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Abstract: In this work, theoretically/mathematically simulated models are derived for the
photoacoustic (PA) frequency response of both volume and surface optically-absorbing samples
in a minimum volume PA cell. In the derivation process, the thermal memory influence of both the
sample and the air of the gas column are accounted for, as well as the influence of the measurement
chain. Within the analysis of the TMS model, the influence of optical, thermal, and elastic properties
of the sample was investigated. This analysis revealed that some of the processes, characterized
by certain sample properties, exert their dominance only in limited modulation frequency ranges,
which are shown to be dependent upon the choice of the sample material and its thickness. Based
on the described analysis, two methods are developed for TMS model parameter determination,
i.e., sample properties which dominantly influence the PA response in the measurement range:
a self-consistent procedure for solving the exponential problems of mathematical physics, and a
well-trained three-layer perceptron with back propagation, based upon theory of neural networks.
The results of the application of both inverse problem solving methods are compared and discussed.
The first method is shown to have the advantage in the number of properties which are determined,
while the second one is advantageous in gaining high accuracy in the determination of thermal
diffusivity, explicitly. Finally, the execution of inverse PA problem is implemented on experimental
measurements performed on macromolecule samples, the results are discussed, and the most
important conclusions are derived and presented.

Keywords: photoacoustic; photothermal; inverse problem; thermal memory; minimum volume cell;
neural networks; thermal diffusivity; conductivity; linear coefficient of thermal extension

1. Introduction

One of the most plastic and easily understandable definitions of inverse problem was given
by professor Mandelis [1]—a field in which one is called upon to reconstruct the cow from the
hamburger meat. Indeed, when all the difficulties are taken into considerations, such as ill conditioning,
non-linearity, model dependence upon material, experimental range limitations, etc., one truly feels
like they are dealing with the impossible. On the other hand, no matter what method of inverse
problem solving is opted for, one conclusion seems inevitable—it is necessary to simultaneously
develop both the appropriate TMS model (direct solving methods) and the inverse solving procedures
(characterization, imaging) in order to obtain optimum results. By reviewing literature regarding TMS
models and techniques of inverse solving in photoacoustics, unexplained approximations that could
be the limiting factor in determination of sample properties were noticed.

The research in this domain done by our group has taken two directions. From the experimental
point of view, it was found that only a narrow bandwidth of frequency measurements has been
exploited until now; from our own experience, this is due to the fact that experiential results rarely
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agree with theoretical predictions over the entire frequency range. Also, the processing of results,
almost by rule, considers either amplitude or phase measurements of the signal; never does it account
for both of those, simultaneously.

From the theoretical modeling aspect (the aspect of fundamental research), it was found that
the influence of finite heat propagation velocity was neglected, as well as the influence of volumetric
optical absorption and the possibility of multiple optical reflections. Also, the knowledge of the
measurement chain influence can be, in general, considered insufficient, and it plays an important role
in the process of obtaining experimental results.

That is why, in the first part of this work, the generalized model of photoacoustic (PA) response
was presented and discussed as the basis for the developed inverse solving procedures for PA
characterization. Furthermore, two types of inverse problem solving are suggested and analyzed:
a self-consistent inverse procedure, and a neural network. Finally the results of the application on
experimental results of the first method are presented. At the end, the most important conclusions
are derived.

2. Generalized Model of PA Response—Direct Problem Solving

Indirect transmission photoacoustics presumes the use of an air-filled PA cell as the element in
which the acoustic signal is created due to the deployment of a monochromatic, amplitude modulated
light source: I = I0(1 + cos ωt) upon a sample. Usually, a cylindrical cell is used in combination with
a disk-shaped sample of the radius R and the thickness ls, positioned and fixed in accordance to the
“simply supported plate” principle [2]. This sample is exposed, from one side, to the described EM
source, while the response is recorded by microphone on the other side, i.e., this is the principle of
t transmission gas-microphone configuration, presented in Figure 1a (upper part), while a detailed
description is given in Figure 2. The frequency-dependent measurements of PA response are performed
using a lock-in amplifier.
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Figure 1. (a) Schematic representation of transmission (up) and reflection (down) configuration in
photoacoustics, (b) drawing of a standard electrets microphone (http://www.openmusiclabs.com/
wp/wp-content/uploads/2011/03/mic_section_small.jpg, accessed on 29 November 2018).

In transmission PA configuration Figure 1a, the concept of minimum volume cell is used in order
to obtain sufficiently high-measured acoustic signal and good signal-to-noise ratio. This means that
the microphone chamber itself acts as the interior of the PA cell, as illustrated in Figure 1b [3,4].

