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Abstract: Background: Ginsenosides, triterpene saponins of Panax species, are considered
the main active ingredients responsible for various pharmacological activities. Herein, a new
protopanaxatriol-type ginsenoside called “ginsenoside MT1” is described; it was accidentally
found among the enzymatic conversion products of ginsenoside Re. Method: We analyzed the
conversion mechanism and found that recombinant β-glucosidase (MT619) transglycosylated the
outer rhamnopyranoside of Re at the C-6 position to glucopyranoside at C-20. The production
of MT1 by trans-rhamnosylation was optimized and pure MT1 was obtained through various
chromatographic processes. Results: The structure of MT1 was elucidated based on spectral data:
(20S)-3β,6α,12β,20-tetrahydroxydammarene-20-O-[α-L-rhamnopyranosyl(1→2)-β-D-glucopyranoside].
This dammarane-type triterpene saponin was confirmed as a novel compound. Conclusion: Based on
the functions of ginsenosides with similar structures, we believe that this ginsenoside MT1 may have
great potential in the development of nutraceutical, pharmaceutical or cosmeceutical products.

Keywords: ginsenosides; dammarane-type triterpene saponin; ginsenoside MT1; transglycosylation;
biotransformation; biotechnology

1. Introduction

Ginsenosides—triterpene saponins composed of a dammarane skeleton with several glycosylation
positions—are generally considered the main active components of ginseng, that has been used as a
traditional herbal medicine in East Asian countries for thousands of years to stimulate physical and
mental activity [1,2]. Ginsenosides can be categorized as protopanaxadiol (PPD) and protopanaxatriol
(PPT) saponins based on the structure of their aglycon. More than 100 kinds of ginsenosides have
been found [3,4]; their pharmacological effects vary according to their attached sugars and aglycon
structures [5–7]. Six major kinds of ginsenoside (Rb1, Rb2, Rc, Re, Rd and Rg1), as shown in Figure S1,
constitute >90% of the total ginsenosides in ginseng [2,8]. They are relatively abundant in ginseng and
can be converted into minor ginsenosides, which naturally exist in smaller amounts and have higher
chemical reactivities [9–11].
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Various methods have been reported for preparing minor ginsenosides with high conversion
efficiency and few byproducts [12]. Many enzymes have been explored to efficiently convert major
ginsenosides into pharmacologically active, rare minor ginsenosides [5,13,14]. Prior to this study,
our research group cloned, characterized and applied many efficient glycoside hydrolases for the
gram-scale production and purification of minor ginsenosides [15–21].

In our investigation into the enzymatic conversion of major ginsenosides, a new transformation
product of ginsenoside Re that is different from the other hydrolyzing products (ginsenoside PPT,
F1, Rg1 and Rg2) was accidentally found using a novel recombinant glucosidase (MT619) [15]. This
compound was prepared at the gram scale using recombinant MT619 and isolated from the product
mixture using chromatographic methods. Finally, the structure of this novel ginsenoside was elucidated
based on spectral data.

2. Materials and Methods

2.1. Chemicals and Reagents

The standard forms of various ginsenosides (Rg1 and Re) used in the present study were purchased
from Sigma Co., Ltd. (Louis, MO, USA). F1, Rg2(S), Rh1(S) and PPT were prepared as described in
our previous study [22]. The other chemical reagents used were at least extra or better in quality than
pure grade. Butanol, ethyl acetate, chloroform, ethanol and pyridine-d5 (Merck KGaA, Darmstadt,
Germany) were purchased from Sam Chun Pure Chemical Co. (Pyeongtaek, Korea).

