represent amplitudes of
the higher harmonics. Using asymptotic formulas for Bessel functions of the large order [40]

Iν ∼
1

2νπ

( ze
2ν

)ν
, Iν ∼

π

2ν

( ze
2ν

)−ν
, (20)

it can be shown that Uk
µN/2 ∼ 1/(µN) which is negligible compared with Uk

0 . The general expression
for the SWCNT potential given by Equation (7) reduces to:

UCh(ρ; R) =
Z1Z2e2R

3
√

3l2ε0

3

∑
k=1


αk I0

(
βk

ρ

asc

)
K0

(
βk

R
asc

)
, for ρ ≤ R,

αkK0

(
βk

ρ

asc

)
I0

(
βk

R
asc

)
, for ρ > R,

(21)

which is axially symmetric.
We also assume that distribution of the thermal vibrations Pth(ρ) is isotropic, of standard deviation

σth. Since σth is generally small, it can be shown that thermal averaged potential Uth
Ch

is given
by the expression

Uth
Ch(ρ; R) ≈ 1√

2πσth

R+6σth∫
R−6σth

Uth
Ch(ρ; R′) exp

[
− (R− R′)2

2σ2
th

]
dR′ (22)

which represents an average of the potential UCh over the distribution of thermally induced changes of
the SWCNT radius. The critical channeling angle for chiral SWCNT is Θc = (Uth

Ch
(R− asc); R)/Ek)

1/2

Axial symmetry of the potential considerably simplifies the finding of trajectories because particle
motion in the polar direction is uncoupled from the motion in the radial directions. In the case of the
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motion of quantum particles, such separation is impossible. However, axial symmetry can be used to
reduce the number of considered impact parameters, since wave functions for rotationally equivalent
impact parameters can be generated by the application of the rotation operator.

In the first subsection, the manifestations of the classical rainbow effect will be explained
on the example of the proton channeling in SWCNT. Subsequent subsections will be devoted to
the analysis of the quantum rainbow channeling of positrons.

3.1. Interpretation of the Classical Rainbow Effect

Here we consider the transmission of the parallel, monochromatic, 1-GeV proton beam through
SWCNT (11, 9), which is perfectly aligned with nanotube axis. The radius of the SWCNT is
R = 0.689 nm, and the number of its atomic strings is N = 1204. Standard deviation of the
carbon thermal motion σth can be estimated from the Debye theory, which for the room temperature
(T = 300 K) gives σth = 0.005 nm. Screening length of carbon atom is asc = 0.026 nm.

The motion of the protons in the longitudinal direction is relativistic while its motion in the
transverse direction is classical. The equations of motion (11) still hold. The only differences are that m
should be replaced by the protons relativistic mass mr (mr/m = 2.066), and the relationship between
initial kinetic energy Ek and longitudinal linear momentum pz is p2

zc2 = E2
k + 2mc2Ek, where c is the

speed of light [9]. The relativistically corrected critical angle is Θ̄c =

√
2mc2+2Ek
2mc2+Ek

Θc = 0.268 mrad.

We consider only protons whose impact parameters satisfy inequality |b| ≤ R − asc. Since
the proton beam is aligned with the SWCNT axes, each proton trajectory is confined to a plane
defined by the impact parameter b and the nanotube axis. Figure 3 shows the obtained proton
trajectories in the x0z plane. Newton’s equations of motion (11) were solved by Runge-Kutta method
of the 4-th order [41]. Note that the amplitude of any proton trajectory is constant and corresponds to
its impact parameter bx. The corresponding trajectories in the angular space are shown in Figure 3b.
The amplitude of any trajectory is also constant. Note that the maximal deflection angle of Θc

corresponds to the trajectory of impact parameter bx = R− asc. All these facts demonstrate that proton
trajectories were accurately calculated.

Figure 3. (a) Family of 1-GeV proton trajectories in the x0z plane of the SWCNT (11,9).
(b) Corresponding family of trajectories in the angular space.
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Proton trajectories shown in Figure 3a,b can be concisely represented as function x(z; bx), θx(z; bx),
depending on the parameter bx. For SWCNT of length L functions x(L; bx), θx(L; bx) define mappings
of the impact parameter plane to the final transmitted position and final transmitted angle plane,
called the spatial and angular transmission function, respectively, which will be denoted as X(bx)

and Θx(bx). The symmetry of the trajectory family requires that both transmission functions are odd
functions X(bx) = −X(−bx), Θx(bx) = −Θx(−bx). Rainbow defining condition (13) now reduces to

dX(bx)

dbx
= 0,

dΘx(bx)

dbx
= 0. (23)

Therefore, the critical points of transmission functions, which occur in symmetrical pairs,
are rainbow points. Each critical point pair corresponds to the one circular rainbow line whose
radius is equal to the absolute value of the critical point ordinate.