Based upon previous research and in accordance with literature defined norms [5], the following
designation of thermodynamic properties of the system is introduced:
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Figure 2. Transmission configuration, taken with approval from [6].

ki—thermal conductivity [W/mK],
DTi—thermal diffusivity [m2/s],
aT—thermal coefficient of linear expansion [K−1],
τi—thermal relaxation time [s],
and ui =

√
DTi/τi—heat propagation velocity [m/s], indexed i = a,s (air or sample) and designating

the i-th medium where it occurs.
Thermal relaxation time and heat propagation velocity are the properties of materials which

exist in the generalized theory of heat transfer [6–12]. Explanation attempts regarding the meaning of
thermal relaxation time can be found in several papers [13–15]. Avoiding further considerations of the
matter (since they go beyond the scope of this work), it is important to note that the investigations
in this area are still ongoing and can be approached from different physical viewpoints. As for the
stand of our group, we have adopted the most general interpretation of this property, regardless from
the material microstructure or thermal energy carriers—thermal relaxation time is the period of time
passing between the occurrence of the excitation and the actual change of the heat flux.

Prior to the development of the theoretical/mathematical simulation (TMS) model of the
generalized PA response, the following presumptions were introduced:

(a) The cross section of the incident beam is much larger than thesurface area of the
sample, thus, planar uniformity of energy distribution justifies the use of one-dimensional (1D)
approximation [4,8,16–21];

(b) Excitation energy is absorbed within thin surface layer of the sample (the approximation which
describes metal samples well, otherwise achieved through the application of thin, opaque absorbent
layer) [18,20];

(c) Heat conduction to the surrounding gas (outside of the PA cell) is considered negligible due to
its poor thermal conduction properties [18];

(d) Harmonic component alone (of the Fourier transform of the acquired signal) is observed
(lock-in detection) and frequency characteristics of the PA response are analyzed;

(e) The “thin plate” approximation is applicable since R is much larger than ls, where the influence
of the sample dilatation on the mechanical piston model is negligible and only thermoelastic (TE)
bending is taken into consideration [4,8,18,19,22,23].

Basing the approach upon literature considerations [4,8,18,19,22,23], the starting expression of
the model (for the measured signal directly proportional to the pressure change in the PA cell) can be
written in the form:

p̃ = p̃th + p̃ac (1)
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where pth denotes the pressure change due to the thermoconducting(TH) component of the PA response
(the component that originates from the periodic expansion of a thin gas layer closest to the sample
in the PA cell), while pac denotes the pressure change due to the PA component originating from TE
vibrations of the sample caused by temperature gradient along symmetry axes of sample (drum effect).
These components are then written in the following manner [4], [18], [8]:

p̃th =
γP0

laT0

ls+2πµa∫
ls

ϑ̃s(ls)e−σ̃a(x−ls)dx, (2a)

p̃ac =
3γP0

la
αS

R2

l3
s

ls∫
0

(x− ls
2
)ϑ̃s(x)dx, (2b)

where γ annotates the adiabatic coefficient, P0 is the atmospheric pressure, la is the length of the gas
column inside the PA chamber, while T0 stands for the room temperature. Furthermore, αS is the
linear coefficient of thermal expansion of the sample, R is its radius, while ls annotates its thickness.
The symbols ϑ̃s and µa represent the complex representative of distribution of dynamic temperature
variations across the sample and the thermal diffusion length in the air (gas).

As can be seen from the expressions (1) and (2), the components of the pressure depend on
the distribution of the dynamic temperature variation along the sample axis and from the dynamic
temperature variation on the unexposed side of the sample (back). We have acquired these values
taking into consideration finite heat propagation velocity [9]:

d2ϑ̃a(x, ω)

dx2 − σ̃2
a ϑ̃(x, ω) = 0, (3a)

d2ϑ̃s(x, ω)

dx2 − σ̃2
s ϑ̃s(x, ω) = −σ̃s z̃csS(x) (3b)

q̃i(x, ω) = − 1
σ̃i z̃ci

· dϑ̃i(x, ω)

dx
, i = a, s (3c)

where q(x) is dynamic heat flux, S(x) represents incident volumetric heat flux which generates
perturbations of temperature field, σ̃i and Z̃ci, are heat wave vector and thermal impedance of the
environment (air or sample), given by:

σ̃i =
1√
DTi

√
jω(1 + jωτi), (4a)

Z̃ci =
√

DTi
ki

√
(1+jωτi)

jω , (4b)

Incident volumetric heat flux is calculated as:

S(x) = −dIabs(x)
dx

(5a)

Iabs(x) = I0e−βx (5b)

Iabs(x) = I0(1− R0)
e−βx

1 + Re−βx (5c)

The equations for the components of the measured pressure (2a,b), combined with the
expressions (3a)–(5c) and solved, become:

p̃th =
γP0

laT0

1
σ̃a

e2πµa ϑs(ls) (6a)



Atoms 2019, 7, 24 5 of 16

ϑ̃S(ls) = − S0βσ̃s Z̃cs
β2−σ̃2

s
· e(σa−β)ls [(r̃+r̃a)ch(σ̃s ls)+(1+r̃2

a)sh(σ̃s ls)]+(r̃−r̃a)e−σs ls

2r̃ach(σ̃s ls)+(1+r̃2
a)sh(σ̃s ls)

· 1−R0
1+R1e−βls ,(

r̃ = β

Z̃cs
, r̃a =

Z̃ca
Z̃cs

) (6b)

p̃ac = S0
6γP0R4

lal2
s R2

c
αs

z̃cs

σ̃2
s

ch(σ̃sls)− σ̃s ls
2 sh(σ̃sls)− 1

sh(σ̃sls)
1− R0

1 + R1e−βl (6c)

where R0 and R1 are, respectively, outer and inner optical reflection coefficient.
If the sample is good optical absorber, heat source becomes surface type and the model given by

(6a–c) is reduced to:

p̃th = S0
γP0

T0la

Z̃cs

σ̃a

1
sh(σ̃sls)

, (7a)

p̃ac = S0
6γP0R4

lal3
s R2

c
αs

Z̃cs

(σ̃s)
2

ch(σ̃sls)− σ̃s ls
2 sh(σ̃sls)− 1

sh(σ̃sls)
. (7b)

In the above expressions S0 stands for the surface heat source, which equals half of the
excitation energy intensity, Rc represents the effective radius of the sample [24], and ω = 2πf is
radial modulation frequency.

Finally, the PA response is given in the form:

p̃ins = E0
1

1 + jωτe
( p̃th + p̃ac) = E0

p̃th
1 + jωτe

(1 +
p̃ac

p̃th
). (8)

In the expression (8), the influence of the measurement chain is represented through the
presence of the element E0/(1 + jωτe), which can, however, be annulated by diverse normalization
procedures [20,23].

When the influence of thermal memory is neglected, the expressions (5a,b) and (7) are reduced to
their classic composite piston forms [2,4,8,18,19,22,23].

2.1. Multiple Optical Reflections—the Influence of Optical Properties

In thin samples with low optical absorption coefficient an increase of the static component of the
PA response temperature variation was calculated as:

Θ(s)
(0) = Θ′(s)(0) ·

1
1 + Re−βls

. (9)

On the other hand, in thin samples (ls~10 µm, optical absorption coefficient β ~105 m−1, typical
for polymers) with high inner reflection coefficients (R1~0.9), at low frequencies (100 Hz–10 kHz),
temperature variation (the dynamic component of the signal) is significantly increased, more noticeably
on the exposed side of the sample (x = 0), as presented in Figure 3a.

However, in thick samples (~100 µm), as well as in others with low inner reflection coefficients
(R1~0.1), the effect is, surprisingly, the opposite: the temperature variation is decreased compared to
the one corresponding to the model which neglects multiple reflections—the effect which can be seen
in Figures 3b and 4a,b. Graphic representation of this principle is given in Figure 5.

These considerations present us with the possibility of observing another TMS model
parameter—optical coefficient of inner reflection—in the future, but also call for caution; fundamental
aspects of heat transfer through various media should be more profoundly studied [25].
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2.2. Thermal Memory Influence

In numerous materials and under certain conditions, the appearance of oscillatory behavior
as well as shape changes in both phase and amplitude responses are predicted; however, due to
technical limitations of the experiment, these could not be recorded and validated. Instead, theoretical
predictions are presented for reference samples (Aluminum, two thickness levels) in Figure 6.
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The most important result of these considerations is the expression which directly links the
position of the first peak (the frequency value) with heat propagation velocity through the observed
medium [9,10,12,21,26]:

f1max =
1

2ls

√
DTs
τs

=
1

2ls
us. (10)

2.3. Helmholtz Resonances—the Influence of the Measurement Chain

Resonant peaks observed in this part of frequency domain are, throughout literature, attributed
to the influence of measurement chain, although, in measurements, they occur at frequencies lower
than expected (frequency characteristic of the microphone, the amplifier, and other electronics) [27–29].
Minimum volume cell has already been observed as an electro-acoustic resonator and it has been
modeled with cascade filter array, with transfer function represented as the combination of two
Helmholtz resonators:

p̃u(jω) = p̃(jω) · HV(jω) · Hε(jω). (11)

