

5.

6.

Fluorogenic and bioorthogonal modification of RNA using photoclick chemistry

Katja Krell and Hans-Achim Wagenknecht

Supplementary Information

Inst	itute of Organic Chemistry	
Karl	sruhe Institute of Technology (KIT)	
Fritz	z-Haber-Weg 6	
761	31 Karlsruhe, Germany	
E-M	ail: <u>Wagenknecht@kit.edu</u>	
Tal	ole of Contents	
1.	¹ H/ ¹³ C NMR spectra and MS analyses	2
2.	Optical Spectroscopy	25
3.	MALDI spectra of RNA strands	31
4.	Determination of yields	40

1. $^{1}H/^{13}C$ NMR spectra and MS analyses

Compound 2

Figure S1. ¹H NMR spectrum (400 MHz) of **2**. Spectrum contains traces of dichloromethane (δ =5.76 ppm).

Figure S2. ¹³C NMR spectrum (101 MHz) of **2**. Spectrum contains traces of dichloromethane (δ =54.8 ppm).

Figure S3. MS (FAB) analysis of 2.

 1/30/2020 10:56:44 AM
 File recalibrated by CMass.

 kk-148-c4#26 RT: 4.96
 File recalibrated by CMass.

 T: + c EI Full ms [84.50-1100.50]

 m/z [Intensity]

 Relative

 Theo. Mass

 Delta

 (mmu)

 587.1667

 66998.0

 100.00

 587.1666

 0.18

 C31

 H27

 O10

Figure S4. HR-MS (FAB) analysis of 2.

Figure S5. ¹H NMR spectrum (400 MHz) of **3**. Spectrum contains traces of dichloromethane (δ =5.76 ppm).

Figure S6. ¹³C NMR spectrum (101 MHz) of **3**. Spectrum contains traces of dichloromethane (δ =54.8 ppm).

Figure S7. MS (FAB) analysis of 3.

1/30/2020 10:19:33 AM File recalibrated by CMass.

4 RT: 1.42	2				
ull ms [8	34.48-110	0.48]			
00-585.20	084		1.		15 27 STORE
Intensity	Relative	Theo.	Mass	Delta	Composition
100			1310	(mmu)	0.33 5
86929 0	100.00	585	1509	-0.16	C 31 H 25 O 10 N 2
	4 RT: 1.42 111 ms [8 000-585.20 Intensity	4 RT: 1.42 111 ms [84.48-110 00-585.2084 Intensity Relative	4 RT: 1.42 111 ms [84.48-1100.48] 000-585.2084 Intensity Relative Theo. 86929 0 100 00 585	4 RT: 1.42 111 ms [84.48-1100.48] 000-585.2084 Intensity Relative Theo. Mass 86828 0 100 00 585 1509	4 RT: 1.42 111 ms [84.48-1100.48] 000-585.2084 Intensity Relative Theo. Mass Delta (mmu) 26222 0 100 00 585 1509 -0.16

Figure S8. HR-MS (FAB) analysis of 3.

Figure S9. ¹H NMR spectrum (400 MHz) of **4**. Spectrum contains traces of toluene (δ =7.25 ppm, 7.18 ppm, 2.30 ppm), dichloromethane (δ = 5.76 ppm) and ethyl acetate (δ = 1.17 ppm, 4.03 ppm, 1.99 ppm).

Figure S10. ¹³C NMR spectrum (101 MHz) of **4**. Spectrum contains traces of toluene (δ = 137.4 ppm, 128.9 ppm, 128.2 ppm, 125.3 ppm, 21.0 ppm), dichloromethane (δ = 54.9 ppm) and ethyl acetate (δ =170.3 ppm, 59.8 ppm, 20.7 ppm, 14.1 ppm).

Figure S11. MS (FAB) analysis of 4.

2/25/2020 11:54:52 AM File recalibrated by CMass.

kk-151-c5#2	27 RT: 2.63	3				2111-2020
T: + c EI F	ull ms [8	34.48-1100	0.47]			
m/z= 738.8	030-739.84	174	12 Log 1		6	
m/z	Intensity	Relative	Theo. Mass	Delta	Composition	
10000000	and a surrent source of the second			(mmu)	0.594. 6.7 6.7	
739.1709	425007.0	100.00	739.1710	-0.07	C37 H31 O11 N4 32S1	

Figure S12. HR-MS (FAB) analysis of 4.