For the 10-µm long SWCNT (11, 9) angular transmission function Θx(b), shown in Figure 4a,
has only one critical point pair (−b(1)x , θ

(1)
x ) = (−0.493 nm, 0.856 mrad), and (b(1)x ,−θ

(1)
x ) = (0.493 nm,

−0.856 mrad), both labeled 1. This function shows that for any θx from the interval (−θ
(1)
x , θ

(1)
x ) mrad,

there are three corresponding impact parameters, while outside of this interval the correspondence
is one-to-one. Therefore, there is only one circular angular rainbow line of radius 0.856 mrad. The
interior of the line is the rainbow’s bright side, while its exterior is the rainbow’s dark side.

The vertical slice through the corresponding angular distribution is shown in Figure 4b. The initial
number of protons was 16,655,140, while the size of the bin in the θx space was 0.866 µrad. Note the
small statistical fluctuation of the obtained distribution which reflects the randomness of the impact
parameter selection process. Besides this the obtained distribution is perfectly axially symmetric.
This distribution contains three prominent peaks. The central peak is the consequence of the fact
that potential Uth

Ch
has its minimum at the coordinate origin. It represents the undeflected part of

the proton beam, and it is not related to the rainbow effect. The two remaining peaks are located
symmetrically around the central maximum. Angular positions of the critical points form Figure 4a
are indicated by the number 1. It is obvious that their positions are in the perfect correspondence with
the positions of the mentioned peaks. Note also high particle yield inside, and low yield outside the
interval enclosed by the observed peak pair, which corresponds to the rainbow light and dark sides.
Therefore, the angular distribution contains one circular rainbow line whose properties are determined
by the critical points of the transmission function.

Figure 4. (a) Angular transmission function Θx(b) of 1-GeV protons transmitted through 10 µm long
SWCNT (11,9). (b) The vertical slice through the corresponding angular distribution. All rainbow
points are numbered, equivalent rainbow points are designated by the same number.
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3.2. Semi-Classical Interpretation of Quantum Rainbow Effect

This subsection is devoted to the analysis of the channeling of 1-MeV positrons through 200-nm
long chiral SWCNT (14, 4). The radius of this nanotube is R = 0.650 nm, while the number
of atomic strings is N = 536. Longitudinal motion of 1-MeV positrons is free and relativistic
(mr/m = 2.957) while transverse motion is quantum and nonrelativistic. As in the previous example,
Equation (16) still holds if bear mass m is replaced with relativistic mass mr [9]. To observe channeling
effect one need to use positron beam collimated better then critical channeling angle Θc. Here we
assume that the incoming positron beam has angular standard deviation ∆θ = 0.1Θc, which gives
σθ = 0.735 mrad and σρ = 0.134 nm. This value was selected because then transverse size of any
wave packet is large enough that the self-interference effect becomes significant, while on the other
hand it is small enough to allow explicit dependence of their dynamics on impact parameters to
be analyzed. Let M represent the number of wave packets uniformly covering impact parameter
plane. Expansion coefficients from Equation (19) are wb = 1/M. In order that Yρ(ρ, 0) be a uniform
distribution in the entrance plane of the nanotube, the number of wave packets M must be very large
(theoretically infinite). In order to minimize the number M an algorithm was devised which optimize
the values of the coefficients wb while keeping the difference between the distribution Yθ and uniform
distribution 1/(π(R − asc)2) in the region ρ ≤ R− asc below some prescribed tolerance. We have
found that accurate representation of the initial distribution of the positron beam can be accomplished
with only 142 Gaussian wave packets.

Let us examine the motion of the wave packet of impact parameter b = (0.624, 0) nm.
The corresponding Schrödinger Equation (16) is solved using the method of Chebyshev global
propagation [42]. The obtained probability densities at the exit of the SWCNT are shown in Figure 5.
In both representations, densities have a number of peaks, which can be attributed to self-interference
of the incoming part of wave function with the part of wave function already reflected from SWCNT
wall. However, since all peaks are the consequence of the wave packet self-interference looking only
on the numerically obtained probability densities, it is very difficult to say which peak is connected
with the rainbow effect, and which one is a simple manifestation of the positron wave nature.