The relation among different elements of the analogous electro-acoustical system and the actual
geometrical values of the microphone are given in the following set of expressions [30]:

L = ρl
S , Ci =

Vi
ρv2 , i = V, ε, ωclosed = v

√
S

lV ,

Hi(jω) =
ω2

i
ω2

i −ω2+jω ωi
Qi

,

 i = V, ε

ω = 2π f
ωi = 2π fi

,
(12)

while the graphical representation of the analogy is given in Figure 7:
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Figure 8. The inclusion of Helmholtz resonances in a PA experiment post-processing (red line): phase
(a) and amplitude response (b), theoretical prediction (green), experimental results (blue) of HDPE at
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These considerations not only presented us with the possibility of effectively eliminating
microphone influence in our future experiments, but also open the possibility of introducing a novel
method of microphone characterization.

3. Techniques for Inverse Solving of PA Response

Based on the described analysis, two methods are developed for TMS model parameter
determination, which were applied on numerical experiments:

1. A self-consistent procedure for solving the exponential problems of mathematical physics;
2. A well-trained three-layer perceptron with back propagation, based upon theory of

neural networks.
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The first method was, consequentially, applied on experimental measurements, with satisfactory
results, and published [31] (subsection 2.2.3).

3.1. Self-Consistent Inverse PA Procedure

The idea for the development of the self-consistent inverse procedure for the estimation of
thermodynamic parameters originates from theoretical considerations of PA model, where the tendency
of phase exhibiting linear dependence upon thermal diffusivity, DTs, was noticed. The benefit of
this approach is that this parameter, when derived from phase data, improves the reliability of
multi-parameter fitting done on the rest of the signal (amplitude data). As a matter of fact, analytical
methods demonstrated that thermal conductivity, ks, could not be identified separately, but only as the
part of its ratio with linear expansion coefficient, αs:

αT
ks

[32], which boils the fitting procedure down to
only one parameter.

The validity of the idea was demonstrated first by TMS modeling of the problem, i.e., on a
numerical experiment, presented in Figures 9 and 10. In Matlab package, the procedure was developed
which randomly sets the values of the dataset DTs,

αT
ks

(in accordance to literature values), and then
simulates the PA response at two thickness levels using the given set of parameters with the addition
of the certain level of noise. In the next step, the estimation of DTs is done by the comparison of phase
difference data, while the value of αT

ks
is estimated from the amplitude ratio—both estimates are done

by regression analysis: least squares being the method of choice.
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Figure 10. Simulated (black line) and reconstructed PA response (green), based upon the estimated
values of parameters.

The results were quite interesting: after 1000 iterations, the procedure retuned the error for DTs
0.94% (always under 2%) and 44.15% for αT

ks
(always above 30 %!). The conclusion was drawn that

some parts of the model must be seriously ill-conditioned in the case of soft matter materials.

3.2. The Application of the Neural Network

Finally, a neural network was developed in order to assess the ill-conditioning issue of the inverse
problem in photoacoustics of polymers. The type was multilayer perceptron, learning method was
back-propagation, and the input parameters: ks, DTi, αT , ls. The material of choice: HDPE. Training
was done on 40% of the sample dataset, 10% was used for validation, and testing (reconstruction)
was applied on 50% of it. The results, after 10000 simulations were more than satisfying: estimation
error for αT

ks
was as low as 0.71%! As for the accuracy was not uniform: for low and high values of the

parameter, the error was noticeable, but still, for the most of the sample set it remained under 2.15%!
However, what was more important than the estimation results, themselves, was the

accompanying analytics, which, for the first time, presented the graphical representation of the
ill-conditioning of the model, itself! Figure 11 clearly indicates how steep the dependence upon two
parameters can be in the case of DTs.
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Finally, a conclusion could be drawn that, in case of soft matter materials such as HDPE, a
self-consistent procedure could be more adequate for the estimation of DTi, while neural network
approach clearly stood out when the estimation of αT

ks
is concerned.

3.3. The Application on Experimental Data

The pioneering paper concerning the application of self-consistent procedure for the estimation
of thermodynamic parameters on experimental data was published in 2018 [31]. HDPE samples had
been prepared and characterized in advance at “Vinca” Institute for Nuclear Sciences in such a manner
that their thickness and chemical or structural composition could not be questioned [31,33–36]. Using
methods such as wide angle X-ray diffraction (WAXD) and diffraction scanning calorimetry (DSC),
it was proven that regular normalization method (on two levels of thickness) could not be deployed.
Also, crystallinity levels were estimated and are presented in Table 1.