Figure S13. ¹H NMR spectrum (400 MHz) of **5**. Spectrum contains traces of dichloromethane (δ =5.76 ppm).

Figure S14. ¹³C NMR spectrum (101 MHz) of 5.

Figure S15. MS (FAB) analysis of 5.

Figure S16. HR-MS (FAB) analysis of 5.

Figure S17. ¹H NMR spectrum (500 MHz) of **6**. The spectrum contains traces of methanol (δ =4.01 ppm, 3.16 ppm).

Figure S18. ¹³C NMR spectrum (126 MHz) of **6**. The spectrum contains traces of methanol (δ =48.6 ppm).

Figure S19. MS (FAB) analysis of 6.

		3/28/2019 2:	31:16 PM	File recalibrate	ad by CMass.
kk90-c2#2 T: + c EI m/z= 466	25 RT: 2.50 Full ms [8 .9708-467.08	4.52-1100 33	0.52]		
. m/z	Intensity	Relative	Theo. Mass	Delta (mmu)	Composition
467.031	4 53842.0	100.00	467.0315	-0.04	C16 H16 O6 N6 79Br1

Figure S20. HR-MS (FAB) analysis of 6.

Figure S21. ¹H NMR spectrum (500 MHz) of **7**. Spectrum contains traces of dichloromethane (δ =5.76ppm).

Figure S22. ¹³C NMR spectrum (126 MHz) of **7**. Spectrum contains traces of dichloromethane (δ =54.9 ppm).

Figure S23. MS (MALDI-TOF) analysis of 7.

Figure S24. ¹H NMR spectrum (500 MHz) of **8**. Spectrum contains traces of dichloromethane (δ =5.76 ppm).

Figure S25. ¹³C NMR spectrum (126 MHz) of **8**. Spectrum contains traces of dichloromethane (δ =54.9 ppm).

Figure S26. MS (FAB) analysis of 8.

 3/27/2019 4:29:11 PM
 File recalibrated by CMass.

 kk109-c1#15 RT: 1.47

 T: + c EI Full ms [84.42-1100.42]

 m/z= 881.9756-882.6086

 m/z
 Intensity Relative Theo. Mass

 B82.2411
 6889.0

 100.00
 882.2408

 0.30
 C43 H47 O8 N6 79Br1

 28Si1

Figure S27. HR-MS (FAB) analysis of 8.

Figure S28. ³¹P NMR spectrum (202 MHz) of 9.

Confidence

Figure S29. MS (MALDI-TOF) analysis of 9.

2. Optical Spectroscopy

Figure S30. UV/Vis absorbance of **RNA1** and **RNA2** (2.5 μ M) in 10 mM Na-P_i buffer, 250 mM NaCl, pH 7. The spectra were normalized to evaluate the relative tetrazole absorbances.

Figure S31. UV/Vis absorbance recorded during reaction of **RNA1** (2.5 μ M) with Cy3-maleimide (3.75 μ M, 1.50 equiv.), irradiated at 300 nm (LED) in 10 mM Na-P_i buffer, 250 mM NaCl, pH 7.

Figure S32. Fluorescence recorded during reaction of **RNA1** (2.5 μ M) with Cy3-maleimide (3.75 μ M, (1.50 equiv.), irradiated at 300 nm (LED) in 10 mM Na-P_i buffer, 250 mM NaCl, pH 7. Fluorescence excitation at 358 nm.

Figure S33. Fluorescence recorded during reaction of **RNA1** (2.5 μ M) with AF555-maleimide (3.75 μ M, (1.50 equiv.), irradiated at 300 nm (LED) in 10 mM Na-P_i buffer, 250 mM NaCl, pH 7. Fluorescence excitation at 358 nm.

Figure S34. UV/Vis absorbance recorded during reaction of **RNA1** (2.5 μ M) with AF647-maleimide (3.75 μ M, 1.50 equiv.), irradiated at 300 nm (LED) in 10 mM Na-P_i buffer, 250 mM NaCl, pH 7.