Figure 5. The probability density of the wave-packet of impact parameter b = (0.624, 0) nm,
in the logarithm scale, at the exit of 200-nm long chiral SWCNT (14,4) in (a) spatial, and (b) angular
representation, respectively. The thick dashed line represents the SWCNT boundary.

In order to understand and classify self-interference peaks, a semiclassical approach can be
applied. To avoid unnecessary complications here we will focus only on the vertical slices of the wave
packets moving along the x axis. Transmission functions X(bx) and Θx(bx) then fully characterize
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the classical motion of the particle. In the phase space, those two functions define a curve called the
rainbow diagram which is shown in Figure 6a as a thin black line. The transmission function X(bx) has
two pairs of critical points labeled 1s and 2s whose ordinates are ±0.14 nm, and ±0.59 nm, respectively,
while transmission function Θx(bx) has only one pair of critical points labeled 1a whose ordinates are
±4.97 mrad. The positions of the rainbow points in the rainbow diagram are indicated by the black
arrows. Note that at rainbow points, the tangents of the rainbow diagram are vertical or horizontal.
They represent points where different branches of the mappings Θx(X), and X(Θx), respectively, meet.
Therefore, mapping Θx(X) has 5 branches, while mapping X(Θx) has only 3.

Figure 6. (a) Rainbow diagram of 1-MeV protons transmitted through 200-nm long SWCNT (14,4).
Arrows show positions of the classical rainbow points. Motion of the wave packets having impact
parameters ba = (0,0), bb = (0.31, 0), and bc = (0.52, 0) nm, respectively, in the: (b) spatial, and (c) angular
representations. Initial wave packets are shown by the dashed lines while final wave functions are
shown by the solid lines. Intervals containing trajectories giving dominant contribution to wave packets
are denoted by the thick red, green, and blue lines, respectively.

In the semiclassical approach the quantum wave function at the time t can be constructed from
classical rainbow diagram as a sum of the contributions of the wave trains coming from all branches [43].
The contribution of the branch µ is of the form ρ1/2

µ exp[iSµ/h̄]. Let density of the trajectories in
the impact parameter plane be K(b). The number of particles in the interval dx around x coming
from the branch µ is equal to the number of particles in the interval dbx around the point bx mapped
to the corresponding interval. Therefore, ρµdx = Kµ(bx)dbx, where Kµ(bx) is the density of the points
in the branch µ. The phase Sµ is a type 2 canonical transformation dSµ = h̄kzθxdx in the spatial
representation and type 1 canonical transformation dSµ = h̄kzxdθx in the angular representation,
of the branch µ. Therefore, the total semiclassical wave functions in spatial and angular representations
are given by the expressions

ψsc(x)=∑
µ

√
Kµ

∣∣∣∣ dbx

dXµ

∣∣∣∣ 1
2

exp

[
ikz

∫ x

X(0)
µ

Θµ
x (X′)dX′

]
,

ϕsc(θx)=∑
ν

√
Kν

∣∣∣∣ dbx

dΘν
x

∣∣∣∣ 1
2

exp
[

ikz

∫ θx

Θ(0)
ν

Xν(Θ′x)dΘ′x

]
,

(24)

where indices µ, and ν count branches of the spatial and angular transmission functions Xµ(Θx),

and Θν
x(X), respectively, X(0)

µ , and Θ(0)
ν are referent points of the µ-th and ν-th branch respectively.

Note that Θµ
x (X) stands for the inverse function of the branch Xµ(Θx) of spatial transmission

function, while Xν(Θx) is inverse function of the branch Θν
x(X) of the angular transmission function.

In the spatial representation the sum should be taken over all branches satisfying equation Xµ = x,
while in the angular representation the sum is over all branches satisfying equation Θν

x = θx.
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Let us now apply semiclassical reasoning for interpretation of the quantum motion of wave
packets labeled a, b and c of impact parameters ba = (0, 0), bb = (0.31, 0), and bc = (0.52, 0) nm,
respectively. Their spatial, and angular representations are shown in Figsure 6b and c respectively.
Wave packets in the impact parameter plane are shown by the dashed lines, wave packets in the exit
plane of the SWCNT are shown by the solid line. Since the initial distributions are Gaussian,
the dominant contribution comes from trajectories from the interval [bx − σρ, bx + σρ]. For reasons of
simplicity, the contributions of all other trajectories will be neglected. The dominant intervals are in
Figure 6b shown by the red, green, and blue lines, respectively. In the angular space, the dominant
intervals of length of 2σθ are in Figure 6c designated by the same colors. The corresponding exit
positions of the trajectories from the dominant intervals are in Figure 6a indicated by thick red, green
and blue lines, respectively. For wave packer a, the red curve in Figure 6a covers only one branch of the
mappings X(Θx) and Θx(X), respectively. This is the reason why for wave packet a self-interference
is not observable. For wave packet b the green line in Figure 6a covers one branch of mapping X(Θx)