2.2. Biotransformation of Ginsenosides Using Recombinant MT619

Recombinant MT619 was expressed in Escherichia coli BL21 as described previously [15]. Briefly, the
MT619-harboring pEX vector was inserted into the E. coli BL21 strain using heat-shock transformation.
The cells grown in LB medium were supplemented with ampicillin at 37 ◦C until the culture reached
an optical density of 600 nm (OD600) of 0.6, at which point protein expression was induced by adding
0.1 mM isopropyl-β-D-thiogalactopyranoside (IPTG). The bacterial cells were incubated further for
24 h at 18 ◦C and then harvested by centrifugation at 4000 rpm for 15 min. The cells were washed
with 50 mM sodium phosphate and then resuspended in 50 mM sodium phosphate and 1% Triton
X-100 (pH 7.0). The cells were disrupted by ultrasonication (Vibra-Cell; Sonics & Materials, Danbury,
CT, USA). Intact cells and debris were removed by centrifugation at 13,000 rpm for 10 min to obtain a
crude cell extract. His-tagged MT619 protein was purified by a HisTrap column (GE Healthcare, Menlo
Park, California, USA). The 100 mM imidazole eluted protein was further purified by DEAE-cellulose
DE-52 chromatography (Whatman, Maidstone, UK). Purified MT619 was used to examine its MT1
production efficiency by reacting with ginsenoside Re (2.0 mg/mL, pH 7.0) in a shaking incubator at
37 ◦C for 24 h. The ginsenosides in the samples were extracted with an equal volume of butanol and
identified by thin layer chromatography (TLC).

2.3. Optimization of the Substrate Concentration

Ginsenoside MT1 production was evaluated using crude MT619 cell extracts. To determine the
optimal concentration of selected substrates for the biotransformation reaction, cells were mixed with
an equal volume of a substrate at 3.0–22.5 mg/mL at 37 ◦C. Samples were then withdrawn at regular
intervals and analyzed by TLC.

2.4. Scaled-Up Ginsenoside MT1 Production

Production was scaled up to 1 L and a final concentration of 6.0 mg/mL substrate (ginsenoside
Re). The transformation was performed by adding 300 mL of crude cell lysate in a shaking incubator
at 200 rpm and 37 ◦C. After incubating for 24 h, the mixture was centrifuged at 4000 × g for 15 min
and the supernatant was loaded into a column packed with HP20 resin (120 g) (Sigma-Aldrich, St
Louis, MO, USA). One liter of water was used to remove unbound hydrophilic compounds and free
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sugar molecules, and the absorbed ginsenosides were eluted using three bed volumes of 95% ethanol.
The eluted ethanol was evaporated in vacuo to produce dry powders.

2.5. Purification of MT1 from the Enzymatically Converted Products

Chromatographic pre-purification was performed with an LC-Forte/R system (YMC Korea Co.
Ltd., Sungnam, Korea). One gram of the crude MT1 was dissolved in 20 mL of 10% methanol and
centrifuged at 4000 × g for 20 min. After filtering with a syringe filter (0.2 µm), the dissolved sample
was subjected to liquid chromatography (YMC-C18, 25 µm 120 g, 39 mm × 157 mm) and eluted with
methanol-water (300 mL each at 5:5, 6:4, 7:3 and 8:2) to yield 13 fractions. The elution was fractionated
every 100 mL, and the fractions containing MT1 were collected for purification.

2.6. Recycling Preparative High-Performance Liquid Chromatography (RPHPLC) Purification of MT1 from
Biotransformed Products

The collected MT1 was further purified using RPHPLC (JAI NEXT Recycling Preparative HPLC
LC-9210II NEXT, Japan Analytical Industry Co, Tokyo, Japan). RPHPLC was performed using a
pre-packed column (JAIGEL-ODS-AP-L, 10 µm, 20 mm i.d. × 500 mm) purchased from Japan Analytical
Industry Co. (Japan). The mobile phase was 50% acetonitrile; the flow rate was 7.0 mL/min. The MT1
solution was prepared by dissolving a sufficient quantity of the collected MT1 in 50% acetonitrile to
give a final concentration of 35 mg/mL; 10 mL of the MT1 solution was loaded for purification.