Figure S35. Fluorescence recorded during reaction of **RNA1** (2.5 μ M) with AF647-maleimide (3.75 μ M, 1.50 eq), irradiated at 300 nm (LED) in 10 mM Na-P_i buffer, 250 mM NaCl, pH 7. Fluorescence excitation at 358 nm.

Figure S36. UV/vis absorbance recorded during reaction of **RNA2** (2.5 μ M) with Cy3-maleimide (3.75 μ M, 1.50 equiv.), irradiated at 300 nm (LED) in 10 mM Na-P_i buffer, 250 mM NaCl, pH 7.

Figure S37. Fluorescence recorded during reaction of **RNA2** (2.5 μ M) with Cy3-maleimide (3.75 μ M, 1.50 equiv.), irradiated at 300 nm (LED) in 10 mM Na-P_i buffer, 250 mM NaCl, pH 7. Fluorescence excitation at 358 nm.

Figure S38. UV/Vis absorbance recorded during reaction of **RNA2** (2.5 μ M) with AF555-maleimide (3.75 μ M, 1.50 equiv.), irradiated at 300 nm (LED) in 10 mM Na-P_i buffer, 250 mM NaCl, pH 7.

Figure S39. Fluorescence recorded during reaction of **RNA2** (2.5 μ M) with AF555-maleimide (3.75 μ M, 1.50 equiv.), irradiated at 300 nm (LED) in 10 mM Na-P_i buffer, 250 mM NaCl, pH 7. Fluorescence excitation at 358 nm.

Figure S40. UV/Vis absorbance recorded during reaction of **RNA2** (2.5 μ M) with AF647-maleimide (3.75 μ M, 1.50 equiv.), irradiated at 300 nm (LED) in 10 mM Na-P_i buffer, 250 mM NaCl, pH 7.

Figure S41. Fluorescence recorded during reaction of **RNA2** (2.5 μ M) with AF647-maleimide (3.75 μ M, 1.50 equiv.), irradiated at 300 nm (LED) in 10 mM Na-P_i buffer, 250 mM NaCl at pH 7. Fluorescence excitation at 358 nm.

3. MALDI spectra of RNA strands

RNA1

Figure S42. MS (MALDI-TOF) analysis of **RNA1**. Calculated mass [M⁺]: 5544.6; m/z=5546.99 [M⁺], 5584.98 [M+K⁺].

Data: RNA1_Cy3_DOWEX0001.I14[c] 23 Aug 2019 9:59 Cal: 6-8kDa_HPA_15082019 26 Aug 2019 10:57 Shimadzu Biotech Axima Confidence 2.9.3.20110624: Mode 2019_Linear_neg_new, Power: 124, Blanked, P.Ext. @ 4130 (bin Confidence 7.0 mV[sum= 911 mV] Profiles 1-130 Smooth Av 10 -Baseline 30 %Int. 5541.82{r899} 6261.44{r973} 5523.65{r1016} 5549.10{r394} m/z

Figure S43. MS (MALDI-TOF) analysis of **RNA1**-Cy3 adduct. Calculated mass [M⁺]: 6253.9; m/z=5523.65 [RNA1-N₂⁺], 5541.82 [RNA1-N₂+H₂O⁺], 6261.44 [M⁺].

Data: RNA1_AF5550001.C8[c] 16 Jan 2020 16:26 Cal: 6-8kDa_HPA_16102018 21 Nov 2018 11:26 Shimadzu Biotech Axima Confidence 2.9.3.20110624: Mode 2019_Linear_neg_new, Power: 124, Blanked, P.Ext. @ 4000 (bin 16 mV[sum= 8745 mV] Profiles 1-543 Smooth Av 20 -Baseline 60 %Int. 5536.19{r800} 5518.14{r897} m/z

Figure S44. MS (MALDI-TOF) analysis of **RNA1**-AF555 adduct. Calculated mass: 6485.9 [M⁺]; m/z=5518.14 [RNA1-N₂⁺], 5536.19 [RNA1-N₂+H₂O⁺], 6486.22 [M⁺]. The molecular mass of AF555-maleimide was reported in literature and verified by MS (MALDI-TOF) analysis.¹

Confidence Data: RNA1_AF5550001.C8[c] 16 Jan 2020 16:26 Cal: 6-8kDa_HPA_16102018 21 Nov 2018 11:26 Shimadzu Biotech Axima Confidence 2.9.3.20110624: Mode 2019_Linear_neg_new, Power: 124, Blanked, P.Ext. @ 4000 (bin 0.4 mV[sum= 237 mV] Profiles 1-543 Smooth Av 20 -Baseline 60 %Int. 6486.22{r1133} Adaptickland MANE PRAM m/z

Figure S45. Zoomed area of MS (MALDI-TOF) analysis (Figure S44) of RNA1-AF555 adduct.