completely and slightly extends into the second branch, and covers only one branch of the mapping
Θx(X). Therefore, the number of trajectories which interfere is small. This explains why in the
spatial representation for wave packet b only weak self-interference can be observed, and there is
no observable self-interference in the angular representation. For wave packet c the blue curve in
Figure 6a covers two branches of mappings X(Θx) and Θx(X), respectively. In this case, the number
of trajectories which interfere is large. This fact explains why self-interference is the strongest for
wave packet c.

Let us now examine more closely shape of the classical, the semi-classical probability density
of the wave packet c in the vicinity of the point 2s, and compare it with the exact solution given on
Figure 6b. The spatial transmission function X(bx) is shown in Figure 7a has a minimum labeled
2s at the point at (b2s , x2s). It ends at the point e which correspond to maximal possible considered
impact parameter be = R− asc. The inverse transmission mapping bx(x) have two branches labeled
X1 and X2, respectively. The branch X1 is formed by the end positions of positrons having impact
parameters bx < b2s , while positrons ending on the branch X2 have impact parameters belong to
the interval [b2s , be]. Therefore, for x < x2s the mapping bx(x) is zero-valued for x in the interval
[x2s , xe], the mapping is double-valued, while for x > xe it is single-valued. The classical probability
density is defined by the equation

ρ(x) =
{

K1(bx(X1))

∣∣∣∣ dbx

dX1

∣∣∣∣}
X1=x

+

{
K2(bx(X2))

∣∣∣∣ dbx

dX2

∣∣∣∣}
X2=x

. (25)

For an interval of impact parameters that is considered to be small from Figure 7a, function
K(bx) can be approximated with a constant (this also means that K1(bx) = K2(bx) = K). The resulting
normed distribution ρ(x) is in Figure 7c shown by the black line. Since, dX1

dbx
= dX2

dbx
= 0 for bx = b2s

both branches give singular contributions to the function ρ which is infinite at the rainbow point
x2s . For x < x2s density ρ(x) = 0, therefore this region is the dark side of the rainbow. For x in the
interval [x2s , xe] the function ρ(x) is monotonously decreasing. Note an abrupt jump of the function
ρ(x) at x = x+e which is consequence of the change of the multiplicity of the mapping bx(x) from 2
to 1.

The exact normed probability density |ψc(x)|2 is shown in the Figure 7c by the blue line.
Comparison of these two solutions shows the following. The classical approximation correctly predicts
overall order of the magnitude of the exact probability density |ψc(x)|2. It predicts that the largest
contribution to the density is at the rainbow point x2s , which is very close to the largest peak of
the function |ψc(x)|2, and that density is low for x < x2s and high for x ≥ x2s . Out of many peaks of
the density |ψc(x)|2, as is clearly visible on Figures 6b and 7c, the classical approximation explains the
existence of only one, and clearly overestimates its amplitude.
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Figure 7. The spatial (a) and the angular (b) transmission function of the 1-MeV positrons transmitted
through 200 nm long SWCNT (14, 4) in the vicinity of the spatial rainbow point 2s. (c) The classical,
the semiclassical, and the exact normed probability density shown by the blue, the red and black line
respectively.

According to the Equation (24) to construct semiclassical solution ψsc(x) one need to find all
solution of the equation X = x, form semiclassical waves and sum their contributions. For example,
if x ∈ [x2s , xe] amplitudes of the individual semiclassical waves are (K dbx

dX1
)1/2 and (K dbx

dX2
)1/2. To obtain

phases of the semiclassical waves one need to consider also angular transmission function Θx(bx)

shown in Figure 7b. Since the mapping bx(X) is two-valued in the considered interval, the mapping
Θx(bx(X)) has also two branches Θ(1)

x (bx(X1)), and Θ(2)
x (bx(X2)). Phases of the semiclassical waves

are solutions of the equations dS1
dX1

= kzΘ(1)
x (X1), and dS2

dX2
= kzΘ(2)

x (X2).
Note that direct evaluation of the Equation (24) is not possible at x = x2s since both wave

amplitudes (K dbx
dX )1/2 diverge. To circumvent this limitation one can use the so-called transitional

approximation [11,29]. Firstly, the spatial and the angular transmission functions are in the vicinity of
the rainbow point 2s approximated by the following polynomials