2.7. High-Performance Liquid Chromatography (HPLC) Analysis

HPLC analysis of samples in the present study was performed using an Agilent 1260 Infinity HPLC
system (Agilent Co., Santa Clara, CA, USA). Ginsenosides were separated on an YMC ODS C18 column
(5 µm, 250 × 4.6 mm; YMC, Kyoto, Japan) with a guard column (Eclipse XDB C18, 5 µm, 12.5 × 4.6 mm;
Agilent Co., Santa Clara, CA, USA). The gradient elution system consisted of water (A) and acetonitrile
(B), and used the following gradient program: 0→ 10 min, 20% B; 10→ 40 min, 20→ 32% B; 40→ 48
min, 32→ 42% B; 48→ 60 min, 42→ 45% B; 60→ 83 min, 45→ 75% B; 83→ 85 min, 75→ 100% B;
85→ 95 min, 100% B; 95→ 95.01 min, 100→ 20% B; 95.01→ 100 min, 20% B. The detection wavelength
was set to 203 nm and the flow rate was 1.6 mL/min.

2.8. Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS) Analyses

NMR spectra were obtained using a Bruker AVANCE III 700 NMR spectrometer (Bruker,
Rheinstetten, Germany) at 700 MHz (1H) and 175 MHz (13C), with chemical shifts given in ppm.
Samples were separated with an Acquity UHPLC BEH C18 column (2.1 × 100 mm i.d., 1.7µm) at room
temperature. The mobile phases comprised deionized water containing 0.2% (v/v) formic acid (A) and
acetonitrile (B). Quantitative analysis of the novel compound was performed using an LTQ-Orbitrap
XL mass spectrometer (Thermo Scientific, Bremen, Germany) equipped with an ESI source (Thermo
Electron, Bremen, Germany) in negative ion mode with a mass range of m/z 100–1500 Da. Optimal
conditions were employed as follows: capillary voltage 20 V, capillary temperature 350 ◦C, spray
voltage 3.5 kV and tube lens voltage 110 V.

2.9. Acidic Hydrolysis of MT1 and TLC Analysis

The purified compound (10 mg) was heated with 5% HCl mixture for 2 h at 70 ◦C. The residues
from filtration and standard sugars were compared through cellulose TLC (Butanol:Ethanol:H2O,
50:50:30). TLC was conducted using 60F254 silica gel plates (Merck, Darmstadt, Germany) and
CHCl3-CH3OH-H2O (65:35:10, v/v/v) as the developing solution. The results were visualized with 10%
H2SO4 by heating at 110 ◦C for 5 min.
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3. Results

3.1. Ginsenoside Re Transformation of MT619

MT619 was purified by Ni column and DEAE column chromatography as described in a previous
study [15]. To analyze the transformation pathways, ginsenosides Re and Rg2 were reacted as substrates
with purified MT619 ginsenoside and F1 and the conversion products were subjected to TLC analysis.
The newly produced band (MT1), which had a different Rf value from those of ginsenoside Rg1 and
Rg2, was identified from Re reaction mixtures (Figure 1). Rg2(S) was also hydrolyzed by MT619 into
PPT, but MT1 was not reported. Interestingly, MT1 was only found in the Rg2 mixture containing F1

(Sample 5 in Figure 1), which clearly suggests that F1 is the recipient in trans-rhamnosyl reactions.
No MT1 was formed in the PPT conversion mixture, suggesting that PPT cannot receive rhamnose.
Rg1 and Rh1 were not found in the Re and Rg2 conversion mixtures; the existence of rhamnose was
inferred by the rapid decomposition of Rg1 and Rh1 by MT619 into F1 and PPT. Released glucose and
rhamnose moieties were also identified in the Re and Rg2 mixtures (Figure S2).
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Figure 1. Thin layer chromatography of hydrolyzation products by MT619. C1, Re; 1, Re transformation
products; 2, Re transformation products with F1 added; 3, Re transformation products with PPT added;
C2, Rg2(S); 4, Rg2(S) transformation products; 5, Rg2(S) transformation products with F1 added; 6,
Rg2(S) transformation products with PPT added.