Confidence

Data: RNA1_AF647__30001.C11[c] 16 Jan 2020 17:29 Cal: 6-8kDa_HPA_16102018 21 Nov 2018 11:26 Shimadzu Biotech Axima Confidence 2.9.3.20110624: Mode 2019_Linear_neg_new, Power: 127, Blanked, P.Ext. @ 4290 (bin

Figure S46. MS (MALDI-TOF) analysis of RNA1-AF647 adduct. Calculated Mass [M⁺]: 6497.9; m/z=5519.49 [RNA1-N2⁺], 5537.50 [RNA1-N2+H20⁺], 6499.90 [M⁺]. The molecular mass of AF647maleimide was reported in literature and verified by MS (MALDI-TOF) analysis.¹

Figure S47. Zoomed area of MS (MALDI-TOF) analysis (Figure S46) of RNA1-AF647 adduct.

RNA2

Figure S48. MS (MALDI-TOF) analysis of **RNA2**. Calculated mass [M⁺]: 5544.6; m/z= 5546.50 [M⁺], 5584.48 [M+K⁺], 5622.49 [M+2K⁺], 5659.92 [M+3K⁺].

Confidence

Data: RNA3_Cy3_1ulHPA0001.J8[c] 10 Jan 2020 13:22 Cal: 6-8kDa_HPA_15082019 21 Oct 2019 12:17 Shimadzu Biotech Axima Confidence 2.9.3.20110624: Mode 2019_Linear_neg_new, Power: 129, Blanked, P.Ext. @ 4200 (bin

Figure S49. MS (MALDI-TOF) analysis of **RNA2**-Cy3 adduct. Calculated mass [M⁺]: 6253.9; m/z=5516.65 [RNA2-N₂⁺], 5534.67 [RNA2-N₂+H₂O⁺], 6254.67 [M⁺].

Confidence

Data: RNA3_AF5550001.J6[c] 10 Jan 2020 13:18 Cal: 6kDa_HPA_15082019 4 Nov 2019 10:42 Shimadzu Biotech Axima Confidence 2.9.3.20110624: Mode 2019_Linear_neg_new, Power: 129, Blanked, P.Ext. @ 4200 (bin

Figure S50. MS (MALDI-TOF) analysis of **RNA2**-AF555 adduct. Calculated Mass [M⁺]: 6485.9; m/z=5519.45 [RNA2-N₂⁺], 5537.50 [RNA2-N₂+H₂O⁺], 6485.06 [M⁺]. The molecular mass AF555-maleimide was reported in literature and verified by MS (MALDI-TOF) analysis.¹

Confidence

Figure S51. Zoomed area of MS (MALDI-TOF) analysis (Figure S50) of RNA2-AF555 adduct.

Confidence Data: RNA3_AF6470001.J5[c] 10 Jan 2020 13:10 Cal: 6-8kDa_HPA_16102018 21 Nov 2018 11:26 Shimadzu Biotech Axima Confidence 2.9.3.20110624: Mode 2019_Linear_neg_new, Power: 130, Blanked, P.Ext. @ 4200 (bin

Figure S52. MS (MALDI-TOF) analysis of **RNA2**-AF647 adduct. Calculated mass [M⁺]: 6497.9; m/z=5519.01 [RNA2-N₂⁺], 5537.02 [RNA2-N₂+H₂O⁺], 6499.74 [M⁺]. The molecular mass AF647-maleimide was reported in literature and verified by MS (MALDI-TOF) analysis.¹