X(bx) = α2b2 + α1b + α0, Θx(bx) = β1b + β0. (26)

Obtained approximations are in Figure 7a,b shown by the dashed red lines. By the analytical
continuation validity of the equation X = x is extended to the whole complex plane. Therefore,
for x ∈ [x2s , xe] equation X = x has two real solutions, for x = x2s , the equation has a double root, while
for x < x2s the equation has two conjugate complex solutions. Taking into account additional complex
solutions it can be shown that transitional semiclassical density |ψ(t)

sc (x)|2 is given by the equation

|ψ(t)
sc (x)|2 =

β1/3
1 k1/3

z K

2πα2/3
2

∣∣∣∣∣Ai

(
β1/3

1 k1/3
z

α1/3
2

(x− x2s)

)∣∣∣∣∣
2

, (27)

where Ai is the Airy function [37]. The obtained semiclassical distribution |ψ(t)
sc |2 is in Figure 7c

shown by the red line. The largest maxima which is now finite of the function |ψ(t)
sc |2 is the closest to

the classical rainbow 2s. For x < x2s interference of the complex rays make density |ψ(t)
sc |2 exponentially
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decaying. For x ≥ x2s a number of smaller peaks can be observed which appear due to the constructive
interference of the real rays.

Note that almost identical expression describe semiclassical intensity of the light in the vicinity of
the optical rainbow [44–46]. Therefore, peaks of the function |ψ(t)

sc |2 can be classified in analogues way
as interference peaks of the optical rainbow. The large maximum closest to the position of the classical
rainbow is considered to be the primary rainbow maximum, while all other peaks are supernumeraries
associated with the observed primary.

Comparison of the red and the blue curve from Figure 7c reveals that transitional semiclassical
approximation almost perfectly predicts the position and size of the dominant peak of the exact
distribution |ψc|2. The constructive interference of real rays explains the existence of all other maxima,
while the interference of the complex rays explains how probability density |ψc|2 can have non-zero
values in the region where there are no real rays at all. It could be said that the ray interference
“assuages” the sharpness of the classical distribution ρ(x). Therefore, the semiclassical approximation
captures all qualitative features of the quantum rainbow scattering effect. However, its validity is
limited. Note that accuracy of the semiclassical solution |ψ(t)

sc |2 actually decreases for x > x2s . Its range
of validity is limited only to the region x ≤ xe. The reason for this is that in the vicinity of the point
x = xe the multiplicity of the inverse transmission function bx(X) changes by one, while number
of real roots of any polynomial approximation of the X(bx) can change only by an integer multiple
of 2. This is the reason why semiclassical density |ψ(t)

sc |2 for x > xe in Figure 7c is shown by the
dashed red line. For x > xe the correct semiclassical wave function is given by only one semiclassical
wave. According to the Equation (24) semiclassical density is then |ψsc(x)|2 = K dbx

dX1
, i.e., it is equal to

the classical solution ρ(x). Therefore, the semiclassical approximation is not capable of explaining the
existence of the peaks of the exact density |ψc|2 in the region where transmission function has only
one branch.

Summing contributions of all wave packets according to Equation (19) gives distributions of
the transmitted positron beam at the exit plane of the SWCNT. The vertical slices through the obtained
distributions in spatial and angular space are shown in Figure 8a,b, respectively. Each pair of symmetric
maxima visible in the Figure 8a,b corresponds to the circular maxima of the 2D distribution. Positions of
the classical rainbow point pairs 1s, 2s, and 1a are indicated by the arrows. Large maxima closest
to the classical rainbow points, labeled 1qu

s , and 2qu
s in the Figure 8a at xqu

1s = ± 0.55 nm and
xqu

2s = ±0.14 nm are interpreted as the primary and the secondary rainbow point. All other peaks
are considered to be supernumerary rainbows. In the case of angular distribution, the large maximum pair
1qu

a at θ
qu
1a = ±3.27 mrad, closest to the classical rainbow peaks 1a, are interpreted as the primary rainbow

points, all remaining peaks are considered to be supernumerary rainbows.