3.2. Optimization for Ginsenoside MT1 Production

Optimal conditions for the biotransformation of Re into MT1 were determined by examining
the substrate concentrations in the reaction mixture. Enzyme reactions were performed using of
ginsenoside Re, which is one of the major ginsenosides in ginseng [23,24]. The concentration of MT1
increased in proportion to the substrate concentration (Figure 2A); the maximum concentration of MT1
produced was 8.0 mg/mL with 22.5 mg/mL Re 24 h after reaction. Note that >41.2% of Re remained
after 24 h when the Re concentration was >15.0 mg/mL (Figure 2B); however, nearly all the Re was
converted when the Re concentration was 6.0 mg/mL. Therefore 6.0 mg/mL Re was used for the
scaled-up production of MT1.
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reaction mixture.

3.3. Mass Production of MT1

Six grams of Re in 1.0 L of phosphate buffer (pH 7.0) was reacted with cell lysates containing
MT619. Re was completely converted 24 h after adding MT619 (Figure 3; Figure 4B). To remove proteins
and impurities, the supernatants of the reaction mixture were applied to a 120 g HP20 macroporous
resin. After washing with water, ethanol was used to elute the ginsenosides from the resin. The eluate
was then evaporated in vacuo, yielding 3.8 g of mixed dry ginsenosides. In preparation for further
purification, 1.0 g MT1 was dissolved in 200 mL of 10% methanol; the undissolved precipitants were
separated using an ODS column to yield 13 fractions (Figure S3). MT1 was eluted in the 70% methanol
fractions (9 and 10), yielding 655 mg of dry compounds.
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Figure 4. HPLC analysis of purified MT1 from the product mixture. (STD1), ginsenoside Rg2(S)
standard; (STD2), standards of ginsenosides Rg1, Re, F1 and PPT; (A), substrate ginsenoside Re before
purification; (B), biotransformed products from the MT619 conversion mixture; (C), MT1 isolated using
Recycling preparative high-performance liquid chromatography (RPHPLC).

3.4. Purification of MT1 using RPHPLC

Recycling preparative HPLC, which can enhance the separation of compounds by recycling the
effluent sample many times over the column without increasing the length of the chromatographic
column, was used for further purification. MT1 was purified from the product mixture with a
preparative ODS column by RPHPLC. Dry MT1 mixture (300 mg) was loaded onto the RPHPLC column
for separation. MT1 was baseline-resolved after three effective columns (Figure S4). The purification
process resulted in 214 mg of MT1 with 98.9% chromatographic purity (Figure 4C). The total yield of
the production of MT1 from Re was 47.4%.

3.5. Structural Characterization of Ginsenoside MT1

Pure ginsenoside MT1 was obtained as a white powder with a molecular ion peak at m/z 785.5
in the positive LC-MS, which corresponds to the molecular formula C42H72O13 (Figure S5). Acidic
hydrolysis of the compound yielded neohesperidose, the signals of which were similar to those of other
neohesperidose-containing compounds, such as ginsenoside Rg2(S) and neohesperidin (Figure S6).

Structural characterization was performed by a Bruker AVANCE III 700 NMR spectrometer
operating at 700 MHz (1H) and 175 MHz (13C) with chemical shifts given in ppm for atomic force
microscopy (AFM) to determine the chemical structure of MT1 (Table 1). The 1H-NMR spectrum
showed one olefinic (δH 5.28), two anomeric (δ 5.25 and 6.61) protons and a methyl proton signal (δ
1.83) like in L-rhamnopyranoside. Coupling constants suggested the configuration of the anomeric
positions to be α-and-β form for the anomeric proton signals in the 1H-NMR spectrum. The 13C-NMR
signals of the sugar were observed as one hemiacetal (δC 96.7), four oxygenated methines (δC 79.8, 78.4,
76.6 and 71.6) and one oxygenated methylene (δC 62.95), indicating that the sugar is b-glucopyranose.
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Table 1. 1H- (700 MHz) and 13C-NMR (175 MHz) spectra of MT1.