Table 1. Crystallinity—functional dependence upon preparation conditions and sample thickness.

χ (%)
200 µm 400 µm 600 µm

DSC WAXD DSC DSC

Fast Cooled 51.7 50.5 57.4 59.3
Slowly Cooled 73.8 72.5 71.5 70.8

Regression analysis of the difference between theoretical prediction and the experimentally
obtained PA response demonstrated that thin samples (200µm) have the potential for differentiating
between different levels of crystallinity, as presented in Figure 12.
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Estimated results are presented in Table 2.

Table 2. Estimated values of thermodynamic parameters of HDPE (uncertainty given as half-distance
between points).

Thickness [µm]
HDPE—High-Density Polyethylene

Fast Cooled Slowly Cooled Uncertainty

400, 600
ks

[
W

m·K

]
0.33 0.33 (±0.02)

DTs

[
×10−6 m2

s

]
0.313 0.313 (±0.019)

200
ks

[
W

m·K

]
0.48 0.53 (±0.02)

DTs

[
×10−6 m2

s

]
0.265 0.313 (±0.019)

Apart from the evident conclusion that rise in crystallinity demonstrated the tendency of DTi, ks

to increase, one could also say that the decrease in thickness facilitates the process of inverse solving,
but also calls for caution when interpreting the dependence upon crystallinity due to the appearance
of surface effects.

Another thing worth noticing is the significance of normalization, which was absent in this case
(due to the influence of crystallinity) and which is proven to be very important for inverse solving of
PA problems.

Finally, the relations among DTi, ks and crystallinity amplify the significance of future fundamental
heat transfer investigations.

4. Conclusions

The subject of this work is the development of the techniques aiming at solving the inverse
problem in photoacoustics. Its mid-term goal is the increase in the number of material properties which
can be characterized by PA measurements with a satisfactory level of accuracy, while its long-term
goal is the improvement of the methods of PA imaging of different materials, from macromolecule
nanostructures and nanoelectronics or nanophotonic devices, to biological tissues.

Within the analysis of the TMS model, the influence of optical, thermal, and elastic properties
of the sample were investigated. This analysis revealed that some of the processes, characterized by
certain sample properties, exert their dominance only in limited modulation frequency ranges, which
are shown to be dependent upon the choice of the sample material and its thickness. In the rest of the
range their influence can be neglected, so the TMS model is divided into parts, each corresponding to
the appropriate modulation frequency range.

The main conclusions of this progress report are gathered in the form of a bulleted list:
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• Generalized model of PA response as the consequence of finite heat propagation velocity
was considered and its manifestations—thermal resonances—were described, with potential
application in the determination of heat propagation velocity by making use of the location of the
first peak;

• The influence of multiple optical reflections on PA response was considered for a specific class of
soft matter materials and its potential application, as well as implications regarding fundamental
heat transfer were pointed out;

• Minimum volume PA cell was successfully modeled as Helmholtz resonator and innovative
applications of PA methods were potentiated;

• Simultaneous use of amplitude and phase measurements was proven to enable the estimation of
thermal diffusivity, while difficulties in assessing the ratio of linear expansion coefficient and heat
conductivity coefficient pointed out the necessity for the improvement of TMS modeling;

• The application of a neural network on the numerical experiment exposed the necessity for
the reconsideration of the thermal piston model in materials with low levels of arrangement
(macromolecules, tissue, soft matter);

• The application of self-consistent procedures on the experiment demonstrated the dependence of
thermal properties upon thickness and crystallinity.

Author Contributions: Experimental investigation, software modelling and writing—original draft preparation,
M.N.; simulations and modelling, M.P.; conceptualization, methodology, formal analysis and writing—review
and editing, S.G.

Funding: This research received no external funding.

Acknowledgments: We acknowledge the support of the Ministry of Science of the Republic of Serbia throughout
all the explorations done as part of the III45005 project.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

TMS theoretically/mathematically simulated (TMS) models
PA photoacoustic/photoacoustics
EM electromagnetic
1D one-dimensional
HDPE High-Density Polyethylene
WAXD wide angle X-ray diffraction
DSC diffraction scanning calorimetry
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27. Todorović, D.M.; Rabasovic, M.D.; Markushev, D.D. Photoacoustic elastic bending in thin film—Substrate
system. J. Appl. Phys. 2013, 114, 213510.
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