3.3. Morphological Interpretation of Quantum Rainbow Effect

The developed method was applied for classification of angular distributions of 1-MeV positrons
transmitted through 200-nm long SWCNTs (7, 3), (8, 5), (9, 7), (14, 4), (16, 5), and (17, 7). The nanotubes
considered here are the easiest to produce by the arch discharge method [1]. The radii of the considered
nanotubes are in the range from 0.35 to 0.85 nm. The classical critical angles for the considered SWCNTs
are very close to each other, ranging from 7.3 to 7.4 mrad. For all SWCNT we assume that initial
angular standard deviation of the positron beam ∆θ is always equal to the 10% of the corresponding
classical critical angle Θc. This means that the used angular standard deviations of the positron beams
are in the range [0.73, 0.74] mrad, the corresponding range of the standard deviations of the Gaussian
wave packets are in range [0.094, 0.095] nm. Note that all wave packets have almost the same size.
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Figure 8. (a) The spatial distribution of the 1-MeV positron beam transmitted through SWCNT
(14, 4). (b) The corresponding angular distribution. Positions of the classical rainbow lines are shown
by the arrows.

Vertical slices through obtained distributions are shown in Figure 9. Initial spatial distributions
were constructed using: 43, 71, 101, 141, 190, 241 Gaussians, respectively. All prominent peaks
excluding central are labeled by numbers, with symmetrical maxima labeled by the same number.
Numeration always starts from the outermost rainbow pair. In all analyzed cases there is only one
classical rainbow point pair labeled 1′. Their positions in Figure 9 are shown by the arrows. It is clear
that the quantum peak pairs labeled 1 in Figure 9a,d–f are quantum primary rainbow points. All other
peaks are supernumerary rainbow.

Figure 9. Angular distributions along θx axis for 1-MeV positrons transmitted through 200-nm long
SWCNT: (a) (7, 3); (b) (8, 5); (c) (9, 7); (d) (14, 4); (e) (16, 5); and (f) (17, 7). Arrows show positions of
maxima in the corresponding classical angular distributions. Symmetrical maxima are designated by
the same number.
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It should be noted that the semiclassical classification of the quantum peaks for the distributions
from Figure 9b,c is ambiguous. This is not surprising since the applicability of the semiclassical
approach is limited. Rather, it is surprising that the semiclassical interpretation works at all. It should
be noted that accurate wave functions differ considerably from their semiclassical counterparts.
If we take a closer look at the wave packet bc shown in Figure 6b,c, the interference is clearly
visible in the interval from −0.6 nm up to 0.2 nm in the spatial representation, and in interval
from −5 mrad up to the −1 mrad. However, the corresponding relevant parts of the transmission
functions are two-valued only in the intervals [−0.6,−0.5] nm, and [−6,−4] mrad, respectively.
Outside the mentioned intervals the transmission functions are single-valued, and there should be no
observable interference effects. Therefore, the semiclassical wave functions drastically underestimate
real self-interference of the wave packets.

The problem with the semiclassical interpretation is that it intrinsically relay on classical concepts
(such as exact position of the particle in the phase space) which do not have direct quantum analogue.
A alternative approach would be to try to link the rainbow effect to certain morphological properties
of the family of the classical trajectories, and quantum amplitude and phase function families.
If morphological properties were found to be equal then both approaches are merely two descriptions
of the same physical reality.

In this subsection it will be shown that it is possible unambiguously to classify quantum
peaks relaying only on the information contained in the quantum amplitude and phase function
families. In order to show that let us examine channeling of 1-MeV positrons through 400-nm long
SWCNT (11, 9). The classical critical angle is Θc = 7.3 mrad. The obtained trajectory family in xOz
plane is shown in Figure 10a. The striking features of this family are three pairs of envelope lines,
labeled c1, c2, and c3, which are defined as a limiting line formed from intersections points of the
neighboring family members [47]. The mathematical envelope is defined as a set of solutions of
the equation

∂

∂bx
x(z; bx) = 0. (28)

Equation (28) shows that each envelope is a locus of one critical point of the transmission
function, i.e., the envelope is caustic line of the trajectory family [48]. For example, for a nanotube
of length L = 150 nm the spatial transmission function has one symmetrical pair of critical points
whose ordinates xs

1 = ±0.23 nm are equal to the positions of envelope points ±1s in Figure 10a.
Another important quantity is the Hamilton’s principal function defined by the equation [49]

∂

∂x
S(x) = h̄kzθx, (29)

which is directly related to the phase function of the quantum wave packet [50]. Hamilton’s principal
functions for nanotube whose length is L = 150 nm is shown in Figure 10b. It is multivalued singular
curve composed of three branches. The caustic lines are also loci of singularities of the Hamilton’s
principal function [48]. Its cusped-like singular points, locally isomorphic to the cusp catastrophe [51],
are also labeled ±1s. Therefore, envelope lines and singularities of the Hamilton’s principal function
are inextricably linked to the manifestations of the rainbow effect.
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Figure 10. (a) Trajectories of the 1MeV positrons (magenta lines) in the xOz plane and associated
envelope lines (blue hue lines). (b) Corresponding Hamilton’s principal function at the z = 150 nm.