Confidence

Data: RNA3_AF6470001.J5[c] 10 Jan 2020 13:10 Cal: 6-8kDa_HPA_16102018 21 Nov 2018 11:26 Shimadzu Biotech Axima Confidence 2.9.3.20110624: Mode 2019_Linear_neg_new, Power: 130, Blanked, P.Ext. @ 4200 (bin

4. Determination of yields

A solution of RNA (2.5 μ M) and of the dye (3.75 μ M) in 10 mM Na-P_i buffer, 250 mM NaCl, pH 7, with a total volume of 500 μ L was irradiated at 300 nm (LED) in a 10 mm quartz glass cuvette for 30 minutes. To remove the excess dye, the solution was purified *via* illustraTM NAP-5 columns (GE Healthcare) using the standard protocol. The eluted sample was lyophilized and redissolved in water (500 μ L). The concentration was calculated spectroscopically by Lambert-Beer-Law using the extinction coefficient provided by the manufacturers of the clicked dye: ϵ_{548} (Cy3) = 162 000 L mol⁻¹ cm⁻¹ (Lumiprobe); ϵ_{555} (AF555) = 158 000 L mol⁻¹ cm⁻¹ (JenaBioscience); ϵ_{648} (AF647) = 270 000 L mol⁻¹ cm⁻¹ (JenaBioscience).

Figure S54. UV/vis absorbance of "photoclicked" **RNA1** dye adducts (reaction with 1.50 equiv. dye-maleimide) strands after purification. c_{AF647} =1.19 μ M \triangleq 48% yield, c_{AF555} =1.96 μ M \triangleq 78% yield, c_{CY3} =0.67 μ M \triangleq 27% yield.

Figure S55. Fluorescence of "photoclicked" RNA1 dye adducts (reaction with 1.50 equiv. dye-maleimide) after purification. c_{AF647} =1.19 μ M, c_{AF555} =1.96 μ M, c_{CY3} =0.67 μ M.

Figure S56. UV/vis absorbance of "photoclicked" **RNA2** dye adducts (reaction with 1.50 equiv. dye-maleimide) after purification. c_{AF647} =1.20 μ M \triangleq 48% yield, c_{AF555} =2.10 μ M \triangleq 84% yield, c_{Cy3} =0.77 μ M \triangleq 31% yield.

Figure S57. Fluorescence of "photoclicked" **RNA2** dye adducts (after reaction with 1.50 equiv. dye-maleimide) after purification. c_{AF647} =1.20 μ M, c_{AF555} =2.10 μ M, c_{Cy3} =0.77 μ M.

Figure S58. UV/vis absorbance of "photoclicked" RNA1-Cy3 adduct (reaction with 10.0 equiv. Cy3-maleimide) after purification. c_{Cy3} =1.76 μ M \triangleq 70% yield.

Figure S59. Fluorescence spectrum of "photoclicked" RNA2-Cy3 adduct (reaction with 10.0 equiv. Cy3-maleimide) after purification. c_{Cy3} =1.76 μ M.

5. Calculation of extinction coefficients

Figure S60. UV/vis absorbance of A, C, G, U and 6 in comparison.

The molar extinction coefficient ε_{300} were calculated for the natural nucleosides and the artificial building block **6** using the ε_{260} values and the recorded UV/vis absorbances (Figure S60) using the Lambert-Beer-Law.

nucleoside	ε ₂₆₀ [L mol ⁻¹ cm ⁻¹]	concentration [µmol L ⁻¹]	ε3 ₀₀ [L mol ⁻¹ cm ⁻¹]
Adenosine	15,400	52.6	≈60
Cytidine	7,400	70.9	≈260
Guanosine	11 500	42.8	≈110
Uridine	8,700	42.9	≈90
6	13,800	18.4	20,300

Table S1. Molar extinction coefficients of the natural bases and the artificial nucleoside 6.

6. References

1. Tridgett, M.; Moore-Kelly, C.; Duprey, J.-L. H. A.; Iturbe, L. O.; Tsang, Chi W.; Little, H. A.; Sandhu, S. K.; Hicks, M. R.; Dafforn, T. R.; Rodger, A., Linear dichroism of visible-region chromophores using M13 bacteriophage as an alignment scaffold. *RSC Adv.* **2018**, *8* (52), 29535-29543.