Aglycon Moiety
Position δH mult., (J Hz) δC mult. Sugar Moiety

Position δH mult., (J Hz) δC mult.

1 1.73 m, 1.06 m 39.4 t Glc-1′ 5.25 d (6.3) 96.7 d
2 1.93 m, 1.88 m 28.2 t Glc-2′ 4.29 b 76.6 d
3 3.56 t-like (5.6) 78.4 d Glc-3′ 4.29 b 79.8 d
4 40.4 s Glc-4′ 4.09 t (9.1) 71.6 d
5 1.27 d (10.5) 61.8 d Glc-5′ 3.88 m 78.4 d
6 4.40 c 67.8 d Glc-6′ 4.40 c, 4.25 m 62.5 t
7 2.04 m, 1.90 m 47.5 t Rha-1” 6.61 s 101.4 d
8 41.2 s Rha-2” 4.79 brs 72.5 d
9 1.67 m 49.7 d Rha-3” 4.64 t (4.9) 72.6 d
10 39.3 s Rha-4” 4.40 c 74.2 d
11 2.20 m, 1.55 m 31.1 t Rha-5” 4.89 dd (9.1, 5.6) 69.4 d
12 4.11 m 70.7 d Rha-6” 1.83 d (5.6) 19.0 q
13 2.00 m 49.0 d 3′-OH 7.50 brs
14 51.6 s 4′-OH 7.40 d (4.2)
15 1.58 m, 1.03 m 30.9 t 6′-OH 5.90 brs
16 1.95 m, 1.44 m 26.7 t 2”-OH 6.76 d (4.2)
17 2.77 dd (18.2, 10.5) 53.3 d 3”-OH 6.46 brs
18 1.12 s 17.4 q 4”-OH 6.81 d (3.5)
19 1.05 s 17.5 q
20 84.0 s
21 1.59 s 22.8 q
22 2.45 m, 1.98 m 35.9 t
23 2.29 m 24.0 t
24 5.28 d 126.0 d
25 130.8 s
26 1.62 s 25.8 q
27 1.65 s 17.9 q
28 2.02 s 32.0 q
29 1.48 s 16.5 q
30 1.17 s 17.2 q

3-OH 5.76 d (5.6)
6-OH 5.28 d

12-OH 5.58 s
a Measured at 700 and 175 MHz; obtained in C5D5N with TMS as an internal standard. The assignments were
based on 1H-1HCOSY, HSQC, and HMBC experiments. b–d Overlapped with other signals.

The β-D-glucopyranosyl anomeric proton signals were confirmed to be linked at the C-20 position
by long-range heteronuclear multiple bond connectivity (HMBC) correlations between the proton
signal at δ 5.25 (H-1”) and the carbon signal at δ 84.0 (C-20). A large downfield shift in the C-2” (δ 76.6)
was observed for the inner β-D-glucopyranosyl moiety at C-20 of the aglycone, which showed that the
C-1”’ (δ 6.61) in the terminal α-L-rhamnopyranosyl moiety is linked to the inner β-D-glucopyranosyl
moiety at C-20 [25]. In summary, these results indicate that the metabolite of MT619 is
(20S)-3β,6α,12β,20-tetrahydroxydammarene-20-O-[α-L-rhamnopyranosyl(1→2)-β-D-glucopyranoside]
(Figure 5) or ginsenoside MT1.
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Based on the above experimental results, the conversion pathways were deduced as shown in
Figure 6. In the conversion of Re, the rhamnopyranoside moieties were released from the substrates
and transformed into the C-20 outer glucopyranoside of ginsenoside F1. When MT619 reacted with
Rg2, the rhamnosyl transformation could only occur with the existence of the attached glucopyranoside
at C-20 positions such as F1. The mechanisms of rhamnose transformation by MT619 warrant
further exploration.
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4. Discussion