Now let us apply the same logic for the explanation of the quantum rainbow channeling.
Figure 11a shows spatial distribution of the transmitted positron obtained assuming that initially
its divergence was ∆θ = 0.1Θc. Spatial and angular standard deviations of the wave packets were
σρ = 0.19 nm and σθ =0.73 mrad. The vertical slice through the obtained spatial distribution of
the positron beam, transmitted through 150-nm long SWCNT (11, 9), is shown in Figure 11a. It consists
of a large central peak which shows no signs of any internal structure, and six pairs of smaller peaks.
The largest is the outermost peak pair, while remaining peaks are of approximately the same size.
We need to provide a classification of the observed behaviour, and an explanation for its formation.

Since the obtained spatial distribution is axially symmetric we have focused only on the motion
of wave packets with impact parameters belong to the nanotube vertical cross-section. We have
followed evolution of 301 wave packets. Vertical cross-sections through obtained probability densities
parameterized by the impact parameter are shown in Figure 11b. This distribution is dominated by
two large maxima labeled ±1m0 at xm0 = ±0.17 nm. Therefore, the dominant contribution to the large
central peak in the Figure 11a actually comes from two smaller maxima. During their evolution,
the wave packets become wrinkled (for example see Figure 5, or Figure 6b,c). This is the manifestation
of the wave packet self-interference caused by the interaction with the nanotube walls. The wave
packet ensemble shown in Figure 11b can be separated in two parts. The first one is formed by the wave
packets showing no observable wrinkling (i.e., for |bx| < 0.33 nm). The second subensemble is formed
by the wave packets for which self-interference is considerable (i.e., for |bx| ≥ 0.33 nm), which is called
the rainbow subensemble. Members of these two subensembles are separated by the magenta lines
in Figure 11b. Note the formation of the vertical yellow stripes which occur for the wave packets of
impact parameters approximately in the range |bx| ≥ 0.50 nm. This means that the wave packets
wrinkle in the mutually coordinated way. The corresponding inverse classical spatial transmission
function is shown by the thick black line. Positions of the classical rainbow points, labeled±1s, are also
indicated. Quantum probability density is concentrated around the classical line. It behaves as if there
is a virtual barrier preventing spreading of the wave packets in the areas beyond the line.
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Figure 11. (a) Vertical slice through spatial probability density of 1-MeV positron beam in the exit plane
of SWCNT (11, 9). (b) Corresponding slices through individual wave packets. Magenta lines separate
wave packets belonging to the rainbow subensemble. The thick black line shows the corresponding
inverse spatial transmission function.

It should be noted that the observed behavior is unexplainable by the semiclassical approach.
For example, for bx > 0.33 nm the wave packet wrinkling is the most noticeable in rainbow
subensemble and in the region x < 0.4 nm, where the inverse transmission function is single valued.
On the other hand the semiclassical approximation predicts that the most intense self-interference
should be in the regions close to the classical rainbow points ±1s, where no wave packet wrinkling
can be observed.

Wrinkling, concentration and coordination of the wave packets are elementary processes clearly
sufficient for description of the wave packet motion. Out of these three processes, the coordination
is the most important for explanation of the rainbow effect. Next, we will show that coordinated
evolution of wave packets generate the rainbow effect. Figure 12a shows the family of quantum
probability densities. Members of the rainbow subensemble are designated by the magenta lines. Each
member represents the motion of the wave packet reflected form the SWCNT boundary. The largest
maxima of any member show the current position of the wave packet center, with a large number of
self-interference maxima on its tail. The remaining probability densities are shown by the gray lines.
Prominent peak pairs visible in Figures 11a and 12a labeled ±1s0, ±1s1, ±1s2, ±1s3, ±1s4, ±1s5, and
±1s6, are at xs1

1 = ±0.41, xs2
1 = ±0.45, xs3

1 = ±0.50, xs4
1 = ±0.55, xs5

1 = ±0.60, and xs6
1 = ±0.66 nm,

respectively. The numbering starts from the innermost peak pairs. The reason for such a convention
will become apparent shortly. Note that due to the wave packet coordination, members of the rainbow
subensemble have their respective maxima on the exactly same abscissas.
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Figure 12. (a) The family of wave packet probability densities; (b) The corresponding family of wave
packet phase functions. The red line shows the classical Hamilton’s principal functions. The blue line
shows the envelope function of the quantum phase function family. Inset show enlarged part of the
phase function family in the vicinity of the classical singular point +1s. The envelope function of the
family is shown by the blue line. Members of the rainbow subensemble are designated by magenta
lines, remaining wave packets are shown by the gray lines.

Figure 12b shows the obtained family of quantum phase functions expressed in the units of
h̄. The red line shows the corresponding classical Hamilton’s principal function form Figure 10b.
Phases of the members of the rainbow subensemble are designated by the magenta lines, remaining
phases are shown by the gray lines. The family of phase functions can also be subdivided into subsets
of lines which run in parallel, i.e., subsets of coordinated wave packets. Note that the subset of
magenta lines is the largest, which also runs in parallel with the classical Hamilton’s principal function.
Therefore, wave packet coordination is the strongest in the rainbow subensemble. Detailed analysis of
phases functions in the vicinity of classical singular points ±1s have shown that envelope function of
phase function family also have two cusp singular points ±1s0 at xs0

1 = ±0.16 nm. This can be seen
in inset in Figure 12b where the envelope line is shown by the blue line. The "vertical" branch of the
envelope is defined by the members of the rainbow subensemble, while the "horizontal" is defined by
the remaining phases of the ensemble. Therefore, both subensembles are important for the explanation
of the formation of cusp singular points. The position of the points ±1s0 is also shown in Figure 12a
and it proved to be very close to the peaks ±1m0 from Figure 11b. A careful examination revealed
that phases of the rainbow subensemble have common inflection points labeled ±1s0, ±1s1, ±1s2,
±1s3, ±1s4, ±1s5, and ±1s6, respectively whose abscissas are equal with abscissas of the corresponding
points in Figure 12a. Note that points +1s1, +1s2, +1s3, +1s4, +1s5, and +1s6, respectively belong to
the branch generated by the point −1s0.

Now the classification of the prominent peaks of the spatial distribution of the positron beam is
straightforward. The central maximum consists of two primary quantum rainbow peaks ±1s0. Peaks
+1s1, +1s2, +1s3, +1s4, +1s5, and +1s6, respectively, are supernumeraries of the primary rainbow −1s0,
while −1s1, −1s2, −1s3, −1s4, −1s5, and −1s6 are supernumeraries of the primary rainbow +1s0.

It should be stressed that although quantum mechanical description requires that amplitude
and phase functions of any individual wave packet are smooth single valued functions, there is no
such restriction regarding the behavior of the ensembles of amplitude or phase function families.
The envelope function of the quantum phase functions can develop cusp singularities characteristic
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for the existence of the rainbow effect. Therefore, the morphological approach for the classification
of the system behavior, based on the analysis of the singularities of the appropriate function family,
is more general than other approaches considered here. The developed morphological method is
geometrical in its nature, which makes it applicable for interpretation of the rainbow pattern for any
physical system in which it can be observed. The true limitation of the method is the existence of
the some random factors which can destroy the coordinated behavior of individual wave packets.

4. Conclusions

In this paper, the transmission of both quantum and classical particles was examined in detail.
It has been proven that the quantum rainbow effect exists and that it can be explained in terms of:
wave-packet wrinkling, concentration, and coordination. Both classical and quantum rainbows were
found to be linked to the singularities of the Hamilton’s principal function and quantum phase function
family, respectively. The devised method for the classification of the prominent peaks in quantum
distributions of transmitted particles was found to be more general than an alternative approach based
on the semiclassical approximation.

More profoundly, we have found that the rainbow pattern is an inartistical property emerging
out of a collective, i.e., its behavior is irreducible to the behaviour of any constitute member. This
represents a very interesting example of the so-called deducible or computational emergence property
[52]. It has been shown that nontrivial morphological properties of the trajectory family or family of
quantum amplitude and phase functions are related to the nontrivial physical properties of channeled
particles. The classical behavior of the particle beam seems to be embedded in the quantum ensemble
and not in the behavior of individual wave packets. It emerges directly from the underlying quantum
ensemble without the need for any additional approximations. It seems that, in the case of rainbows,
scattering physical systems follow J. von Neumann’s dictum that classical mechanics is merely a
consequence of the law of large numbers.
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