Many glycoside hydrolases have been shown to possess transglycosylation capabilities in addition
to hydrolytic activity [26]. In substrate transglycosylation of glycoside hydrolases, the glycosyl part
of the substrate is transferred to a hydroxyl-containing compound instead of water moieties [27].
Some GH family 3 enzymes also show transglycosylation capabilities from various substrates. A
GH3 cellobiase from Phanerochaete chrysosporium can hydrolyze and transglycosylate glucopyranoside
from laminarioligosaccharides [28]. β-glucosidase from Aspergiluus niger strain ASKU28 also showed
transglucosidase activity against various substrates [29]. MT619 has been classified into GH family
3 according to the Carbohydrate-Active enZymes (CAZy). To the best of our knowledge, this is the
only transrhamnosylation activity reported in glycoside hydrolase family 3 to date. Further studies are
needed to reveal its sequence-activity relevance.

Some glycosylated ginsenoside derivatives from various natural ginsenosides have been
synthesized using enzymatic methods. A novel α-glycosylated ginsenoside F1((20S)-3β,6α,12β-
trihydroxydammar-24ene-(20-O-β-D-glucopyranosyl-(1→2)-α-D-glucopyranoside)) was synthesized
using a cyclodextrin glucanotransferase [30]; ginsenoside Ia((20S)-3b,6a,12b,20-tetrahydroxydammar-
24-ene-20-O-b-D-glucopyranosyl-3-O-b-D-glucopyranoside) was synthesized using UDP- glycosyl
transferase (BSGT1) from ginsenoside F1 [31]. In addition, various Rg1 a-glycosylated ginsenosides
(α-1,3-, α-1,4- or α-1,6-glucosidic linkage in β-glucose moieties) linked at C-6 and C-20 positions of
aglycones have been synthesized using rice seed a-glucosidases [32], although no trans-rhamnosyl
activity has been found using ginsenosides as rhamnose receptors.

A similar ginsenoside—ginsenoside Rg18 (Figure S1), which differs from MT1 in that it is linked
to an additional glucose moiety at the C-6 position—was recently found, isolated and characterized
from Panax ginseng roots [33]. Rg18 has been shown to have various important pharmacological
effects, such as anticancer [34] and neuroprotective effects [35]. However, the content of Rg18 in
ginseng is <36.0 µg/g of ginseng, which means that its application is limited by its scarcity in plants.
Fortunately, MT1 can be produced efficiently from the relatively abundant ginsenoside Re using the
recombinant MT619 with high recovery, which can make it industrially applicable. Furthermore, the
deglycosylated ginsenosides generally have shown enhanced pharmacological effects and absorbances
than the original ginsenosides [36–38]. Our group is drawing on the properties of MT1 to conduct
experiments on compounds with higher anticancer, anti-inflammatory, anti-oxidation and anti-aging.

5. Conclusions

In summary, this paper describes characterization and mass production of a new dammarane-type
triterpene saponin from enzymatic converted products. The trans-rhamnosyl activity of MT619
against ginsenoside Re to F1 resulted in the new ginsenoside MT1, a PPT-type ginsenoside containing
one neohesperidose moiety at the C-20 position (confirmed based on spectral data). This unknown
compound can be efficiently produced from abundant ginsenoside Re using MT619. Various studies
are on-going by our group to investigate its pharmacological effects. We expect potential commercial
uses of MT1 in nutraceutical, pharmaceutical or cosmeceutical areas.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/4/525/s1,
Figure S1: Chemical structures of ginsenosides; Figure S2. Released glucose (orange arrow) and rhamnose (blue
arrow)s in the supernatant of the reaction products of Re and Rg2(S); Figure S3. Thin layer analysis of the fractions
for the purification of MT1 using the ODS column; Figure S4. RPHPLC chromatogram showing the resolution
of the Rb3 and Rd; Figure S5. Positive-ion mode HPLC-ESI-MS/MS of the molecular ion (sodium adduct) of
MT1; Figure S6. TLC analysis of acidic hydrolysis products from neohesperidose-moiety harboring substrates by
hydrogen chloride.
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